
Automated Theorem Proving

Georg Moser

Institute of Computer Science @ UIBK

Winter 2015

http://cl-informatik.uibk.ac.at

Organisation

Organisation

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 2/1

Organisation

Time and Place
Automated Theorem Proving Wednesday, 13:15–14:45 3W03
exercise class Wednesday, 15:00–15:45 3W03

Schedule
week 1 October 9 week 8 November 27
week 2 October 16 week 9 December 4
week 3 October 23 week 10 December 11
week 4 October 30 week 11 December 18
week 5 November 6 week 12 January 15
week 6 November 13 no lecture
week 7 November 20 week 13 January 29
first exam February 5

Office Hours

Thursday, 9:00–11:00, 3M09, IfI Building

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 3/1

Organisation

Time and Place
Automated Theorem Proving Wednesday, 13:15–14:45 3W03
exercise class Wednesday, 15:00–15:45 3W03

Schedule
week 1 October 9 week 8 November 27
week 2 October 16 week 9 December 4
week 3 October 23 week 10 December 11
week 4 October 30 week 11 December 18
week 5 November 6 week 12 January 15
week 6 November 13 week 13 January 22
week 7 November 20 week 14 January 29
first exam February 5

Office Hours

Thursday, 9:00–11:00, 3M09, IfI Building

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 3/1

Organisation

Time and Place
Automated Theorem Proving Wednesday, 13:15–14:45 3W03
exercise class Wednesday, 15:00–15:45 3W03

Schedule
week 1 October 9 week 8 November 27
week 2 October 16 week 9 December 4
week 3 October 23 week 10 December 11
week 4 October 30 week 11 December 18
week 5 November 6 week 12 January 15
week 6 November 13 no lecture
week 7 November 20 week 13 January 29
first exam February 5

Office Hours

Thursday, 9:00–11:00, 3M09, IfI Building

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 3/1

Organisation

Time and Place
Automated Theorem Proving Wednesday, 13:15–14:45 3W03
exercise class Wednesday, 15:00–15:45 3W03

Schedule
week 1 October 9 week 8 November 27
week 2 October 16 week 9 December 4
week 3 October 23 week 10 December 11
week 4 October 30 week 11 December 18
week 5 November 6 week 12 January 15
week 6 November 13 no lecture
week 7 November 20 week 13 January 29
first exam February 5

Office Hours

Thursday, 9:00–11:00, 3M09, IfI Building

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 3/1

Organisation

Outline of the Module

Advanced Topics in Logic

for example

• compactness

• model existence theorem

• Herbrand’s Theorem

• Curry-Howard Isomorphism

Automated Reasoning

for example

• implementation of tableau provers

• redundancy and deletion

• superposition

• Robbins problem

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 4/1

Organisation

Outline of the Module

Advanced Topics in Logic

for example

• compactness

• model existence theorem

• Herbrand’s Theorem

• Curry-Howard Isomorphism

Automated Reasoning

for example

• implementation of tableau provers

• redundancy and deletion

• superposition

• Robbins problem

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 4/1

Organisation

Outline of the Lecture

Early Approaches in Automated Reasoning

Herbrand’s theorem for dummies, Gilmore’s prover, method of Davis and
Putnam

Starting Points

resolution, tableau provers, Skolemisation, ordered resolution, redundancy
and deletion

Automated Reasoning with Equality

paramodulation, ordered completion and proof orders, superposition

Applications of Automated Reasoning

Neuman-Stubblebinde Key Exchange Protocol, Robbins problem

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 5/1

Organisation

Literature

• lecture notes
(3rd edition)

Universität Innsbruck Academic Year 2015/16

Lecture Notes

Module Automated Reasoning

Notes for the Lectures in 2015/2016

Georg Moser

Winter 2015

c© G. Moser 3nd edition

Additional Reading

• G.S. Boolos, J.P. Burgess, and R.C. Jeffrey
Computability and Logic
Cambridge University Press, 2007

• H.-D. Ebbinghaus, J. Flum, and W. Thomas
Einführung in die mathematische Logik
Spektrum Akademischer Verlag, 2007

• A. Leitsch
The Resolution Calculus
Springer-Verlag, 2007

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 6/1

http://cl-informatik.uibk.ac.at/teaching/ws15/autres/

Organisation

Literature

• lecture notes
(3rd edition)

