

Automated Theorem Proving

Institute of Computer Science @ UIBK

Georg Moser

Winter 2015

Definition (superposition of rewrite rules)

$$\frac{s \to t \quad w[u] \to}{(w[t] = v)\sigma}$$

 σ mgu of s and u and u not a variable; then $(w[t] = v)\sigma$ is a critical pair

Corollary

superposition with equations is sound and complete, that is, if C is the clause representation of the (negated) word problem $\mathcal{E} \models s = t$, then the saturation of C wrt to superposition (and equality resolution) contains \Box iff $\mathcal{E} \models s = t$

NB: inference rules in ordered completion different from deduction can be conceived as redundancy elimination rules

Summary of Last Lectures

Ordered Completion

deduction	$\mathcal{E}; \mathcal{R} dash \mathcal{E} \cup \{s=t\}; \mathcal{R}$	
	$ \text{ if } s \leftrightarrow_{\mathcal{E} \cup \mathcal{R}} w \leftrightarrow_{\mathcal{E} \cup \mathcal{R}} t, s \nsucceq w, t \nsucceq w \\$	
orientation	$\mathcal{E} \cup \{s = t\}; \mathcal{R} \vdash \mathcal{E}; \mathcal{R} \cup \{s \to t\}$	if $s \succ t$
deletion	$\mathcal{E} \cup \{ s = s \}; \mathcal{R} dash \mathcal{E}; \mathcal{R}$	
simplification	$\mathcal{E} \cup \{s = t\}; \mathcal{R} \vdash \mathcal{E} \cup \{u = t\}; \mathcal{R}$	$ \text{ if } s \to_{\mathcal{R}} u \\$
composition	$\mathcal{E}; \mathcal{R} \cup \{s \to t\} \vdash \mathcal{E}; \mathcal{R} \cup \{s \to u\}$	$\text{if } r \to_{\mathcal{R}} u$
collapse	$\mathcal{E}; \mathcal{R} \cup \{s[w] \rightarrow t\} \vdash \mathcal{E} \cup \{s[u] = t\}; \mathcal{R}$	
	$ \text{if } w \to_{\mathcal{R}} u \text{ and either } t \succ u \text{ or } w \neq s[w] \\$	

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving

Dutline

Outline of the Lecture

Early Approaches in Automated Reasoning

Herbrand's theorem for dummies, Gilmore's prover, method of Davis and Putnam

Starting Points

resolution, tableau provers, Skolemisation, ordered resolution, redundancy and deletion

Automated Reasoning with Equality

paramodulation, ordered completion and proof orders, superposition

Applications of Automated Reasoning

Neuman-Stubblebinde Key Exchange Protocol, Robbins problem

Superposition for Horn Clauses

Idea (from logical programming)

- consider a set P of non-equational Horn clauses (= a logic program)
- define the operator:

 $T_P: I \mapsto \{A \mid A \subset B_1, \ldots, B_k \in Gr(P) \text{ and } \forall i B_i \in I\}$

- consider the least fixed point $\bigcup_{n\geq 0} T_p^n(\emptyset)$ of T_p
- then $\bigcup_{n\geq 0} T_p^n(\emptyset)$ denotes the unique minimal model of P

 $A \subset B_1, \ldots, B_k$ produces A, if $\forall i \ B_i \in T_p^n(\emptyset)$ but $A \notin T_p^n(\emptyset)$

Definition

an equational Horn clause $C \equiv (u_1 = v_1, \ldots, u_k = v_k \supset s = t)$ is reductive for $s \rightarrow t$ (wrt to a reduction order \succ) if s is strictly maximal in C: (i) $s \succ t$, (ii) for all i: $s \succ u_i$, and (iii) for all i: $s \succ v_i$

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving

174/

Superposition for Horn Clauses

Definitions

- $(C, D \supset w[t] \rightarrow v)\sigma$ is a conditional critical pair
- $(C, D \supset w[t] \rightarrow v)\sigma$ converges if $\forall \tau$ such that $C\sigma\tau$ and $D\sigma\tau$ converge: $w[t]\sigma\tau \downarrow v\sigma\tau$

Lemma

a reductive conditional rewrite system is confluent iff all critical pairs converge

Theorem

let \succ be a reduction order and let C be a set of reductive equational Horn clauses; then the word problem is decidable if all critical pairs converge

NB: if C is reductive for $s \to t$, we write C as $u_1 = v_1, \ldots, u_k = v_k \supset s \to t$

Definition

- let \mathcal{R} be a set of reductive clauses
- \mathcal{R} induces the rewrite relation $\rightarrow_{\mathcal{R}}$: $s \rightarrow_{\mathcal{R}} t$ if
 - **1** \exists reductive clause $C \supset I \rightarrow r$
 - **2** \exists substitution σ such that $s = l\sigma$, $t = r\sigma$
 - $\exists \forall u' = v' \in C: u'\sigma \downarrow v'\sigma$

