Automated Theorem Proving

Georg Moser

Institute of Computer Science @ UIBK
Winter 2015

Summary Last Lecture

Definition

$$
\begin{array}{cc}
\frac{C \vee A D \vee \neg B}{(C \vee D) \sigma_{1}} & \frac{C \vee A \vee B}{(C \vee A) \sigma_{1}} \\
\frac{C \vee s \neq s^{\prime}}{C \sigma_{2}} & \frac{C \vee s=t D \vee\left[s^{\prime}\right]}{(C \vee D \vee L[t]) \sigma_{2}}
\end{array}
$$

- same conditions on σ_{1}, σ_{2} as before
- $A \sigma_{1}$ is strictly maximal with respect to $C \sigma_{1} ; \neg B \sigma_{1}$ is maximal with respect to $D \sigma_{1}$
- the equation $(s=t) \sigma_{2}$ and the literal $L\left[s^{\prime}\right] \sigma_{2}$ are maximal with respect to $D \sigma_{2}$

Summary Last Lecture

Definition

$$
\begin{array}{cc}
\frac{C \vee A D \vee \neg B}{(C \vee D) \sigma_{1}} & \frac{C \vee A \vee B}{(C \vee A) \sigma_{1}} \\
\frac{C \vee s \neq s^{\prime}}{C \sigma_{2}} & \frac{C \vee s=t D \vee\left[s^{\prime}\right]}{(C \vee D \vee L[t]) \sigma_{2}}
\end{array}
$$

- same conditions on σ_{1}, σ_{2} as before
- $A \sigma_{1}$ is strictly maximal with respect to $C \sigma_{1} ; \neg B \sigma_{1}$ is maximal with respect to $D \sigma_{1}$
- the equation $(s=t) \sigma_{2}$ and the literal $L\left[s^{\prime}\right] \sigma_{2}$ are maximal with respect to $D \sigma_{2}$

Summary Last Lecture

Definition

$$
\begin{array}{cc}
\frac{C \vee A D \vee \neg B}{(C \vee D) \sigma_{1}} & \frac{C \vee A \vee B}{(C \vee A) \sigma_{1}} \\
\frac{C \vee s \neq s^{\prime}}{C \sigma_{2}} & \frac{C \vee s=t D \vee\left[s^{\prime}\right]}{(C \vee D \vee L[t]) \sigma_{2}}
\end{array}
$$

- same conditions on σ_{1}, σ_{2} as before
- $A \sigma_{1}$ is strictly maximal with respect to $C \sigma_{1} ; \neg B \sigma_{1}$ is maximal with respect to $D \sigma_{1}$
- the equation $(s=t) \sigma_{2}$ and the literal $L\left[s^{\prime}\right] \sigma_{2}$ are maximal with respect to $D \sigma_{2}$

Summary Last Lecture

Definition

$$
\begin{array}{cc}
\frac{C \vee A D \vee \neg B}{(C \vee D) \sigma_{1}} & \frac{C \vee A \vee B}{(C \vee A) \sigma_{1}} \\
\frac{C \vee s \neq s^{\prime}}{C \sigma_{2}} & \frac{C \vee s=t D \vee\left[s^{\prime}\right]}{(C \vee D \vee L[t]) \sigma_{2}}
\end{array}
$$

- same conditions on σ_{1}, σ_{2} as before
- $A \sigma_{1}$ is strictly maximal with respect to $C \sigma_{1} ; \neg B \sigma_{1}$ is maximal with respect to $D \sigma_{1}$
- the equation $(s=t) \sigma_{2}$ and the literal $L\left[s^{\prime}\right] \sigma_{2}$ are maximal with respect to $D \sigma_{2}$

Summary Last Lecture

Definition

$$
\begin{array}{cc}
\frac{C \vee A D D \vee \neg B}{(C \vee D) \sigma_{1}} & \frac{C \vee A \vee B}{(C \vee A) \sigma_{1}} \\
\frac{C \vee s \neq s^{\prime}}{C \sigma_{2}} & \frac{\left.C \vee s=t D \vee L s^{\prime}\right]}{(C \vee D \vee L[t]) \sigma_{2}}
\end{array}
$$

- same conditions on σ_{1}, σ_{2} as before
- $A \sigma_{1}$ is strictly maximal with respect to $C \sigma_{1} ; \neg B \sigma_{1}$ is maximal with respect to $D \sigma_{1}$
- the equation $(s=t) \sigma_{2}$ and the literal $L\left[s^{\prime}\right] \sigma_{2}$ are maximal with respect to $D \sigma_{2}$

Theorem
ordered paramodulation is sound and complete

Definition

equations \mathcal{E} are ground complete wrt \succ if $\mathcal{E} \succ$ is complete on ground terms

