

Automated Theorem Proving

Georg Moser

Institute of Computer Science @ UIBK

Winter 2015

ummary

Definition

equations ${\mathcal E}$ are ground complete wrt \succ if ${\mathcal E}^\succ$ is complete on ground terms

Definition (superposition with equations)

$$\frac{s=t \quad w[u]=}{(w[t]=v)\sigma}$$

- σ is mgu of s and u; $t\sigma \not\succeq s\sigma$, $v\sigma \not\succeq w[u]\sigma$ and u is not a variable
- $(w[t] = v)\sigma$ is an ordered critical pair

Theorem

 \succ a complete reduction order; a set of equations E is ground complete wrt \succ iff \forall ordered critical pairs (w[t] = v) σ (with overlapping term $w[u]\sigma$) and \forall ground substitutions τ : if $w[u]\sigma\tau \succ w[t]\sigma\tau$ and $w[u]\sigma\tau \succ v\sigma\tau$ then $w[t]\sigma\tau \downarrow v\sigma\tau$

Summary Last Lecture

Definition

$$\frac{C \lor A \quad D \lor \neg B}{(C \lor D)\sigma_1} \qquad \qquad \frac{C \lor A \lor B}{(C \lor A)\sigma_1}$$
$$\frac{C \lor s \neq s'}{C\sigma_2} \qquad \qquad \frac{C \lor s = t \quad D \lor L[s']}{(C \lor D \lor L[t])\sigma_2}$$

- same conditions on σ_1 , σ_2 as before
- $A\sigma_1$ is strictly maximal with respect to $C\sigma_1$; $\neg B\sigma_1$ is maximal with respect to $D\sigma_1$
- the equation $(s = t)\sigma_2$ and the literal $L[s']\sigma_2$ are maximal with respect to $D\sigma_2$

Automated Theorem Provin

Theorem

ordered paramodulation is sound and complete

M (Institute of Computer Science @ UIBK)

161/

ummary

Outline of the Lecture

Early Approaches in Automated Reasoning

Herbrand's theorem for dummies, Gilmore's prover, method of Davis and Putnam

Starting Points

resolution, tableau provers, Skolemisation, ordered resolution, redundancy and deletion

Automated Reasoning with Equality paramodulation, ordered completion and proof orders, superposition

Applications of Automated Reasoning

Neuman-Stubblebinde Key Exchange Protocol, Robbins problem

Ordered Completion

deduction	$\mathcal{E}; \mathcal{R} dash \mathcal{E} \cup \{ oldsymbol{s} = t \}; \mathcal{R}$	
	$ \text{ if } s \leftrightarrow_{\mathcal{E} \cup \mathcal{R}} w \leftrightarrow_{\mathcal{E} \cup \mathcal{R}} t, s \nsucceq w, t \nsucceq w \\$	
orientation	$\mathcal{E} \cup \{s = t\}; \mathcal{R} \vdash \mathcal{E}; \mathcal{R} \cup \{s ightarrow t\}$	if $s \succ t$
deletion	$\mathcal{E} \cup \{ s = s \}; \mathcal{R} dash \mathcal{E}; \mathcal{R}$	
simplification	$\mathcal{E} \cup \{s = t\}; \mathcal{R} \vdash \mathcal{E} \cup \{u = t\}; \mathcal{R}$	$\text{if } s \to_{\mathcal{R}} u$
composition	$\mathcal{E}; \mathcal{R} \cup \{s ightarrow t\} \vdash \mathcal{E}; \mathcal{R} \cup \{s ightarrow u\}$	$\text{ if } r \to_{\mathcal{R}} u$
collapse	$\mathcal{E}; \mathcal{R} \cup \{s[w] \rightarrow t\} \vdash \mathcal{E} \cup \{s[u] = t\}; \mathcal{R}$	
	if $w ightarrow_{\mathcal{R}} u$ and either $t \succ u$ or $w eq s[w]$	

Definition

- a sequence (*E*₀; *R*₀) ⊢ (*E*₁; *R*₁) ⊢ · · · is called a derivation usually
 *E*₀ is the set of initial equations and *R*₀ = Ø
- its limit is $(\mathcal{E}_{\infty}; \mathcal{R}_{\infty})$; here $\mathcal{E}_{\infty} = \bigcup_{i \ge 0} \bigcap_{j \ge i} \mathcal{E}_j$; $\mathcal{R}_{\infty} = \bigcup_{i \ge 0} \bigcap_{j \ge i} \mathcal{R}_j$

