

# Automated Theorem Proving

### Georg Moser

Institute of Computer Science @ UIBK

Winter 2015



# Time and Place

Automated Theorem Proving Wednesday, 13:15–14:45 3W03 exercise class Wednesday, 15:00–15:45 3W03

### Schedule

| week 1     | October 9   | week 8  | November 27 |
|------------|-------------|---------|-------------|
| week 2     | October 16  | week 9  | December 4  |
| week 3     | October 23  | week 10 | December 11 |
| week 4     | October 30  | week 11 | December 18 |
| week 5     | November 6  | week 12 | January 15  |
| week 6     | November 13 |         | no lecture  |
| week 7     | November 20 | week 13 | January 29  |
| first exam | February 5  |         |             |
|            |             |         |             |

### Office Hours

Thursday, 9:00-11:00, 3M09, IfI Building

# Organisation

GM (Institute of Computer Science @ UIBK)

Automated Theorem Proving

0.7

### Organisati

# Outline of the Module

## Advanced Topics in Logic

for example

- compactness
- model existence theorem
- Herbrand's Theorem
- Curry-Howard Isomorphism

## Automated Reasoning

for example

- implementation of tableau provers
- redundancy and deletion
- superposition
- Robbins problem

### Outline of the Lecture

### Early Approaches in Automated Reasoning

Herbrand's theorem for dummies, Gilmore's prover, method of Davis and Putnam

## Starting Points

resolution, tableau provers, Skolemisation, ordered resolution, redundancy and deletion

## Automated Reasoning with Equality

paramodulation, ordered completion and proof orders, superposition

### Applications of Automated Reasoning

Neuman-Stubblebinde Key Exchange Protocol, Robbins problem

GM (Institute of Computer Science @ UIBK)

Automated Theorem Proving

5/1

### Organisation (cont'd)

# Time and Place (cont'd)

Automated Theorem Proving Friday, 13:15–14:45 3W03 exercise class Friday, 14:45–15:40 3W03

### Comments

- officially there are two lectures and one exercise group
- this is not too bright, as the course on theorem proving is based on the course on logic
- however, (budget) constraints require that the courses are held in one term
- implemenation: logic on Wednesday, automated theorem proving on Friday
- exercises will cover both topics

### Literature

lecture notes (3rd edition)

### Additional Reading

- G.S. Boolos, J.P. Burgess, and R.C. Jeffrey Computability and Logic Cambridge University Press, 2007
- H.-D. Ebbinghaus, J. Flum, and W. Thomas Einführung in die mathematische Logik Spektrum Akademischer Verlag, 2007
- A. Leitsch
   The Resolution Calculus
   Springer-Verlag, 2007

GM (Institute of Computer Science @ UIBK)

Automated Theorem Proving

6/1

Motivatio

# Motivation

### Applications of Automated Reasoning

- Program Analysis logical products of interpretations allows the automated combination of simple interpreters
- 2 Databases, in particular datalog datalog is a declarative language and syntactically it is a subset of Prolog; used in knowledge representation systems
- 3 Types as Formulas the type checking in simple  $\lambda$ -calculus is equivalent to derivability in intuitionistic logic
- 4 Complexity Theory
  NP can be characterised as the class of existential second-order
  sentence

GM (Institute of Computer Science @ UIBK)

Automated Theorem Proving

Q/

### **Motivation**

### Software Verification

- in the early years of model-checking mainly hardware was analysed like integrated circuits
- in the last decade the approach was extended to the verification of properties of software
- initially only safety properties could be analysed ("nothing bad happens")
- recently liveness properties ("something good will happen") became of interest
- termination of a program is a liveness property

### Terminator research project

- developed by Microsoft Research Cambridge
- employs transition invariants, given a program step relation  $\rightarrow_P$  find finitely many well-founded relations  $U_1, \ldots, U_n$  whose union contains the transitive closure of  $\rightarrow_P$

# Additional Applications

### Application 5: Issues of Security

- security protocols are small programs that aim at securing communications over a public network
- design of such protocols is difficult and error-prone
- we will study the use of a first-order theorem prover to show that the Neuman-Stubblebine key exchange protocol can be broken

### Application 6: Software Verification

- termination of programs is undecidable (Alan Turing)
- so what: termination of imperative programs can be shown by

```
AProVE, Terminator, Julia, COSTA, ...
```

fully automatically . . .

Terminator uses model-checking

GM (Institute of Computer Science @ UIBK)

Automated Theorem Proving

10/

Motivation

### A Bit More on Java

### Example

```
public static int div(int x, int y) {
  int res = 0;
  while (x >= y && y > 0) {
    x = x-y;
    res = res + 1;
  }
  return res;
}
```

Termination of the example could be proven.