Definition (superposition with equations)

$$
\frac{s=t \quad w[u]=v}{(w[t]=v) \sigma}
$$

- σ is mgu of s and u; $t \sigma \nsucceq s \sigma, v \sigma \nsucceq w[u] \sigma$ and u is not a variable - $(w[t]=v) \sigma$ is an ordered critical pair

Theorem

\succ a complete reduction order; a set of equations E is ground complete wrt \succ iff \forall ordered critical pairs $(w[t]=v) \sigma$ (with overlapping term $w[u] \sigma$) and \forall ground substitutions τ : if $w[u] \sigma \tau \succ w[t] \sigma \tau$ and $w[u] \sigma \tau \succ v \sigma \tau$ then $w[t] \sigma \tau \downarrow v \sigma \tau$

Outline of the Lecture

Early Approaches in Automated Reasoning

Herbrand's theorem for dummies, Gilmore's prover, method of Davis and Putnam

> Starting Points
> resolution, tableau provers, Skolemisation, ordered resolution, redundancy and deletion

Automated Reasoning with Equality
paramodulation, ordered completion and proof orders, superposition
Applications of Automated Reasoning
Neuman-Stubblebinde Key Exchange Protocol, Robbins problem

Outline of the Lecture

Early Approaches in Automated Reasoning

Herbrand's theorem for dummies, Gilmore's prover, method of Davis and Putnam

> Starting Points
> resolution, tableau provers, Skolemisation, ordered resolution, redundancy and deletion

Automated Reasoning with Equality
paramodulation, ordered completion and proof orders, superposition
Applications of Automated Reasoning
Neuman-Stubblebinde Key Exchange Protocol, Robbins problem

Ordered Completion

deduction

$$
\begin{array}{r}
\mathcal{E} ; \mathcal{R} \vdash \mathcal{E} \cup\{s=t\} ; \mathcal{R} \\
\text { if } s \leftrightarrow \mathcal{E} \cup \mathcal{R} w \leftrightarrow \mathcal{E} \cup \mathcal{R} t, s \nsucceq w, t \nsucceq w
\end{array}
$$

Ordered Completion

deduction
orientation

$$
\begin{aligned}
& \mathcal{E} ; \mathcal{R} \vdash \mathcal{E} \cup\{s=t\} ; \mathcal{R} \\
& \text { if } s \leftrightarrow \mathcal{E} \cup \mathcal{R} w \leftrightarrow \mathcal{E} \cup \mathcal{R} t, s \nsucceq w, t \nsucceq w \\
& \mathcal{E} \cup\{s=t\} ; \mathcal{R} \vdash \mathcal{E} ; \mathcal{R} \cup\{s \rightarrow t\} \quad \text { if } s \succ t
\end{aligned}
$$

Ordered Completion

deduction
orientation
deletion

$$
\mathcal{E} ; \mathcal{R} \vdash \mathcal{E} \cup\{s=t\} ; \mathcal{R}
$$

$$
\text { if } s \leftrightarrow \mathcal{E} \cup \mathcal{R} \text { w } w \mathcal{E} \cup \mathcal{R} t, s \nsucceq w, t \nsucceq w
$$

$$
\mathcal{E} \cup\{s=t\} ; \mathcal{R} \vdash \mathcal{E} ; \mathcal{R} \cup\{s \rightarrow t\}
$$

$$
\text { if } s \succ t
$$

$$
\mathcal{E} \cup\{s=s\} ; \mathcal{R} \vdash \mathcal{E} ; \mathcal{R}
$$

Ordered Completion

deduction
orientation
deletion
simplification

$$
\mathcal{E} ; \mathcal{R} \vdash \mathcal{E} \cup\{s=t\} ; \mathcal{R}
$$

$$
\text { if } s \leftrightarrow \mathcal{E} \cup \mathcal{R} w \nleftarrow \mathcal{E} \cup \mathcal{R} t, s \nsucceq w, t \nsucceq w
$$

$$
\mathcal{E} \cup\{s=t\} ; \mathcal{R} \vdash \mathcal{E} ; \mathcal{R} \cup\{s \rightarrow t\} \quad \text { if } s \succ t
$$

$$
\mathcal{E} \cup\{s=s\} ; \mathcal{R} \vdash \mathcal{E} ; \mathcal{R}
$$

$$
\mathcal{E} \cup\{s=t\} ; \mathcal{R} \vdash \mathcal{E} \cup\{u=t\} ; \mathcal{R} \quad \text { if } s \rightarrow_{\mathcal{R}} u
$$