Universität Innsbruck Academic Year 2015/16

Lecture Notes

Module Automated Reasoning

Notes for the Lectures in 2015/2016

Georg Moser

Winter 2015

c© G. Moser 3nd edition

Additional Reading

• G.S. Boolos, J.P. Burgess, and R.C. Jeffrey
Computability and Logic
Cambridge University Press, 2007

• H.-D. Ebbinghaus, J. Flum, and W. Thomas
Einführung in die mathematische Logik
Spektrum Akademischer Verlag, 2007

• A. Leitsch
The Resolution Calculus
Springer-Verlag, 2007

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 6/1

http://cl-informatik.uibk.ac.at/teaching/ws15/autres/

Organisation (cont’d)

Time and Place (cont’d)

Automated Theorem Proving Friday, 13:15–14:45 3W03
exercise class Friday, 14:45–15:40 3W03

Comments
• officially there are two lectures and one exercise group

• this is not too bright, as the course on theorem proving is based on
the course on logic

• however, (budget) constraints require that the courses are held in
one term

• implemenation: logic on Wednesday, automated theorem proving on
Friday

• exercises will cover both topics

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 7/1

Organisation (cont’d)

Time and Place (cont’d)

Automated Theorem Proving Friday, 13:15–14:45 3W03
exercise class Friday, 14:45–15:40 3W03

Comments
• officially there are two lectures and one exercise group

• this is not too bright, as the course on theorem proving is based on
the course on logic

• however, (budget) constraints require that the courses are held in
one term

• implemenation: logic on Wednesday, automated theorem proving on
Friday

• exercises will cover both topics

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 7/1

Motivation

Motivation

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 8/1

Motivation

Applications of Automated Reasoning

1 Program Analysis
logical products of interpretations allows the automated combination
of simple interpreters

2 Databases, in particular datalog
datalog is a declarative language and syntactically it is a subset of
Prolog; used in knowledge representation systems

3 Types as Formulas
the type checking in simple λ-calculus is equivalent to derivability in
intuitionistic logic

4 Complexity Theory
NP can be characterised as the class of existential second-order
sentence

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 9/1

Motivation

Applications of Automated Reasoning

1 Program Analysis
logical products of interpretations allows the automated combination
of simple interpreters

2 Databases, in particular datalog
datalog is a declarative language and syntactically it is a subset of
Prolog; used in knowledge representation systems

3 Types as Formulas
the type checking in simple λ-calculus is equivalent to derivability in
intuitionistic logic

4 Complexity Theory
NP can be characterised as the class of existential second-order
sentence

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 9/1

Motivation

Applications of Automated Reasoning

1 Program Analysis
logical products of interpretations allows the automated combination
of simple interpreters

2 Databases, in particular datalog
datalog is a declarative language and syntactically it is a subset of
Prolog; used in knowledge representation systems

3 Types as Formulas
the type checking in simple λ-calculus is equivalent to derivability in
intuitionistic logic

4 Complexity Theory
NP can be characterised as the class of existential second-order
sentence

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 9/1

Motivation

Applications of Automated Reasoning

1 Program Analysis
logical products of interpretations allows the automated combination
of simple interpreters

2 Databases, in particular datalog
datalog is a declarative language and syntactically it is a subset of
Prolog; used in knowledge representation systems

3 Types as Formulas
the type checking in simple λ-calculus is equivalent to derivability in
intuitionistic logic

4 Complexity Theory
NP can be characterised as the class of existential second-order
sentence

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 9/1

Motivation

Additional Applications

Application Ä: Issues of Security

• security protocols are small programs that aim at securing
communications over a public network

• design of such protocols is difficult and error-prone

• we will study the use of a first-order theorem prover to show that
the Neuman-Stubblebine key exchange protocol can be broken

Application Å: Software Verification

• termination of programs is undecidable (Alan Turing)

• so what: termination of imperative programs can be shown by

AProVE, Terminator, Julia, COSTA, . . .

fully automatically . . .

• Terminator uses model-checking

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 10/1

Motivation

Additional Applications

Application Ä: Issues of Security

• security protocols are small programs that aim at securing
communications over a public network

• design of such protocols is difficult and error-prone

• we will study the use of a first-order theorem prover to show that
the Neuman-Stubblebine key exchange protocol can be broken

Application Å: Software Verification

• termination of programs is undecidable (Alan Turing)

• so what: termination of imperative programs can be shown by

AProVE, Terminator, Julia, COSTA, . . .

fully automatically . . .

