Automated Theorem Proving

Georg Moser

Institute of Computer Science @ UIBK

Winter 2015

Summary

Outline of the Lecture

Early Approaches in Automated Reasoning
Herbrand's theorem for dummies, Gilmore's prover, method of Davis and Putnam

Starting Points

resolution, tableau provers, Skolemisation, redundancy and deletion
Automated Reasoning with Equality
ordered resolution, paramodulation, ordered completion and proof orders, superposition

Applications of Automated Reasoning
Neuman-Stubblebinde Key Exchange Protocol, Robbins problem

Summary of Last Lecture
Definition

$$
\begin{array}{cc}
\frac{C \vee A \vee D \vee \neg B}{(C \vee D) \sigma} \mathrm{ORe} & \frac{C \vee A \vee B}{(C \vee A) \sigma} \mathrm{OFc} \\
\frac{C \vee s=t \quad D \vee \neg A\left[s^{\prime}\right]}{(C \vee D \vee \neg A[t]) \sigma} \mathrm{OPm}(\mathrm{~L}) & \frac{C \vee s=t \quad D \vee A\left[s^{\prime}\right]}{(C \vee D \vee A[t]) \sigma} \mathrm{OPm}(\mathrm{R}) \\
\frac{C \vee s=t \quad D \vee u\left[s^{\prime}\right] \neq v}{(C \vee D \vee u[t] \neq v) \sigma} \mathrm{SpL} & \frac{C \vee s=t \quad D \vee u\left[s^{\prime}\right]=v}{(C \vee D \vee u[t]=v) \sigma} \mathrm{SpR} \\
\frac{C \vee s \neq t}{C \sigma} \mathrm{ERR} & \frac{C \vee u=v \vee s=t}{(C \vee v \neq t \vee u=t) \sigma} \mathrm{EFc}
\end{array}
$$

- ORe and OFc are ordered resolution and ordered factoring
- $\operatorname{OPm}(\mathrm{L}), \mathrm{OPm}(\mathrm{R}), \mathrm{SpL}, \mathrm{SpR}$ stands for ordered paramodulation and superpostion (left or right)
- ERR means equality resolution and EFc means equality factoring

Issues of Security

Neuman-Stubblebine Key Exchange Protocol

Description

- Neuman-Stubblebine key exchange protocol aims to establish a secure key between two agents that already share secure keys with a trusted third party
- principals: Alice, Bob, Server

Conventions
A, B, T: identifiers of Alice, Bob, Server
$K_{a t}$: key between A and T $\mathrm{N}_{\mathrm{a}}, \mathrm{N}_{\mathrm{b}}$: nonce created by Alice, Bob Time: time span of key K_{ab}
$K_{b t}$: key between B and T $\mathrm{E}_{\text {key }}$ (message): encryption of message using key

Definition
we write

$$
\mathrm{A} \longrightarrow \mathrm{~B}: M
$$

The Protocol

$1 A \longrightarrow B: A, N_{a}$
Alice sends to Bob

- her identifier
- a freshly generated nonce
$2 \mathrm{~B} \longrightarrow \mathrm{~T}: \mathrm{B}, \mathrm{E}_{\mathrm{K}_{\mathrm{bt}}}\left(\mathrm{A}, \mathrm{N}_{\mathrm{a}}\right.$, Time $), \mathrm{N}_{\mathrm{b}}$
Bob encrypts the triple (A, N_{a}, Time) and sends to Server
- his identity
- encryption of ($\mathrm{A}, \mathrm{N}_{\mathrm{a}}$, Time)
- new nonce
$3 \mathrm{~T} \longrightarrow \mathrm{~A}: \mathrm{E}_{\mathrm{K}_{\mathrm{at}}}\left(\mathrm{B}, \mathrm{N}_{\mathrm{a}}, \mathrm{K}_{\mathrm{ab}}\right.$, Time $), \mathrm{E}_{\mathrm{K}_{\mathrm{bt}}}\left(\mathrm{A}, \mathrm{K}_{\mathrm{ab}}\right.$, Time $), \mathrm{N}_{\mathrm{b}}$
Server generates $K_{a b}$ and sends to Alice
- encryption of K_{ab} with key for Alice
- encryption of K_{ab} with key for Bob
- N_{b}
$4 \mathrm{~A} \longrightarrow \mathrm{~B}: \mathrm{E}_{\mathrm{K}_{\mathrm{bt}}}\left(\mathrm{A}, \mathrm{K}_{\mathrm{ab}}\right.$, Time $), \mathrm{E}_{\mathrm{K}_{\mathrm{ab}}}\left(\mathrm{N}_{\mathrm{b}}\right)$
Alice encrypts Bob's nonce with K_{ab} and forwards part of message
GM (Institute of Computer Science @ UIBK) Automated Theorem Proving