Definition (superposition of reductive conditional rewrite rules)

$$\frac{C \supset s \to t \quad D \supset w[u] \to}{(C, D \supset w[t] \to v)\sigma}$$

 σ is mgu of s and u and u is not a variable

GM (Institute of Computer Science @ UIBK) Automated Theorem Provin

175/

Superposition Calculus

Superposition Calculus

Definition

$$\frac{C \lor A \quad D \lor \neg B}{(C \lor D)\sigma} \text{ ORe } \qquad \frac{C \lor A \lor B}{(C \lor A)\sigma} \text{ OFc}$$

$$\frac{C \lor s = t \quad D \lor \neg A[s']}{(C \lor D \lor \neg A[t])\sigma} \text{ OPm}(L) \qquad \frac{C \lor s = t \quad D \lor A[s']}{(C \lor D \lor A[t])\sigma} \text{ OPm}(R)$$

$$\frac{C \lor s = t \quad D \lor u[s'] \neq v}{(C \lor D \lor u[t] \neq v)\sigma} \text{ SpL } \qquad \frac{C \lor s = t \quad D \lor u[s'] = v}{(C \lor D \lor u[t] = v)\sigma} \text{ SpR}$$

$$\frac{C \lor s \neq t}{C\sigma} \text{ ERR } \qquad \frac{C \lor u = v \lor s = t}{(C \lor v \neq t \lor u = t)\sigma} \text{ EFc}$$

- ORe and OFc are ordered resolution and ordered factoring
- OPm(L), OPm(R), SpL, SpR stands for ordered paramodulation and superpostion (left or right)
- ERR means equality resolution and EFc means equality factoring

$$\begin{array}{ll} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} C \lor A & D \lor \neg B \\ \hline (C \lor D)\sigma \end{array} & \mathsf{ORe} \end{array} & \begin{array}{l} \begin{array}{l} \begin{array}{l} C \lor A \lor B \\ \hline (C \lor A)\sigma \end{array} & \mathsf{OFc} \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \begin{array}{l} \hline C \lor s = t & D \lor \neg A[s'] \\ \hline (C \lor D \lor \neg A[t])\sigma \end{array} & \mathsf{OPm}(\mathsf{L}) \end{array} & \begin{array}{l} \begin{array}{l} \begin{array}{l} C \lor s = t & D \lor A[s'] \\ \hline (C \lor D \lor \neg A[t])\sigma \end{array} & \mathsf{OPm}(\mathsf{L}) \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} C \lor s = t & D \lor A[s'] \\ \hline (C \lor D \lor a[t])\sigma \end{array} & \mathsf{OPm}(\mathsf{R}) \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \begin{array}{l} C \lor s = t & D \lor u[s'] \neq v \\ \hline (C \lor D \lor u[t] \neq v)\sigma \end{array} & \mathsf{SpL} \end{array} & \begin{array}{l} \begin{array}{l} \begin{array}{l} C \lor s = t & D \lor u[s'] = v \\ \hline (C \lor D \lor u[t] = v)\sigma \end{array} & \mathsf{SpR} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} C \lor s \neq t \\ \hline (C \lor v \neq t \lor u = t)\sigma \end{array} & \mathsf{EFc} \end{array} \end{array} \end{array}$$

constraints:

- 1 for the superposition rules: σ is a mgu of s and s', s' not a variable, $t\sigma \neq s\sigma, v\sigma \neq u[s']\sigma, (s = t)\sigma$ is strictly maximal wrt $C\sigma$
- **2** $\neg A[s']$ and $u[s'] \neq v$ are maximal, while A[s'] and u[s'] = v are strictly maximal wrt $D\sigma$
- $(s = t)\sigma \neq (u[s'] = v)\sigma$

```
GM (Institute of Computer Science @ UIBK) Automated Theorem Proving
```

Candidate Models

Candidate Models

Definitions

- let $\ensuremath{\mathcal{O}}$ be a clause inference operator
- let \mathcal{I} denote a mapping that assigns to each ground clause set \mathcal{C} an equality (Herbrand) interpretation, the candidate model $\mathcal{I}_{\mathcal{C}}$
- if $\mathcal{I}_{\mathcal{C}} \not\models \mathcal{C}$ there \exists minimal counter-example \mathcal{C}
- \mathcal{O} has reduction property if
 - $1 \hspace{0.1in} \forall \hspace{0.1in} \text{clause sets} \hspace{0.1in} \mathcal{C}$
 - **2** \forall minimal counter-examples *C* for $\mathcal{I}_{\mathcal{C}}$
 - **3** \exists inference from C in O

$$\frac{C_1 \dots C_n}{D}$$

where $\mathcal{I}_{\mathcal{C}} \models C_i$, $\mathcal{I}_{\mathcal{C}} \not\models D$ and $C \succ_{\mathsf{C}} D$