• Terminator uses model-checking

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 10/1

Motivation

Software Verification

• in the early years of model-checking mainly hardware was analysed
like integrated circuits

• in the last decade the approach was extended to the verification of
properties of software

• initially only safety properties could be analysed (“nothing bad
happens”)

• recently liveness properties (“something good will happen”) became
of interest

• termination of a program is a liveness property

Terminator research project

• developed by Microsoft Research Cambridge

• employs transition invariants, given a program step relation →P find
finitely many well-founded relations U1, . . . ,Un whose union
contains the transitive closure of →P

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 11/1

Motivation

Software Verification

• in the early years of model-checking mainly hardware was analysed
like integrated circuits

• in the last decade the approach was extended to the verification of
properties of software

• initially only safety properties could be analysed (“nothing bad
happens”)

• recently liveness properties (“something good will happen”) became
of interest

• termination of a program is a liveness property

Terminator research project

• developed by Microsoft Research Cambridge

• employs transition invariants, given a program step relation →P find
finitely many well-founded relations U1, . . . ,Un whose union
contains the transitive closure of →P

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 11/1

Motivation

Software Verification

• in the early years of model-checking mainly hardware was analysed
like integrated circuits

• in the last decade the approach was extended to the verification of
properties of software

• initially only safety properties could be analysed (“nothing bad
happens”)

• recently liveness properties (“something good will happen”) became
of interest

• termination of a program is a liveness property

Terminator research project

• developed by Microsoft Research Cambridge

• employs transition invariants, given a program step relation →P find
finitely many well-founded relations U1, . . . ,Un whose union
contains the transitive closure of →P

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 11/1

Motivation

Software Verification

• in the early years of model-checking mainly hardware was analysed
like integrated circuits

• in the last decade the approach was extended to the verification of
properties of software

• initially only safety properties could be analysed (“nothing bad
happens”)

• recently liveness properties (“something good will happen”) became
of interest

• termination of a program is a liveness property

Terminator research project

• developed by Microsoft Research Cambridge

• employs transition invariants, given a program step relation →P find
finitely many well-founded relations U1, . . . ,Un whose union
contains the transitive closure of →P

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 11/1

Motivation

Software Verification

• in the early years of model-checking mainly hardware was analysed
like integrated circuits

• in the last decade the approach was extended to the verification of
properties of software

• initially only safety properties could be analysed (“nothing bad
happens”)

• recently liveness properties (“something good will happen”) became
of interest

• termination of a program is a liveness property

Terminator research project

• developed by Microsoft Research Cambridge

• employs transition invariants, given a program step relation →P find
finitely many well-founded relations U1, . . . ,Un whose union
contains the transitive closure of →P

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 11/1

Motivation

Software Verification

• in the early years of model-checking mainly hardware was analysed
like integrated circuits

• in the last decade the approach was extended to the verification of
properties of software

• initially only safety properties could be analysed (“nothing bad
happens”)

• recently liveness properties (“something good will happen”) became
of interest

• termination of a program is a liveness property

Terminator research project

• developed by Microsoft Research Cambridge

• employs transition invariants, given a program step relation →P find
finitely many well-founded relations U1, . . . ,Un whose union
contains the transitive closure of →P

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 11/1

Motivation

Software Verification

• in the early years of model-checking mainly hardware was analysed
like integrated circuits

• in the last decade the approach was extended to the verification of
properties of software

• initially only safety properties could be analysed (“nothing bad
happens”)

• recently liveness properties (“something good will happen”) became
of interest

• termination of a program is a liveness property

Terminator research project

• developed by Microsoft Research Cambridge

• employs transition invariants, given a program step relation →P find
finitely many well-founded relations U1, . . . ,Un whose union
contains the transitive closure of →P

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 11/1

Motivation

A Bit More on Java

Example

public static int div(int x, int y) {

int res = 0;

while (x >= y && y > 0) {

x = x-y;

res = res + 1;

}

return res;

}

Termination of the example could be proven.

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 12/1

http://aprove.informatik.rwth-aachen.de/index.asp?subform=termination_proofs.html

Motivation

A Bit More on Java

Example

public static int div(int x, int y) {

int res = 0;

while (x >= y && y > 0) {

x = x-y;

res = res + 1;

}

return res;

}

Termination of the example could be proven.

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 12/1

http://aprove.informatik.rwth-aachen.de/index.asp?subform=termination_proofs.html

Motivation

A Bit More on Java (cont’d)

Example

public static void test(int n, int m){

if (0 < n && n < m) {

int j = n+1;

while(j<n || j > n){

if (j>m) j=0 else j=j+1;

}

}

}

We were unable to show termination of the example.