Ordered Completion

deduction
orientation
deletion
simplification
composition

$$
\mathcal{E} ; \mathcal{R} \vdash \mathcal{E} \cup\{s=t\} ; \mathcal{R}
$$

$$
\text { if } s \leftrightarrow_{\mathcal{E} \cup \mathcal{R}} w \leftrightarrow_{\mathcal{E} \cup \mathcal{R}} t, s \nsucceq w, t \nsucceq w
$$

$$
\mathcal{E} \cup\{s=t\} ; \mathcal{R} \vdash \mathcal{E} ; \mathcal{R} \cup\{s \rightarrow t\} \quad \text { if } s \succ t
$$

$$
\mathcal{E} \cup\{s=s\} ; \mathcal{R} \vdash \mathcal{E} ; \mathcal{R}
$$

$$
\mathcal{E} \cup\{s=t\} ; \mathcal{R} \vdash \mathcal{E} \cup\{u=t\} ; \mathcal{R} \quad \text { if } s \rightarrow_{\mathcal{R}} u
$$

$$
\mathcal{E} ; \mathcal{R} \cup\{s \rightarrow t\} \vdash \mathcal{E} ; \mathcal{R} \cup\{s \rightarrow u\} \quad \text { if } r \rightarrow_{\mathcal{R}} u
$$

Ordered Completion

deduction

$$
\mathcal{E} ; \mathcal{R} \vdash \mathcal{E} \cup\{s=t\} ; \mathcal{R}
$$

$$
\text { if } s \leftrightarrow \mathcal{E} \cup \mathcal{R} w \leftrightarrow \mathcal{E} \cup \mathcal{R} t, s \nsucceq w, t \nsucceq w
$$

orientation

$$
\mathcal{E} \cup\{s=t\} ; \mathcal{R} \vdash \mathcal{E} ; \mathcal{R} \cup\{s \rightarrow t\} \quad \text { if } s \succ t
$$

deletion

$$
\mathcal{E} \cup\{s=s\} ; \mathcal{R} \vdash \mathcal{E} ; \mathcal{R}
$$

simplification
composition

$$
\begin{aligned}
\mathcal{E} \cup\{s=t\} ; \mathcal{R} \vdash \mathcal{E} \cup\{u=t\} ; \mathcal{R} & \text { if } s \rightarrow_{\mathcal{R}} u \\
\mathcal{E} ; \mathcal{R} \cup\{s \rightarrow t\} \vdash \mathcal{E} ; \mathcal{R} \cup\{s \rightarrow u\} & \text { if } r \rightarrow_{\mathcal{R}} u
\end{aligned}
$$

collapse

$$
\mathcal{E} ; \mathcal{R} \cup\{s[w] \rightarrow t\} \vdash \mathcal{E} \cup\{s[u]=t\} ; \mathcal{R}
$$

$$
\text { if } w \rightarrow_{\mathcal{R}} u \text { and either } t \succ u \text { or } w \neq s[w]
$$
 \section*{\title{

Ordered Completion
}}
 \section*{\title{
Ordered Completion
}}
deduction

$$
\begin{aligned}
& \mathcal{E} ; \mathcal{R} \vdash \mathcal{E} \cup\{s=t\} ; \mathcal{R} \\
& \text { if } s \leftrightarrow \mathcal{E} \cup \mathcal{R} w \leftrightarrow \mathcal{E} \cup \mathcal{R} t, s \nsucceq w, t \nsucceq w \\
& \mathcal{E} \cup\{s=t\} ; \mathcal{R} \vdash \mathcal{E} ; \mathcal{R} \cup\{s \rightarrow t\} \\
& \mathcal{E} \cup\{s=s\} ; \mathcal{R} \vdash \mathcal{E} ; \mathcal{R}
\end{aligned}
$$

orientation
deletion
simplification

$$
\mathcal{E} \cup\{s=t\} ; \mathcal{R} \vdash \mathcal{E} \cup\{u=t\} ; \mathcal{R} \quad \text { if } s \rightarrow_{\mathcal{R}} u
$$

composition

$$
\mathcal{E} ; \mathcal{R} \cup\{s \rightarrow t\} \vdash \mathcal{E} ; \mathcal{R} \cup\{s \rightarrow u\} \quad \text { if } r \rightarrow_{\mathcal{R}} u
$$

collapse

$$
\mathcal{E} ; \mathcal{R} \cup\{s[w] \rightarrow t\} \vdash \mathcal{E} \cup\{s[u]=t\} ; \mathcal{R}
$$

$$
\text { if } w \rightarrow_{\mathcal{R}} u \text { and either } t \succ u \text { or } w \neq s[w]
$$

Definition

- a sequence $\left(\mathcal{E}_{0} ; \mathcal{R}_{0}\right) \vdash\left(\mathcal{E}_{1} ; \mathcal{R}_{1}\right) \vdash \cdots$ is called a derivation usually \mathcal{E}_{0} is the set of initial equations and $\mathcal{R}_{0}=\varnothing$