Issues of Security

Formalisation in First-Order

Definition

definition of the language \mathcal{L} of the formalisation
1 individual constants: $a, b, t, n a, ~ a t, b t$

- a, b, t are to be interpreted as the identifiers A, B, and T
- constant na refers to Alics's nonce
- at (bt) represents the key $\mathrm{K}_{\mathrm{at}}\left(\mathrm{K}_{\mathrm{bt}}\right)$

2 function constants: nb, tb, kt, key, sent, pair, triple, encr, quadr

- nb, tb, kt are unary; key, pair, encr are binary; sent, triple are ternary, and quadr is 4-ary
- nb, tb compute Bob's fresh nonce and the time-stamp Time
- kt computes of the new key
- the other constants act as containers as the formalisation is based on unary predictes

The Attack

Assumptions
1 intruder can intercept and record all sent messages
2 intruder can send messages and can forge the sender of a message
3 intruder can encrypt messages, when he finds out a key
4 intruder has no access to information private to Alice, Bob, or Server the server.

5 intruder cannot break any secure key
still Intruder (denoted I) can break the protocol
$1 \mathrm{I}(\mathrm{A}) \longrightarrow \mathrm{B}: A, \mathrm{~N}_{\mathrm{a}}$
$2 \mathrm{~B} \longrightarrow \mathrm{I}(\mathrm{T}): \mathrm{B}, \mathrm{E}_{\mathrm{K}_{\mathrm{bt}}}\left(A, \mathrm{~N}_{\mathrm{a}}\right.$, Time $), \mathrm{N}_{\mathrm{b}}$.
3 $\mathrm{I}(\mathrm{A}) \longrightarrow \mathrm{B}: \mathrm{E}_{\mathrm{K}_{\mathrm{bt}}}\left(\mathrm{A}, \mathrm{N}_{\mathrm{a}}\right.$, Time $), \mathrm{E}_{\mathrm{N}_{\mathrm{a}}}\left(\mathrm{N}_{\mathrm{b}}\right)$.
the problem is that keys and nonces can be confused

$$
\mathrm{E}_{\mathrm{K}_{\mathrm{bt}}}\left(\mathrm{~A}, \mathrm{~K}_{\mathrm{ab}}, \text { Time }\right) \quad \text { and } \quad \mathrm{E}_{\mathrm{K}_{\mathrm{bt}}}\left(\mathrm{~A}, \mathrm{~N}_{\mathrm{a}}, \text { Time }\right)
$$

Issues of Security

Definition (Definition (cont'd))

4 predicate constants: Ak, Bk, Tk, P, M, Fresh, Nonce, Store ${ }_{\mathrm{a}}$, Store ${ }_{\mathrm{b}}$

- Ak, Bk, Tk assert together with key existence of keys
- P represents principals
- M represents messages using the function sent
- Fresh asserts that Bob is only interested in fresh nonces
- Nonce denotes that its argument is a nonce
- Store ${ }_{\mathrm{a}}$, Store ${ }_{\mathrm{b}}$ denote information that is in the store of Alice or Bob

Notation

we indicate the type of a bound variable in its name as subscript the bound variable $x_{n a}$ indicates that this variable plays the role of the nonce Na_{a}

Issues of Security

Formalisation of Protocol

```
A\longrightarrowB:A,Na
1: Ak(key(at,t))
2: P(a)
3:M(sent(a,b, pair(a, na))) ^ Storea(pair(b, na))
```

