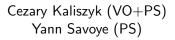


Functional Programming WS 2014/15



Computational Logic Institute of Computer Science University of Innsbruck

week 13

Overview

- Week 13 Dependent Types
 - Summary of Week 12
 - Simple Type Theory
 - Curry-Howard
- Dependent Types

Overview

• Week 13 - Dependent Types

- Summary of Week 12
- Simple Type Theory
- Curry-Howard

173+SIGI

Lazyness

Support for Lazyness

- keyword lazy ('a -> 'a Lazy.t)
- function Lazy.force : 'a Lazy.t -> 'a

Lazy Lists

Overview

• Week 13 - Dependent Types

- Summary of Week 12
- Simple Type Theory
- Curry-Howard

173+SIGI

This Week

Practice I

OCaml introduction, lists, strings, trees

Theory I

lambda-calculus, evaluation strategies, induction, reasoning about functional programs

Practice II

efficiency, tail-recursion, combinator-parsing,

Theory II

type checking, type inference

Advanced Topics

lazy evaluation, infinite data structures, dependent types monads

Safety of programs

- Type checking
 - If a program compiles, some guarantee about safety
- Type inference
 - Further helps in the interaction
- What kind of errors can it detect?
- Is it always an advantage?
 - Constructions that are not allowed?
 - Complicated error messages?

Errors in programs

- A boolean is added to a list of integers
- First element of an empty list
- zip of lists with different lengths
- Division by zero
- 0! = 0
- fib 100 returns a negative integer?
- Program loops

Hierarchy of types

- No types (Asm)
- Artificially added types (C)
- Simple types (λ)
- Overloading, type classes.
- Polymorphism (OCaml+)
- Types that depend on expressions

Convenience of types

- More errors found \rightarrow less programs accepted?
- Less programs accepted \rightarrow less expressive?

Convenience of types

- More errors found \rightarrow less programs accepted? NO!
- Less programs accepted \rightarrow less expressive? NO!
- There are stronger type systems
 - A bit more complicated than $\lambda\text{-calculus}$

10/25

Convenience of types

- More errors found \rightarrow less programs accepted?
- Less programs accepted \rightarrow less expressive?
- There are stronger type systems
 - A bit more complicated than $\lambda\text{-calculus}$
- Type inference becomes harder
 - Back to type annotations?

Overview

• Week 13 - Dependent Types

• Summary of Week 12

• Simple Type Theory

- Curry-Howard
- Dependent Type

Simple Type Theory (STT) or $\lambda_{ ightarrow}$

Types

- Atomic types
- Function types

$$\begin{array}{ccc} \alpha & \beta & \gamma & \dots \\ & \alpha \to \beta \end{array}$$

For example: $(\alpha \rightarrow \beta) \rightarrow \alpha \rightarrow \beta$

Terms

- Variables with explicit types: $x_1^{\sigma}, x_2^{\sigma}, \dots$
 - Countably many for each σ
- Applications: if $M : \sigma \rightarrow \tau$ and $N : \sigma$ then $(MN) : \tau$
- Abstractions: if $P : \tau$ then $(\lambda x^{\sigma}.P) : \sigma \to \tau$

Examples

$$\lambda x^{\sigma} . \lambda y^{\tau} . x : \sigma \to \tau \to \sigma$$

$$\lambda x^{\alpha \to \beta \to \gamma} . \lambda y^{\alpha \to \beta} . \lambda z^{\alpha} . xz : \beta \to \gamma$$

Conventions

Parenthe<u>ses</u>

- Types associate to the right
- Applications associate to the left

α -convertibility

$$\lambda x^{\sigma} \dots x \dots x \dots \approx_{\alpha} \lambda y^{\sigma} \dots y \dots y \dots$$

Capture avoiding substitution

$$M[x := N]$$

β -reduction

$$(\lambda x^{\sigma}.M)N \longrightarrow_{eta} M[x := N]$$

Terms in STT (λ_{\rightarrow})

• Can we find a term for every type?

Terms in STT (λ_{\rightarrow})

• Can we find a term for every type?

 x^{α} : α

• Can we find a closed term for every type?

Terms in STT (λ_{\rightarrow})

• Can we find a term for every type?

 x^{α} : α

• Can we find a closed term for every type?

$$(\alpha \to \alpha) \to \alpha$$

• No! Not every type is inhabited.