Ordered Completion

deduction

$$
\begin{array}{r}
\mathcal{E} ; \mathcal{R} \vdash \mathcal{E} \cup\{s=t\} ; \mathcal{R} \\
\text { if } s \leftrightarrow \mathcal{E} \cup \mathcal{R} w \leftrightarrow \mathcal{E} \cup \mathcal{R} t, s \nsucceq w, t \nsucceq w
\end{array}
$$

orientation
deletion
simplification
composition
collapse

$$
\mathcal{E} \cup\{s=t\} ; \mathcal{R} \vdash \mathcal{E} ; \mathcal{R} \cup\{s \rightarrow t\} \quad \text { if } s \succ t
$$

$$
\mathcal{E} \cup\{s=s\} ; \mathcal{R} \vdash \mathcal{E} ; \mathcal{R}
$$

$$
\mathcal{E} \cup\{s=t\} ; \mathcal{R} \vdash \mathcal{E} \cup\{u=t\} ; \mathcal{R} \quad \text { if } s \rightarrow_{\mathcal{R}} u
$$

$$
\mathcal{E} ; \mathcal{R} \cup\{s \rightarrow t\} \vdash \mathcal{E} ; \mathcal{R} \cup\{s \rightarrow u\} \quad \text { if } r \rightarrow_{\mathcal{R}} u
$$

$$
\mathcal{E} ; \mathcal{R} \cup\{s[w] \rightarrow t\} \vdash \mathcal{E} \cup\{s[u]=t\} ; \mathcal{R}
$$

$$
\text { if } w \rightarrow_{\mathcal{R}} u \text { and either } t \succ u \text { or } w \neq s[w]
$$

Definition

- a sequence $\left(\mathcal{E}_{0} ; \mathcal{R}_{0}\right) \vdash\left(\mathcal{E}_{1} ; \mathcal{R}_{1}\right) \vdash \cdots$ is called a derivation usually \mathcal{E}_{0} is the set of initial equations and $\mathcal{R}_{0}=\varnothing$
- its limit is $\left(\mathcal{E}_{\infty} ; \mathcal{R}_{\infty}\right)$; here $\mathcal{E}_{\infty}=\bigcup_{i \geqslant 0} \bigcap_{j \geqslant i} \mathcal{E}_{j} ; \mathcal{R}_{\infty}=\bigcup_{i \geqslant 0} \bigcap_{j \geqslant i} \mathcal{R}_{j}$

Ordered Completion

deduction

$$
\begin{array}{r}
\mathcal{E} ; \mathcal{R} \vdash \mathcal{E} \cup\{s=t\} ; \mathcal{R} \\
\text { if } s \leftrightarrow \mathcal{E} \cup \mathcal{R} w \leftrightarrow \mathcal{E} \cup \mathcal{R} t, s \nsucceq w, t \nsucceq w
\end{array}
$$

orientation
deletion
simplification
composition
collapse

$$
\mathcal{E} \cup\{s=t\} ; \mathcal{R} \vdash \mathcal{E} ; \mathcal{R} \cup\{s \rightarrow t\} \quad \text { if } s \succ t
$$

$$
\mathcal{E} \cup\{s=s\} ; \mathcal{R} \vdash \mathcal{E} ; \mathcal{R}
$$

$$
\mathcal{E} \cup\{s=t\} ; \mathcal{R} \vdash \mathcal{E} \cup\{u=t\} ; \mathcal{R} \quad \text { if } s \rightarrow_{\mathcal{R}} u
$$

$$
\mathcal{E} ; \mathcal{R} \cup\{s \rightarrow t\} \vdash \mathcal{E} ; \mathcal{R} \cup\{s \rightarrow u\} \quad \text { if } r \rightarrow_{\mathcal{R}} u
$$

$$
\mathcal{E} ; \mathcal{R} \cup\{s[w] \rightarrow t\} \vdash \mathcal{E} \cup\{s[u]=t\} ; \mathcal{R}
$$

$$
\text { if } w \rightarrow_{\mathcal{R}} u \text { and either } t \succ u \text { or } w \neq s[w]
$$

Definition

- a sequence $\left(\mathcal{E}_{0} ; \mathcal{R}_{0}\right) \vdash\left(\mathcal{E}_{1} ; \mathcal{R}_{1}\right) \vdash \cdots$ is called a derivation usually \mathcal{E}_{0} is the set of initial equations and $\mathcal{R}_{0}=\varnothing$
- its limit is $\left(\mathcal{E}_{\infty} ; \mathcal{R}_{\infty}\right)$; here $\mathcal{E}_{\infty}=\bigcup_{i \geqslant 0} \bigcap_{j \geqslant i} \mathcal{E}_{j} ; \mathcal{R}_{\infty}=\bigcup_{i \geqslant 0} \bigcap_{j \geqslant i} \mathcal{R}_{j}$