$\mathrm{B} \longrightarrow \mathrm{T}: \mathrm{B}, \mathrm{E}_{\mathrm{K}_{\mathrm{bt}}}\left(\mathrm{A}, \mathrm{N}_{\mathrm{a}}\right.$, Time $), \mathrm{N}_{\mathrm{b}}$

4: $\mathrm{Bk}(\mathrm{key}(\mathrm{bt}, \mathrm{t}))$
5: P(b)
6: Fresh(na)
7: $\forall x_{\mathrm{a}} x_{\text {na }}\left(\mathrm{M}\left(\operatorname{sent}\left(x_{\mathrm{a}}, \mathrm{b}, \operatorname{pair}\left(x_{\mathrm{a}}, x_{\text {na }}\right)\right)\right) \wedge \operatorname{Fresh}\left(x_{\text {na }}\right) \rightarrow\right.$

$$
\rightarrow \text { Store }_{\mathrm{b}}\left(\operatorname{pair}\left(x_{\mathrm{a}}, x_{\mathrm{na}}\right)\right) \wedge \mathrm{M}(\operatorname{sent}(\mathrm{~b}, \mathrm{t},
$$

$$
\left.\left.\left.\operatorname{triple}\left(\mathrm{b}, \operatorname{nb}\left(x_{\mathrm{na}}\right), \operatorname{encr}\left(\operatorname{triple}\left(x_{\mathrm{a}}, x_{\mathrm{na}}, \operatorname{tb}\left(x_{\mathrm{na}}\right)\right), \text { bt }\right)\right)\right)\right)\right)
$$

Issues of Security

$$
\begin{aligned}
& A \longrightarrow \mathrm{~B}: \mathrm{E}_{\mathrm{K}_{\mathrm{bt}}}\left(\mathrm{~A}, \mathrm{~K}_{\mathrm{ab}}, \operatorname{Time}\right), \mathrm{E}_{\mathrm{K}_{\mathrm{ab}}}\left(\mathrm{~N}_{\mathrm{b}}\right) \\
& 14: \forall x_{\mathrm{nb}} \forall x_{\mathrm{k}} \forall x_{\mathrm{m}} \forall x_{\mathrm{b}} \forall x_{\mathrm{na}} \forall x_{\text {time }} \\
&\left(\left(\mathrm{M}\left(\operatorname{sent}\left(\mathrm{t}, \mathrm{a}, \operatorname{triple}\left(\operatorname{encr}\left(\text { quadr }\left(x_{\mathrm{b}}, x_{\mathrm{na}}, x_{\mathrm{k}}, x_{\text {time }}\right), \text { at }\right), x_{\mathrm{m}}, x_{\mathrm{nb}}\right)\right)\right) \wedge\right.\right. \\
& \wedge \\
&\left.\operatorname{Store}_{\mathrm{a}}\left(\operatorname{pair}\left(x_{\mathrm{b}}, x_{\mathrm{na}}\right)\right)\right) \rightarrow \\
&\left.\rightarrow \mathrm{M}\left(\operatorname{sent}\left(\mathrm{a}, x_{\mathrm{b}}, \operatorname{pair}\left(x_{\mathrm{m}}, \operatorname{encr}\left(x_{\mathrm{nb}}, x_{\mathrm{k}}\right)\right)\right)\right) \wedge \operatorname{Ak}\left(\operatorname{key}\left(x_{\mathrm{k}}, x_{\mathrm{b}}\right)\right)\right) \\
& 15: \forall x_{\mathrm{k}} \forall x_{\mathrm{a}} \forall x_{\mathrm{na}} \\
&\left(\left(\mathrm { M } \left(\operatorname { s e n t } \left(x_{\mathrm{a}}, \mathrm{~b}, \operatorname{pair}\left(\operatorname{encr}\left(\operatorname{triple}\left(x_{\mathrm{a}}, x_{\mathrm{k}}, \operatorname{tb}\left(x_{\mathrm{na}}\right)\right), \text { bt }\right),\right.\right.\right.\right.\right. \\
& \quad\left.\left.\left.\quad \operatorname{encr}\left(\operatorname{nb}\left(x_{\mathrm{na}}\right), x_{\mathrm{k}}\right)\right)\right)\right) \wedge \\
&\left.\left.\wedge \operatorname{Store}_{\mathrm{b}}\left(\operatorname{pair}\left(x_{\mathrm{a}}, x_{\mathrm{na}}\right)\right)\right) \rightarrow \operatorname{Bk}\left(\operatorname{key}\left(x_{\mathrm{k}}, x_{\mathrm{a}}\right)\right)\right)
\end{aligned}
$$