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 13/1

http://aprove.informatik.rwth-aachen.de/index.asp?subform=termination_proofs.html

Motivation

A Bit More on Java (cont’d)

Example

public static void test(int n, int m){

if (0 < n && n < m) {

int j = n+1;

while(j<n || j > n){

if (j>m) j=0 else j=j+1;

}

}

}

We were unable to show termination of the example.

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 13/1

http://aprove.informatik.rwth-aachen.de/index.asp?subform=termination_proofs.html

Outline

Outline of the Lecture

Early Approaches in Automated Reasoning

Herbrand’s theorem for dummies, Gilmore’s prover, method of Davis and
Putnam

Starting Points

resolution, tableau provers, Skolemisation, ordered resolution, redundancy
and deletion

Automated Reasoning with Equality

paramodulation, ordered completion and proof orders, superposition

Applications of Automated Reasoning

Neuman-Stubblebinde Key Exchange Protocol, Robbins problem

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 14/1

Outline

Outline of the Lecture

Early Approaches in Automated Reasoning

Herbrand’s theorem for dummies, Gilmore’s prover, method of Davis and
Putnam

Starting Points

resolution, tableau provers, Skolemisation, ordered resolution, redundancy
and deletion

Automated Reasoning with Equality

paramodulation, ordered completion and proof orders, superposition

Applications of Automated Reasoning

Neuman-Stubblebinde Key Exchange Protocol, Robbins problem

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 14/1

Outline

Herbrand’s Theorem for Dummies

Jacques Herbrand (1908–1931) proposed
to

• transform first-order into
propositional logic

• basis of Gilmore’s prover

G a set of universal sentences (of L) without =

Theorem

G is satisfiable iff G has a Herbrand model (over L)

see lecture notes

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 15/1

Outline

Herbrand’s Theorem for Dummies

Jacques Herbrand (1908–1931) proposed
to

• transform first-order into
propositional logic

• basis of Gilmore’s prover

G a set of universal sentences (of L) without =

Theorem

G is satisfiable iff G has a Herbrand model (over L)

see lecture notes

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 15/1

Outline

Herbrand’s Theorem for Dummies

Jacques Herbrand (1908–1931) proposed
to

• transform first-order into
propositional logic

• basis of Gilmore’s prover

G a set of universal sentences (of L) without =

Theorem

G is satisfiable iff G has a Herbrand model (over L)

see lecture notes

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 15/1

Outline

Herbrand’s Theorem for Dummies

Jacques Herbrand (1908–1931) proposed
to

• transform first-order into
propositional logic

• basis of Gilmore’s prover

G a set of universal sentences (of L) without =

Theorem

G is satisfiable iff G has a Herbrand model (over L)

see lecture notes

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 15/1

Outline

Herbrand’s Theorem for Dummies

Jacques Herbrand (1908–1931) proposed
to

• transform first-order into
propositional logic

• basis of Gilmore’s prover

G a set of universal sentences (of L) without =

Theorem

G is satisfiable iff G has a Herbrand model (over L)

see lecture notes

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 15/1

Gilmore’s Prover

Gilmore’s Prover

Gilmore’s Prover (declarative version)

1 F be an arbitrary sentence in base language L

2 consider its negation ¬F
wlog ¬F = ∀x1 · · · ∀xnG (x1, . . . , xn) in SNF

3 consider all possible Herbrand interpretations of L
4 F is valid if ∃ finite unsatisfiable subset S ⊆ Gr(¬F)

Definition

Gr(G) = {G (t1, . . . , tn) | ∀x1 · · · ∀xnG (x1, . . . , xn) ∈ G, ti closed terms}

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 16/1

Gilmore’s Prover

Gilmore’s Prover

Gilmore’s Prover (declarative version)

1 F be an arbitrary sentence in base language L
2 consider its negation ¬F

wlog ¬F = ∀x1 · · · ∀xnG (x1, . . . , xn) in SNF

3 consider all possible Herbrand interpretations of L
4 F is valid if ∃ finite unsatisfiable subset S ⊆ Gr(¬F)

Definition

Gr(G) = {G (t1, . . . , tn) | ∀x1 · · · ∀xnG (x1, . . . , xn) ∈ G, ti closed terms}

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 16/1

Gilmore’s Prover

Gilmore’s Prover

Gilmore’s Prover (declarative version)