Definition

- a proof of $s=t$ wrt $\mathcal{E} ; \mathcal{R}$ is

$$
s=s_{0} \rho_{0} s_{1} \rho_{1} s_{2} \cdots s_{n-1} \rho_{n-1} s_{n}=t \quad n \geqslant 0
$$

$1\left(s_{i} \rho_{i} s_{i+1}\right)=(w[u \sigma] \leftrightarrow w[v \sigma])$ with $u=v \in \mathcal{E}$
$2\left(s_{i} \rho_{i} s_{i+1}\right)=(w[u \sigma] \rightarrow w[v \sigma])$ with $u \rightarrow v \in \mathcal{E} \succ \cup \mathcal{R}$
$3\left(s_{i} \rho_{i} s_{i+1}\right)=(w[u \sigma] \leftarrow w[v \sigma])$ with $v \rightarrow u \in \mathcal{E}^{\succ} \cup \mathcal{R}$

Definition

- a proof of $s=t$ wrt $\mathcal{E} ; \mathcal{R}$ is

$$
s=s_{0} \rho_{0} s_{1} \rho_{1} s_{2} \cdots s_{n-1} \rho_{n-1} s_{n}=t \quad n \geqslant 0
$$

$1\left(s_{i} \rho_{i} s_{i+1}\right)=(w[u \sigma] \leftrightarrow w[v \sigma])$ with $u=v \in \mathcal{E}$
$2\left(s_{i} \rho_{i} s_{i+1}\right)=(w[u \sigma] \rightarrow w[v \sigma])$ with $u \rightarrow v \in \mathcal{E}^{\succ} \cup \mathcal{R}$
$3\left(s_{i} \rho_{i} s_{i+1}\right)=(w[u \sigma] \leftarrow w[v \sigma])$ with $v \rightarrow u \in \mathcal{E}^{\succ} \cup \mathcal{R}$

- a proof of form

$$
s=s_{0} \rightarrow s_{1} \rightarrow s_{2} \cdots \rightarrow s_{m} \leftarrow \cdots s_{n-1} \leftarrow s_{n}=t
$$

is called rewrite proof

Definition

- a proof of $s=t$ wrt $\mathcal{E} ; \mathcal{R}$ is

$$
s=s_{0} \rho_{0} s_{1} \rho_{1} s_{2} \cdots s_{n-1} \rho_{n-1} s_{n}=t \quad n \geqslant 0
$$

$1\left(s_{i} \rho_{i} s_{i+1}\right)=(w[u \sigma] \leftrightarrow w[v \sigma])$ with $u=v \in \mathcal{E}$
$2\left(s_{i} \rho_{i} s_{i+1}\right)=(w[u \sigma] \rightarrow w[v \sigma])$ with $u \rightarrow v \in \mathcal{E}^{\succ} \cup \mathcal{R}$
$3\left(s_{i} \rho_{i} s_{i+1}\right)=(w[u \sigma] \leftarrow w[v \sigma])$ with $v \rightarrow u \in \mathcal{E}^{\succ} \cup \mathcal{R}$

- a proof of form

$$
s=s_{0} \rightarrow s_{1} \rightarrow s_{2} \cdots \rightarrow s_{m} \leftarrow \cdots s_{n-1} \leftarrow s_{n}=t
$$

is called rewrite proof

Fact

$1 \exists$ rewrite proof iff the equations are joinable wrt $\mathcal{R} \cup \mathcal{E}^{\succ}$
2 whenever $\mathcal{E} ; \mathcal{R} \vdash \mathcal{E}^{\prime} ; \mathcal{R}^{\prime}$ then the same equations are provable in $\mathcal{E} ; \mathcal{R}$ as in $\mathcal{E}^{\prime} ; \mathcal{R}^{\prime} ;$ however proofs may become simpler

Definition
 s encompasses t if $s=C[t \sigma]$ for some context C and some substitution σ

Definition

s encompasses t if $s=C[t \sigma]$ for some context C and some substitution σ

Definition

cost measure of proof steps

$$
\text { cost of } s[u] \rho s[v]= \begin{cases}(\{s[u]\}, u, \rho, s[v]) & \text { if } s[u] \succ s[v] \\ (\{s[v]\}, v, \rho, s[u]) & \text { if } s[v] \succ s[u] \\ (\{s[u], s[v]\}, \perp, \perp, \perp) & \text { otherwise }\end{cases}
$$

cost measure is lexicographically compared as follows:

Definition

s encompasses t if $s=C[t \sigma]$ for some context C and some substitution σ

Definition

cost measure of proof steps

$$
\text { cost of } s[u] \rho s[v]= \begin{cases}(\{s[u]\}, u, \rho, s[v]) & \text { if } s[u] \succ s[v] \\ (\{s[v]\}, v, \rho, s[u]) & \text { if } s[v] \succ s[u] \\ (\{s[u], s[v]\}, \perp, \perp, \perp) & \text { otherwise }\end{cases}
$$

cost measure is lexicographically compared as follows:
1 multiset extension of \succ

Definition

s encompasses t if $s=C[t \sigma]$ for some context C and some substitution σ

Definition

cost measure of proof steps

$$
\text { cost of } s[u] \rho s[v]= \begin{cases}(\{s[u]\}, u, \rho, s[v]) & \text { if } s[u] \succ s[v] \\ (\{s[v]\}, v, \rho, s[u]) & \text { if } s[v] \succ s[u] \\ (\{s[u], s[v]\}, \perp, \perp, \perp) & \text { otherwise }\end{cases}
$$

cost measure is lexicographically compared as follows:
1 multiset extension of \succ
2 encompassment order

Definition

s encompasses t if $s=C[t \sigma]$ for some context C and some substitution σ

Definition

cost measure of proof steps

$$
\text { cost of } s[u] \rho s[v]= \begin{cases}(\{s[u]\}, u, \rho, s[v]) & \text { if } s[u] \succ s[v] \\ (\{s[v]\}, v, \rho, s[u]) & \text { if } s[v] \succ s[u] \\ (\{s[u], s[v]\}, \perp, \perp, \perp) & \text { otherwise }\end{cases}
$$

cost measure is lexicographically compared as follows:
1 multiset extension of \succ
2 encompassment order
3 some order with $\leftrightarrow>\rightarrow$ and $\leftrightarrow>\leftarrow$

Definition

s encompasses t if $s=C[t \sigma]$ for some context C and some substitution σ

Definition

cost measure of proof steps

$$
\text { cost of } s[u] \rho s[v]= \begin{cases}(\{s[u]\}, u, \rho, s[v]) & \text { if } s[u] \succ s[v] \\ (\{s[v]\}, v, \rho, s[u]) & \text { if } s[v] \succ s[u] \\ (\{s[u], s[v]\}, \perp, \perp, \perp) & \text { otherwise }\end{cases}
$$

cost measure is lexicographically compared as follows:
1 multiset extension of \succ
2 encompassment order
3 some order with $\leftrightarrow>\rightarrow$ and $\leftrightarrow>\leftarrow$
4 reduction order \succ

Definition

s encompasses t if $s=C[t \sigma]$ for some context C and some substitution σ

Definition

cost measure of proof steps

$$
\text { cost of } s[u] \rho s[v]= \begin{cases}(\{s[u]\}, u, \rho, s[v]) & \text { if } s[u] \succ s[v] \\ (\{s[v]\}, v, \rho, s[u]) & \text { if } s[v] \succ s[u] \\ (\{s[u], s[v]\}, \perp, \perp, \perp) & \text { otherwise }\end{cases}
$$

cost measure is lexicographically compared as follows:
1 multiset extension of \succ
2 encompassment order
3 some order with $\leftrightarrow>\rightarrow$ and $\leftrightarrow>\leftarrow$
4 reduction order \succ
\perp is supposed to be minimal in all orders;

Definition

s encompasses t if $s=C[t \sigma]$ for some context C and some substitution σ

Definition

cost measure of proof steps

$$
\text { cost of } s[u] \rho s[v]= \begin{cases}(\{s[u]\}, u, \rho, s[v]) & \text { if } s[u] \succ s[v] \\ (\{s[v]\}, v, \rho, s[u]) & \text { if } s[v] \succ s[u] \\ (\{s[u], s[v]\}, \perp, \perp, \perp) & \text { otherwise }\end{cases}
$$

cost measure is lexicographically compared as follows:
1 multiset extension of \succ
2 encompassment order
3 some order with $\leftrightarrow>\rightarrow$ and $\leftrightarrow>\leftarrow$
4 reduction order \succ
\perp is supposed to be minimal in all orders; let \succ_{π} the multiset extension of the cost measure; then \succ_{π} denotes a well-founded order on proofs

Fact each completion step decreases the cost of certain proofs

Fact each completion step decreases the cost of certain proofs

Proof Sketch.

Fact each completion step decreases the cost of certain proofs

Proof Sketch.

- consider orientation that replaces an equation $s=t$ by rule $s \rightarrow t$

Fact

each completion step decreases the cost of certain proofs
Proof Sketch.

- consider orientation that replaces an equation $s=t$ by rule $s \rightarrow t$
- yields proof transformation

$$
(u[s \sigma] \leftrightarrow u[t \sigma]) \Rightarrow(u[s \sigma] \rightarrow u[t \sigma])
$$

Fact

each completion step decreases the cost of certain proofs

Proof Sketch.