Automated Theorem Proving

Definition

s encompasses t if $s = C[t\sigma]$ for some context C and some substitution σ

Definition

cost measure of proof steps

(Institute of Computer Science @ UIBK)

$$\operatorname{cost} \operatorname{of} s[u] \rho s[v] = \begin{cases} (\{s[u]\}, u, \rho, s[v]) & \text{if} s[u] \succ s[v] \\ (\{s[v]\}, v, \rho, s[u]) & \text{if} s[v] \succ s[u] \\ (\{s[u], s[v]\}, \bot, \bot, \bot) & \text{otherwise} \end{cases}$$

cost measure is lexicographically compared as follows:

- **1** multiset extension of \succ
- 2 encompassment order

3 some order with
$$\leftrightarrow > \rightarrow$$
 and $\leftrightarrow > \leftarrow$

4 reduction order \succ

 \perp is supposed to be minimal in all orders; let \succ_{π} the multiset extension of the cost measure; then \succ_{π} denotes a well-founded order on proofs

nmary

Definition

a proof of s = t wrt E; R is s = s₀ ρ₀ s₁ ρ₁ s₂ ··· s_{n-1} ρ_{n-1} s_n = t n ≥ 0

(s_i ρ_i s_{i+1}) = (w[uσ] ↔ w[vσ]) with u = v ∈ E

(s_i ρ_i s_{i+1}) = (w[uσ] → w[vσ]) with u → v ∈ E[≻] ∪ R

(s_i ρ_i s_{i+1}) = (w[uσ] ← w[vσ]) with v → u ∈ E[≻] ∪ R

a proof of form

s = s₀ → s₁ → s₂ ··· → s_m ← ··· s_{n-1} ← s_n = t

is called rewrite proof

Fact

- **1** \exists rewrite proof iff the equations are joinable wrt $\mathcal{R} \cup \mathcal{E}^{\succ}$
- 2 whenever £; R ⊢ E'; R' then the same equations are provable in E; R as in E'; R'; however proofs may become simpler

M (Institute of Computer Science @ UIBK) Automated Theorem Provin

165/

Proof Orde

Fact

each completion step decreases the cost of certain proofs

Proof Sketch.

- consider orientation that replaces an equation s = t by rule $s \rightarrow t$
- yields proof transformation

$$(u[s\sigma] \leftrightarrow u[t\sigma]) \Rightarrow (u[s\sigma] \rightarrow u[t\sigma])$$

• cost of $(u[s\sigma] \leftrightarrow u[t\sigma]) >$ cost of $(u[s\sigma] \rightarrow u[t\sigma])$

recall: $\mathcal{E}_{\infty} = \bigcup_{i \ge 0} \bigcap_{j \ge i} \mathcal{E}_j$; $\mathcal{R}_{\infty} = \bigcup_{i \ge 0} \bigcap_{j \ge i} \mathcal{R}_j$

Definition

166/1

a derivation is fair if each ordered critical pair $u = v \in \mathcal{E}_{\infty} \cup \mathcal{R}_{\infty}$ is an element of some \mathcal{E}_i

Theorem

let $(\mathcal{E}_0; \mathcal{R}_0), (\mathcal{E}_1; \mathcal{R}_1), \ldots$ be a fair ordered completion derivation with $\mathcal{R}_0 = \emptyset$; then the following is equivalent:

- **1** s = t is a consequence of \mathcal{E}_0
- 2 s = t has a rewrite proof in $\mathcal{E}_{\infty}^{\succ} \cup \mathcal{R}_{\infty}$
- **3** \exists *i* such that s = t has a rewrite proof in $\mathcal{E}_i^{\succ} \cup \mathcal{R}_i$

Definitions

- let *E* be a set of equations and *s* = *t* an equation (possibly containing variables); then *E* ⊨ *s* = *t* is the word problem for *E*
- the word problem becomes a refutation theorem proving problem once we consider the clause form of the negation of the word problem:
 - **1** a set of positive unit equations in \mathcal{E}
 - **2** a ground disequation obtained by negation and Skolemisation of s = t

168/1

oof Order

Completeness of Superposition

Corollary

superposition with equations is sound and complete, that is, if C is the clause representation of the (negated) word problem $\mathcal{E} \models s = t$, then the saturation of C wrt to superposition (and equality resolution) contains \Box iff $\mathcal{E} \models s = t$

Proof.

- **1** let \mathcal{C}' denote the saturation and let $\Box \in \mathcal{C}'$
- **2** then $\mathcal{E} \models s = t$ due to soundness of superposition
- 3 otherwise assume $\Box \notin \mathcal{C}'$
- 4 then s = t does not have a proof in C'
- **5** with the theorem we conclude that $\mathcal{E} \not\models s = t$

GM (Institute of Computer Science @ UIBK) Automated Theorem Provin