1 F be an arbitrary sentence in base language L
2 consider its negation ¬F

wlog ¬F = ∀x1 · · · ∀xnG (x1, . . . , xn) in SNF

3 consider all possible Herbrand interpretations of L

4 F is valid if ∃ finite unsatisfiable subset S ⊆ Gr(¬F)

Definition

Gr(G) = {G (t1, . . . , tn) | ∀x1 · · · ∀xnG (x1, . . . , xn) ∈ G, ti closed terms}

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 16/1

Gilmore’s Prover

Gilmore’s Prover

Gilmore’s Prover (declarative version)

1 F be an arbitrary sentence in base language L
2 consider its negation ¬F

wlog ¬F = ∀x1 · · · ∀xnG (x1, . . . , xn) in SNF

3 consider all possible Herbrand interpretations of L
4 F is valid if ∃ finite unsatisfiable subset S ⊆ Gr(¬F)

Definition

Gr(G) = {G (t1, . . . , tn) | ∀x1 · · · ∀xnG (x1, . . . , xn) ∈ G, ti closed terms}

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 16/1

Gilmore’s Prover

Gilmore’s Prover

Gilmore’s Prover (declarative version)

1 F be an arbitrary sentence in base language L
2 consider its negation ¬F

wlog ¬F = ∀x1 · · · ∀xnG (x1, . . . , xn) in SNF

3 consider all possible Herbrand interpretations of L
4 F is valid if ∃ finite unsatisfiable subset S ⊆ Gr(¬F)

Definition

Gr(G) = {G (t1, . . . , tn) | ∀x1 · · · ∀xnG (x1, . . . , xn) ∈ G, ti closed terms}

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 16/1

Gilmore’s Prover

Definition

let
A = {A0,A1,A2, . . . }

be (ground) atomic formulas over Herbrand universe of L

Definition (Semantic Tree)

the semantic tree T for F :

• the root is a semantic tree

• two edges leaving the root are labelled by A0 or ¬A0, respectively

• let I be a node in T of height n; then I is either a

1 leaf node or
2 the edges e1, e2 leaving node I are labelled by An and ¬An

Fact

path in T gives rise to a (partial) Herbrand interpretation I over L

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 17/1

Gilmore’s Prover

Definition

let
A = {A0,A1,A2, . . . }

be (ground) atomic formulas over Herbrand universe of L

Definition (Semantic Tree)

the semantic tree T for F :

• the root is a semantic tree

• two edges leaving the root are labelled by A0 or ¬A0, respectively

• let I be a node in T of height n; then I is either a

1 leaf node or
2 the edges e1, e2 leaving node I are labelled by An and ¬An

Fact

path in T gives rise to a (partial) Herbrand interpretation I over L

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 17/1

Gilmore’s Prover

Definition

let
A = {A0,A1,A2, . . . }

be (ground) atomic formulas over Herbrand universe of L

Definition (Semantic Tree)

the semantic tree T for F :

• the root is a semantic tree

• two edges leaving the root are labelled by A0 or ¬A0, respectively

• let I be a node in T of height n; then I is either a

1 leaf node or
2 the edges e1, e2 leaving node I are labelled by An and ¬An

Fact

path in T gives rise to a (partial) Herbrand interpretation I over L

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 17/1

Gilmore’s Prover

Definition

let
A = {A0,A1,A2, . . . }

be (ground) atomic formulas over Herbrand universe of L

Definition (Semantic Tree)

the semantic tree T for F :

• the root is a semantic tree

• two edges leaving the root are labelled by A0 or ¬A0, respectively

• let I be a node in T of height n; then I is either a

1 leaf node or
2 the edges e1, e2 leaving node I are labelled by An and ¬An

Fact

path in T gives rise to a (partial) Herbrand interpretation I over L

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 17/1

Gilmore’s Prover

Definition

let
A = {A0,A1,A2, . . . }

be (ground) atomic formulas over Herbrand universe of L

Definition (Semantic Tree)

the semantic tree T for F :

• the root is a semantic tree

• two edges leaving the root are labelled by A0 or ¬A0, respectively

• let I be a node in T of height n; then I is either a

1 leaf node or
2 the edges e1, e2 leaving node I are labelled by An and ¬An

Fact

path in T gives rise to a (partial) Herbrand interpretation I over L
GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 17/1

Gilmore’s Prover

Definition
• let I ∈ T , Herbrand interpretation induced by I is denoted as I

• I is closed, if ∃ G ∈ Gr(¬F) such that I 6|= G and thus I 6|= ¬F
• note that if I is closed, then I models the original formula F