- consider orientation that replaces an equation $s=t$ by rule $s \rightarrow t$
- yields proof transformation

$$
(u[s \sigma] \leftrightarrow u[t \sigma]) \Rightarrow(u[s \sigma] \rightarrow u[t \sigma])
$$

- cost of $(u[s \sigma] \leftrightarrow u[t \sigma])>\operatorname{cost}$ of $(u[s \sigma] \rightarrow u[t \sigma])$

Fact

each completion step decreases the cost of certain proofs

Proof Sketch.

- consider orientation that replaces an equation $s=t$ by rule $s \rightarrow t$
- yields proof transformation

$$
(u[s \sigma] \leftrightarrow u[t \sigma]) \Rightarrow(u[s \sigma] \rightarrow u[t \sigma])
$$

- cost of $(u[s \sigma] \leftrightarrow u[t \sigma])>\operatorname{cost}$ of $(u[s \sigma] \rightarrow u[t \sigma])$

Fact

each completion step decreases the cost of certain proofs

Proof Sketch.

- consider orientation that replaces an equation $s=t$ by rule $s \rightarrow t$
- yields proof transformation

$$
(u[s \sigma] \leftrightarrow u[t \sigma]) \Rightarrow(u[s \sigma] \rightarrow u[t \sigma])
$$

- cost of $(u[s \sigma] \leftrightarrow u[t \sigma])>\operatorname{cost}$ of $(u[s \sigma] \rightarrow u[t \sigma])$
recall: $\mathcal{E}_{\infty}=\bigcup_{i \geqslant 0} \bigcap_{j \geqslant i} \mathcal{E}_{j} ; \mathcal{R}_{\infty}=\bigcup_{i \geqslant 0} \bigcap_{j \geqslant i} \mathcal{R}_{j}$

Fact

each completion step decreases the cost of certain proofs

Proof Sketch.

- consider orientation that replaces an equation $s=t$ by rule $s \rightarrow t$
- yields proof transformation

$$
(u[s \sigma] \leftrightarrow u[t \sigma]) \Rightarrow(u[s \sigma] \rightarrow u[t \sigma])
$$

- cost of $(u[s \sigma] \leftrightarrow u[t \sigma])>\operatorname{cost}$ of $(u[s \sigma] \rightarrow u[t \sigma])$
recall: $\mathcal{E}_{\infty}=\bigcup_{i \geqslant 0} \bigcap_{j \geqslant i} \mathcal{E}_{j} ; \mathcal{R}_{\infty}=\bigcup_{i \geqslant 0} \bigcap_{j \geqslant i} \mathcal{R}_{j}$

Definition

a derivation is fair if each ordered critical pair $u=v \in \mathcal{E}_{\infty} \cup \mathcal{R}_{\infty}$ is an element of some \mathcal{E}_{i}

Theorem
let $\left(\mathcal{E}_{0} ; \mathcal{R}_{0}\right),\left(\mathcal{E}_{1} ; \mathcal{R}_{1}\right), \ldots$ be a fair ordered completion derivation with $\mathcal{R}_{0}=\varnothing$; then the following is equivalent:
$1 s=t$ is a consequence of \mathcal{E}_{0}

Theorem

let $\left(\mathcal{E}_{0} ; \mathcal{R}_{0}\right),\left(\mathcal{E}_{1} ; \mathcal{R}_{1}\right), \ldots$ be a fair ordered completion derivation with $\mathcal{R}_{0}=\varnothing$; then the following is equivalent:
$1 s=t$ is a consequence of \mathcal{E}_{0}
$2 s=t$ has a rewrite proof in $\mathcal{E}_{\infty}^{\succ} \cup \mathcal{R}_{\infty}$

Theorem

let $\left(\mathcal{E}_{0} ; \mathcal{R}_{0}\right),\left(\mathcal{E}_{1} ; \mathcal{R}_{1}\right), \ldots$ be a fair ordered completion derivation with $\mathcal{R}_{0}=\varnothing$; then the following is equivalent:
$1 s=t$ is a consequence of \mathcal{E}_{0}
2 $s=t$ has a rewrite proof in $\mathcal{E}_{\infty}^{\succ} \cup \mathcal{R}_{\infty}$
$3 \exists i$ such that $s=t$ has a rewrite proof in $\mathcal{E}_{i}^{\succ} \cup \mathcal{R}_{i}$