Fact

SPASS verifies that the protocol terminates in less than a millisecond

$$
\mathcal{G} \models \exists x(\operatorname{Ak}(\operatorname{key}(x, a)) \wedge \operatorname{Bk}(\operatorname{key}(x, b)))
$$

$\mathrm{T} \longrightarrow \mathrm{A}: \mathrm{E}_{\mathrm{K}_{\mathrm{at}}}\left(\mathrm{B}, \mathrm{N}_{\mathrm{a}}, \mathrm{K}_{\mathrm{ab}}\right.$, Time $), \mathrm{E}_{\mathrm{K}_{\mathrm{bt}}}\left(\mathrm{A}, \mathrm{K}_{\mathrm{ab}}\right.$, Time $), \mathrm{N}_{\mathrm{b}}$
8: $\operatorname{Tk}(k e y(a t, a)) \wedge T k(k e y(b t, b))$
9: $\mathrm{P}(\mathrm{t})$
10: $\forall x_{\mathrm{b}} \forall x_{\mathrm{nb}} \forall x_{\mathrm{a}} \forall x_{\text {na }} \forall x_{\text {time }} \forall x_{\mathrm{bt}} \forall x_{\mathrm{at}}$
$\left(\mathrm{M}\left(\operatorname{sent}\left(x_{\mathrm{b}}, \mathrm{t}\right.\right.\right.$, triple $\left.\left.\left(x_{\mathrm{b}}, x_{\mathrm{nb}}, \operatorname{encr}\left(\operatorname{triple}\left(x_{\mathrm{a}}, x_{\mathrm{na}}, x_{\text {time }}\right), x_{\mathrm{bt}}\right)\right)\right)\right) \wedge$
$\wedge \operatorname{Tk}\left(\operatorname{key}\left(x_{\mathrm{at}}, x_{\mathrm{a}}\right)\right) \wedge \operatorname{Tk}\left(\operatorname{key}\left(x_{\mathrm{bt}}, x_{\mathrm{b}}\right)\right) \wedge \operatorname{Nonce}\left(x_{\mathrm{na}}\right) \rightarrow \mathrm{M}\left(\operatorname{sent}\left(\mathrm{t}, x_{\mathrm{a}}\right.\right.$, triple (encr(quadr $\left.\left(x_{\mathrm{b}}, x_{\text {na }}, \operatorname{kt}\left(x_{\text {na }}\right), x_{\text {time }}\right), x_{\mathrm{at}}\right)$, $\left.\left.\left.\left.\operatorname{encr}\left(\operatorname{triple}\left(x_{\mathrm{a}}, \operatorname{kt}\left(x_{\mathrm{na}}\right), x_{\text {time }}\right), x_{\mathrm{bt}}\right), x_{\mathrm{nb}}\right)\right)\right)\right)$
11: Nonce(na)
12: $\forall x \neg \operatorname{Nonce}(\mathrm{kt}(x))$
13: $\forall x($ Nonce $(\operatorname{tb}(x)) \wedge$ Nonce $(\mathrm{nb}(x)))$
Remark
formulas 11-13 are not part of the protocol, but prevents that the intruder can generate arbitrarily many keys