Lemma

if all nodes in T are closed then F is valid

Proof.
• suppose all nodes in T are closed

• ∃ finite unsatisfiable S ⊆ Gr(¬F)

• a simple corollary to Herbrand’s theorem says that ¬F is
unsatisfiable if ∃ finite unsatisfiable S ⊆ Gr(¬F)

• hence ¬F is unsatisfiable, thus F is valid

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 18/1

Gilmore’s Prover

Definition
• let I ∈ T , Herbrand interpretation induced by I is denoted as I
• I is closed, if ∃ G ∈ Gr(¬F) such that I 6|= G and thus I 6|= ¬F

• note that if I is closed, then I models the original formula F

Lemma

if all nodes in T are closed then F is valid

Proof.
• suppose all nodes in T are closed

• ∃ finite unsatisfiable S ⊆ Gr(¬F)

• a simple corollary to Herbrand’s theorem says that ¬F is
unsatisfiable if ∃ finite unsatisfiable S ⊆ Gr(¬F)

• hence ¬F is unsatisfiable, thus F is valid

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 18/1

Gilmore’s Prover

Definition
• let I ∈ T , Herbrand interpretation induced by I is denoted as I
• I is closed, if ∃ G ∈ Gr(¬F) such that I 6|= G and thus I 6|= ¬F
• note that if I is closed, then I models the original formula F

Lemma

if all nodes in T are closed then F is valid

Proof.
• suppose all nodes in T are closed

• ∃ finite unsatisfiable S ⊆ Gr(¬F)

• a simple corollary to Herbrand’s theorem says that ¬F is
unsatisfiable if ∃ finite unsatisfiable S ⊆ Gr(¬F)

• hence ¬F is unsatisfiable, thus F is valid

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 18/1

Gilmore’s Prover

Definition
• let I ∈ T , Herbrand interpretation induced by I is denoted as I
• I is closed, if ∃ G ∈ Gr(¬F) such that I 6|= G and thus I 6|= ¬F
• note that if I is closed, then I models the original formula F

Lemma

if all nodes in T are closed then F is valid

Proof.
• suppose all nodes in T are closed

• ∃ finite unsatisfiable S ⊆ Gr(¬F)

• a simple corollary to Herbrand’s theorem says that ¬F is
unsatisfiable if ∃ finite unsatisfiable S ⊆ Gr(¬F)

• hence ¬F is unsatisfiable, thus F is valid

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 18/1

Implementing Gilmore’s Prover

Definition

the Herbrand universe for a language L can be constructed iteratively as
follows:

H0 :=

{
{c | c is a constant in L} ∃ constants

{c} otherwise

Hn+1 := {f (t1, . . . , tk) | f k ∈ L, t1, . . . , tk ∈ Hn}

finally H :=
⋃

n>0Hn denotes the Herbrand universe for L

Definitions

• let C = {C1, . . . ,Cn} be the set of clauses over L, representing ¬F a

• define C′n as the ground instances of C using only terms from Hn

aa clause is a disjunction of literals

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 19/1

Implementing Gilmore’s Prover

Definition

the Herbrand universe for a language L can be constructed iteratively as
follows:

H0 :=

{
{c | c is a constant in L} ∃ constants

{c} otherwise

Hn+1 := {f (t1, . . . , tk) | f k ∈ L, t1, . . . , tk ∈ Hn}

finally H :=
⋃

n>0Hn denotes the Herbrand universe for L

Definitions

• let C = {C1, . . . ,Cn} be the set of clauses over L, representing ¬F a

• define C′n as the ground instances of C using only terms from Hn

aa clause is a disjunction of literals

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 19/1

Implementing Gilmore’s Prover

Gilmore’s Prover in Pseudo-Code

begin {

contr := false;

n := 0;

while (not contr) do {

D ′ := DNF(C′n);
contr := all constituents of D ′

contain complementary literals;

n := n + 1;

}

}

Disadvantages

• generation of all C′n
• transformation to DNF

• did not yield actual proofs of simple (predicate logic) formulas

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 20/1

Implementing Gilmore’s Prover

Gilmore’s Prover in Pseudo-Code

begin {

contr := false;

n := 0;

while (not contr) do {

D ′ := DNF(C′n);
contr := all constituents of D ′

contain complementary literals;

n := n + 1;

}

}

Disadvantages

• generation of all C′n
• transformation to DNF

• did not yield actual proofs of simple (predicate logic) formulas

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 20/1