Overview

• Week 13 - Dependent Types

- Summary of Week 12
- Simple Type Theory

ependent Types

• Curry-Howard

173+SIGI

Relation to logic

A typing judgement $M : \sigma$ can be read in two ways:

- M is a function with the type σ
 - term is an algorithm (program)
 - type is its specification

M is a proof of the proposition σ

- type is a proposition
- term is its proof

One to one correspondence between

- Terms in λ_{\rightarrow} (typable)
- Derivations in minimal propositional logic

Proof interpretation

Proof of $A \rightarrow B$

Function that maps proofs of A to proofs B

Proof of $A \wedge B$

Pair of proofs of A and B

Proof of $A \vee B$

Either a proof of A or a proof of B

Proof of $\forall x.P(x)$

Function that maps an object x to a proof of P(x)

Proof of \perp

Does not exist.Negation of A turns a proof of A into a nonexistant object

Typical questions in Type Theory

TCP (type checking problem)

 $M:\sigma?$

TSP	(type	synthesis	problem)

M :?

TIP ((type	inhabitation	problem)
		mabication	problem	"

?: σ (by a closed term)

Typical questions in Type Theory

TCP (type checking problem)

 $M:\sigma?$

TSP	(type	synthesis	problem)
M :?			

TIP (type inhabitation problem)

?: σ (by a closed term)

- For λ_{\rightarrow} all are decidable
 - both with type annotations and without
- TCP and TSP are usually equivalent
 - application typing rule is to blame
- For more complicated systems TCP and TSP become undecidable
 - TIP corresponds to provability in some logic

Properties of $\lambda_{ ightarrow}$

Uniqueness of Types

If
$$\Gamma \vdash M : \sigma$$
 and $\Gamma \vdash M : \tau$, then $\sigma = \tau$.

Subject Reduction

If
$$\Gamma \vdash M : \sigma$$
 and $M \rightarrow_{\beta\eta} N$, then $\Gamma \vdash N : \sigma$.

Strong Normalization

If $\Gamma \vdash M : \sigma$, then all $\beta\eta$ -reductions from M terminate.

Substitution Property

If $\Gamma, x : \tau, \Delta \vdash M : \sigma, \Gamma \vdash P : \tau$, then $\Gamma, \Delta \vdash M[x := P] : \sigma$.

• Thinning

If
$$\Gamma \vdash M : \sigma$$
 and $\Gamma \subset \Delta$, then $\Delta \vdash M : \sigma$.

• Strengthening

If $\Gamma, x : \tau \vdash M : \sigma$ and $x \notin FV(M)$, then $\Gamma \vdash M : \sigma$.

Overview

• Week 13 - Dependent Types

- Summary of Week 12
- Simple Type Theory
- Curry-Howard
- Dependent Types
 573+SIG(1)

Dependent types and more

Printf

What type does it have?

Dependent types and more

Printf

What type does it have?

Bit-strings of length n

- Type of bit-strings: $bs : \mathbb{N} \to \star$
- Bit-string made of zeros: 0_{bs} : $(\forall n : \mathbb{N})bs(n)$
- $\mathbb{R}^{\mathbb{N}}$

Vectors

• Type of hd?

Intuition behind λ_P

functions from A to B

$$A \rightarrow B$$

dependent functions from A to B

 $\Pi x : A.B$

- Also called: dependent product
- Type of *B* can now depend on the argument *x*
- arrow type becomes a special case of dependent product

Properties of λ_P

- · Possible to extend by an existential quantifier
 - Disjoint union (coproduct) of types
- Strong Normalization (using forgetting map)
- Church-Rosser (corollary)
- Subject Reduction
- Type reconstruction is decidable in PTIME.
 - Type checking is undecidable!
- Type inhabitation in λ_P is undecidable

• ?

Properties of λ_P

- · Possible to extend by an existential quantifier
 - Disjoint union (coproduct) of types
- Strong Normalization (using forgetting map)
- Church-Rosser (corollary)
- Subject Reduction
- Type reconstruction is decidable in PTIME.
 - Type checking is undecidable!
- Type inhabitation in λ_P is undecidable

First order intuitionistic logic is undecidable

More logic

Types

- Types can show that programs have certain properties
- Types can show that programs terminate

But specifying and proving all the constraints gets tedious...

Proof Assistants

- Programs designed to prove properties
- Properties of programs (algorithms) and mathematical

Outlook

- Simple type theory corresponds to propositional logic
 - A proof of a proposition corresponds to a program of a type
- With dependent types
 - Predicate logic, Closer to Math
 - Epigram, Cayenne, Mizar
- Polymorphism
 - Limited in OCaml
- All possible dependencies
 - Foundation for Coq, Agda, Matita