Theorem

let $\left(\mathcal{E}_{0} ; \mathcal{R}_{0}\right),\left(\mathcal{E}_{1} ; \mathcal{R}_{1}\right), \ldots$ be a fair ordered completion derivation with $\mathcal{R}_{0}=\varnothing$; then the following is equivalent:
$1 s=t$ is a consequence of \mathcal{E}_{0}
$2 s=t$ has a rewrite proof in $\mathcal{E}_{\infty}^{\succ} \cup \mathcal{R}_{\infty}$
$3 \exists i$ such that $s=t$ has a rewrite proof in $\mathcal{E}_{i}^{\succ} \cup \mathcal{R}_{i}$

Definitions

- let \mathcal{E} be a set of equations and $s=t$ an equation (possibly containing variables); then $\mathcal{E} \models s=t$ is the word problem for \mathcal{E}
- the word problem becomes a refutation theorem proving problem once we consider the clause form of the negation of the word problem:

1 a set of positive unit equations in \mathcal{E}
2 a ground disequation obtained by negation and Skolemisation of $s=t$

Completeness of Superposition

Corollary
superposition with equations is sound and complete, that is, if \mathcal{C} is the clause representation of the (negated) word problem $\mathcal{E} \models s=t$, then the saturation of \mathcal{C} wrt to superposition (and equality resolution) contains \square iff $\mathcal{E} \models s=t$

Completeness of Superposition

Corollary
superposition with equations is sound and complete, that is, if \mathcal{C} is the clause representation of the (negated) word problem $\mathcal{E} \models s=t$, then the saturation of \mathcal{C} wrt to superposition (and equality resolution) contains \square iff $\mathcal{E} \models s=t$

Proof.

1 let \mathcal{C}^{\prime} denote the saturation and let $\square \in \mathcal{C}^{\prime}$

Completeness of Superposition

Corollary
superposition with equations is sound and complete, that is, if \mathcal{C} is the clause representation of the (negated) word problem $\mathcal{E} \models s=t$, then the saturation of \mathcal{C} wrt to superposition (and equality resolution) contains \square iff $\mathcal{E} \models s=t$

Proof.

1 let \mathcal{C}^{\prime} denote the saturation and let $\square \in \mathcal{C}^{\prime}$
2 then $\mathcal{E} \models s=t$ due to soundness of superposition

Completeness of Superposition

Corollary

superposition with equations is sound and complete, that is, if \mathcal{C} is the clause representation of the (negated) word problem $\mathcal{E} \models s=t$, then the saturation of \mathcal{C} wrt to superposition (and equality resolution) contains \square iff $\mathcal{E} \equiv s=t$

Proof.

1 let \mathcal{C}^{\prime} denote the saturation and let $\square \in \mathcal{C}^{\prime}$
2 then $\mathcal{E} \models s=t$ due to soundness of superposition
3 otherwise assume $\square \notin \mathcal{C}^{\prime}$

Completeness of Superposition

Corollary

superposition with equations is sound and complete, that is, if \mathcal{C} is the clause representation of the (negated) word problem $\mathcal{E} \models s=t$, then the saturation of \mathcal{C} wrt to superposition (and equality resolution) contains \square iff $\mathcal{E} \equiv s=t$

Proof.

1 let \mathcal{C}^{\prime} denote the saturation and let $\square \in \mathcal{C}^{\prime}$
2 then $\mathcal{E} \models s=t$ due to soundness of superposition
3 otherwise assume $\square \notin \mathcal{C}^{\prime}$
4 then $s=t$ does not have a proof in \mathcal{C}^{\prime}

Completeness of Superposition

Corollary

superposition with equations is sound and complete, that is, if \mathcal{C} is the clause representation of the (negated) word problem $\mathcal{E} \models s=t$, then the saturation of \mathcal{C} wrt to superposition (and equality resolution) contains \square iff $\mathcal{E} \equiv s=t$

Proof.

1 let \mathcal{C}^{\prime} denote the saturation and let $\square \in \mathcal{C}^{\prime}$
2 then $\mathcal{E} \models s=t$ due to soundness of superposition
3 otherwise assume $\square \notin \mathcal{C}^{\prime}$
4 then $s=t$ does not have a proof in \mathcal{C}^{\prime}
5 with the theorem we conclude that $\mathcal{E} \not \vDash s=t$

Completeness of Superposition

Corollary

superposition with equations is sound and complete, that is, if \mathcal{C} is the clause representation of the (negated) word problem $\mathcal{E} \models s=t$, then the saturation of \mathcal{C} wrt to superposition (and equality resolution) contains \square iff $\mathcal{E} \equiv s=t$

Proof.

1 let \mathcal{C}^{\prime} denote the saturation and let $\square \in \mathcal{C}^{\prime}$
2 then $\mathcal{E} \models s=t$ due to soundness of superposition
3 otherwise assume $\square \notin \mathcal{C}^{\prime}$
4 then $s=t$ does not have a proof in \mathcal{C}^{\prime}
5 with the theorem we conclude that $\mathcal{E} \not \vDash s=t$