# A Bit More on Java (cont'd)

```
Example
public static void test(int n, int m){
  if (0 < n && n < m) {
    int j = n+1;
    while (j < n \mid | j > n) {
      if (j>m) j=0 else j=j+1;
  }
```

We were unable to show termination of the example.

GM (Institute of Computer Science @ UIBK)

Automated Theorem Proving

### Herbrand's Theorem for Dummies

Jacques Herbrand (1908–1931) proposed to

- transform first-order into propositional logic
- basis of Gilmore's prover



 $\mathcal{G}$  a set of universal sentences (of  $\mathcal{L}$ ) without =

### Theorem

see lecture notes

G is satisfiable iff G has a Herbrand model (over L)

### Outline of the Lecture

### Early Approaches in Automated Reasoning

Herbrand's theorem for dummies, Gilmore's prover, method of Davis and Putnam

## Starting Points

resolution, tableau provers, Skolemisation, ordered resolution, redundancy and deletion

### Automated Reasoning with Equality

paramodulation, ordered completion and proof orders, superposition

### Applications of Automated Reasoning

Neuman-Stubblebinde Key Exchange Protocol, Robbins problem

GM (Institute of Computer Science @ UIBK

Automated Theorem Proving

# Gilmore's Prover

### Gilmore's Prover (declarative version)

- f I F be an arbitrary sentence in base language  $\cal L$
- 2 consider its negation  $\neg F$ wlog  $\neg F = \forall x_1 \cdots \forall x_n G(x_1, \dots, x_n)$  in SNF
- 3 consider all possible Herbrand interpretations of  $\mathcal{L}$
- **4** F is valid if  $\exists$  finite unsatisfiable subset  $S \subseteq Gr(\neg F)$

### Definition

(Institute of Computer Science @ UIBK)

 $Gr(\mathcal{G}) = \{G(t_1, \dots, t_n) \mid \forall x_1 \dots \forall x_n G(x_1, \dots, x_n) \in \mathcal{G}, t_i \text{ closed terms}\}$ 

be (ground) atomic formulas over Herbrand universe of  ${\cal L}$ 

## Definition (Semantic Tree)

the semantic tree *T* for *F*:

- the root is a semantic tree
- two edges leaving the root are labelled by  $A_0$  or  $\neg A_0$ , respectively
- let I be a node in T of height n; then I is either a
  - 1 leaf node or
  - 2 the edges  $e_1, e_2$  leaving node I are labelled by  $A_n$  and  $\neg A_n$

### Fact

path in T gives rise to a (partial) Herbrand interpretation  $\mathcal I$  over  $\mathcal L$ 

GM (Institute of Computer Science @ UIBK)

Automated Theorem Proving

17

### Implementing Gilmore's Prover

### Definition

the Herbrand universe for a language  ${\cal L}$  can be constructed iteratively as follows:

$$\mathcal{H}_0 := egin{cases} \{c \mid c \text{ is a constant in } \mathcal{L}\} & \exists \text{ constants} \ \{c\} & \text{ otherwise} \end{cases}$$

$$H_{n+1} := \{ f(t_1, \ldots, t_k) \mid f^k \in \mathcal{L}, t_1, \ldots, t_k \in H_n \}$$

finally  $H:=\bigcup_{n\geqslant 0}H_n$  denotes the Herbrand universe for  $\mathcal L$ 

### **Definitions**

- let  $C = \{C_1, \dots, C_n\}$  be the set of clauses over  $\mathcal{L}$ , representing  $\neg F^a$
- define  $C'_n$  as the ground instances of C using only terms from  $H_n$

### Definition

- let  $I \in T$ , Herbrand interpretation induced by I is denoted as  $\mathcal{I}$
- I is closed, if  $\exists G \in Gr(\neg F)$  such that  $\mathcal{I} \not\models G$  and thus  $\mathcal{I} \not\models \neg F$
- note that if I is closed, then  $\mathcal{I}$  models the original formula F

### Lemma

if all nodes in T are closed then F is valid

### Proof.

- suppose all nodes in T are closed
- $\exists$  finite unsatisfiable  $S \subseteq Gr(\neg F)$
- a simple corollary to Herbrand's theorem says that  $\neg F$  is unsatisfiable if  $\exists$  finite unsatisfiable  $S \subseteq Gr(\neg F)$
- hence  $\neg F$  is unsatisfiable, thus F is valid

GM (Institute of Computer Science @ UIBK

Automated Theorem Proving

18/1

### Implementing Gilmore's Prove

### Gilmore's Prover in Pseudo-Code

### Disadvantages

- generation of all  $\mathcal{C}'_n$
- transformation to DNF
- did not yield actual proofs of simple (predicate logic) formulas

<sup>&</sup>lt;sup>a</sup>a clause is a disjunction of literals