180/1

Definition

• define the superposition operator $\text{Res}_{\text{SP}}(\mathcal{C})$ as follows:

 $\operatorname{Res}_{SP}(\mathcal{C}) = \{D \mid D \text{ is conclusion of ORe-EFc with premises in } \mathcal{C}\}$

 nth (unrestricted) iteration Resⁿ_{SP} (Res^{*}_{SP}) of the operator Res_{SP} is defined as above

Example

re-consider $C = \{c \neq d, b = d, a \neq d \lor a = c, a = b \lor a = d\}$ together with the term order: $a \succ b \succ c \succ d$; without equality factoring only the following tautology is derivable:

$$\mathsf{a} \neq \mathsf{d} \lor \mathsf{b} = \mathsf{c} \lor \mathsf{a} = \mathsf{d}$$

together with the literal order:

$$\begin{aligned} \mathsf{a} \neq \mathsf{b} \succ_\mathsf{L} \mathsf{a} = \mathsf{b} \succ_\mathsf{L} \mathsf{a} \neq \mathsf{c} \succ_\mathsf{L} \mathsf{a} = \mathsf{c} \succ_\mathsf{L} \mathsf{a} \neq \mathsf{d} \succ_\mathsf{L} \mathsf{a} = \mathsf{d} \\ \succ_\mathsf{L} \mathsf{b} \neq \mathsf{d} \succ_\mathsf{L} \mathsf{b} = \mathsf{d} \succ_\mathsf{L} \mathsf{c} \neq \mathsf{d} \succ_\mathsf{L} \mathsf{c} = \mathsf{d} \end{aligned}$$

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving

Candidate Models

Theorem

let \mathcal{O} be sound and have the reduction property and let \mathcal{C} be saturated wrt \mathcal{O} , then \mathcal{C} is unsatisfiable iff \mathcal{C} contains the empty clause

Assumption

in the following we assume a language that ${\sf contains} = {\sf as}$ only predicate; for now we restrict to ground clauses

equality Herbrand interpretations are respresentable by a convergent (wrt \succ) ground TRS

Definition

a clause $C \lor s = t$ is reductive if (i) $s \succ t$ and (ii) s = t is strictly maximal wrt C

NB: a reductive clause may be viewed as a conditional rewrite rule, where negation is interpreted as non-derivability

 $\mathsf{let}\ \mathcal{C}_{\mathcal{C}} = \{ D \in \mathcal{C} \mid \mathcal{C} \succ_{\mathsf{C}} D \}$

Definition

we define a mapping \mathcal{I} that assigns to $\forall C_C$ a convergent TRS \mathcal{I}_{C_C}

- $\mathcal{I}_{\mathcal{C}_{\mathcal{C}}}$ is the set of all ground rewrite rules $s \to t$ such that
- $\blacksquare \exists D = (C' \lor s = t) \in \mathcal{C} \text{ with } C \succ_{\mathsf{C}} D$
- **2** *D* is reductive for s = t
- **3** *D* is counter-example for $\mathcal{I}_{\mathcal{C}_D}$
- **4** *s* is in normal form wrt \mathcal{I}_{C_D}

5
$$C'$$
 is counter-example for $\mathcal{I}_{\mathcal{C}_D} \cup \{s = t\}$

6 we call *D* productive

Theorem

let C be a ground clause set not containing \Box ; C a minimal counter-example to \mathcal{I}_{C} , constructed as above; $\exists D \in \operatorname{Res}_{SP}(C)$ such that $C \succ_{C} D$ and D is also a counter-example

Automated Theorem Proving

Redundancy and Saturation

GM (Institute of Computer Science @ UIBK)

Soundness and Completeness of Superposition

Theorem

let \mathcal{O} be sound and have the reduction property and let \mathcal{C} be saturated upto redundancy wrt \mathcal{O} , then \mathcal{C} is unsatisfiable iff \mathcal{C} contains the empty clause

Proof.

on the whiteboard

Lemma

non-redundant superposition inferences are liftable

Theorem

superposition is sound and complete; let F be a sentence and C its clause form; then F is unsatisfiable iff $\Box \in \operatorname{Res}_{SP}^*(C)$

182/1

Redundancy and Saturation

Definitions

• a ground clause C is redundant wrt a ground clause set C if $\exists C_1, \ldots, C_k$ in C such that

$$C_1,\ldots,C_k\models C\qquad C\succ C_i$$

• a ground inference with main premise C $\frac{C_1 \dots C_n C}{D}$

is redundant (wrt C) if

- 1 $D \succcurlyeq C$, or 2 $\exists D_1, \ldots, D_k$ with $D_i \in C_C$ such that $D_1, \ldots, D_k, C_1, \ldots, C_n \models D$
- *C* is saturated upto redundancy if all inferences from non-redundant premises are redundant

GM (Institute of Computer Science @ UIBK) Automated Theorem Provin