Issues of Security

Formalisation of the Intruder

 extend \mathcal{L} by predicate constants Ik and ImBehaviour of Intruder

$$
\begin{aligned}
& \text { 16: } \forall x_{\mathrm{a}} x_{\mathrm{b}} x_{\mathrm{m}}\left(\mathrm{M}\left(\operatorname{sent}\left(x_{\mathrm{a}}, x_{\mathrm{b}}, x_{\mathrm{m}}\right)\right) \rightarrow \operatorname{Im}\left(x_{\mathrm{m}}\right)\right) \\
& \text { 17: } \forall u v(\operatorname{Im}(\operatorname{pair}(u, v)) \rightarrow \operatorname{Im}(u) \wedge \operatorname{Im}(v)) \\
& \vdots \\
& \text { 20: } \forall u v(\operatorname{Im}(u) \wedge \operatorname{Im}(v) \rightarrow \operatorname{Im}(\operatorname{pair}(u, v))) \\
& \vdots \\
& \text { 23: } \forall x y u((\mathrm{P}(x) \wedge \mathrm{P}(y) \wedge \operatorname{Im}(u)) \rightarrow \mathrm{M}(\operatorname{sent}(x, y, u))) \\
& \text { 24: } \forall u v((\operatorname{Im}(u) \wedge \mathrm{P}(v)) \rightarrow \operatorname{Ik}(\operatorname{key}(u, v))) \\
& \text { 25: } \forall u \vee w((\operatorname{lm}(u) \wedge \operatorname{lk}(\operatorname{key}(v, w) \wedge \mathrm{P}(w)) \rightarrow \operatorname{Im}(\operatorname{encr}(u, v)))
\end{aligned}
$$

Fact $\quad \mathcal{H}$ extends \mathcal{G} by 16-25
SPASS shows that the protocol insecure in less than a millisecond

$$
\mathcal{H} \equiv \exists x(\operatorname{lk}(\operatorname{key}(x, \mathrm{~b})) \wedge \operatorname{Bk}(\operatorname{key}(x, \mathrm{a})))
$$

Huntington's Basis

Definition

$\mathcal{B}=\langle B ;+, \cdot, \sim, 0,1\rangle$ is a Boolean algebra if
1 I $\langle B ;+, 0\rangle$ and $\langle B ; \cdot, 1\rangle$ are commutative monoids
$2 \forall a, b, c \in B$:

$$
a \cdot(b+c)=(a \cdot b)+(a \cdot c) \quad a+(b \cdot c)=(a+b) \cdot(a+c)
$$

3 $\forall a \in B: a+\sim a=1$ and $a \cdot \sim a=0$
$\sim a$ is called complement (or negation) of a
Definition
consider the following axioms:

$$
\begin{aligned}
x+y & =y+x & & \text { commutativity } \\
(x+y)+z & =x+(y+z) & & \text { associativity } \\
\mathrm{n}(\mathrm{n}(x)+y)+\mathrm{n}(\mathrm{n}(x)+\mathrm{n}(y)) & =x & & \text { Huntington equation }
\end{aligned}
$$

the operation $\mathrm{n}(\cdot)$ is just complement

Robbins Question

Robbins Question

Question (1)
Does Huntington's equation follow from (i) commutativity (ii) associativity and (iii) Robbins equation?

Answer
McCune (or better EQP) says yes

Definition

a Robbins algebra is an algrebra satisfying (i) commutativity (ii) associativity and (iii) Robbins equation

[^0]Theorem
the provided axioms form a minimal axiomatisation of Boolean algebras, that is all axioms are independent from each other

Example
recall $x \cdot y=\sim(\sim x+\sim y)$, thus

$$
\sim(\sim x+y)+\sim(\sim x+\sim y)=x \cdot \sim y+x \cdot y=x \cdot(\sim y+y)=x
$$

Definition
Robbins equation:

$$
\begin{equation*}
\sim(\sim(x+y)+\sim(x+\sim y))=x \tag{R}
\end{equation*}
$$

Example
$\sim(\sim(x+y)+\sim(x+\sim y))=(x+y) \cdot(x+\sim y)=x+(y \sim y)=x \int_{\text {Automated Theorem Proving }}^{\sim}$

Robbins Question

Auxiliary Lemmas

Lemma
a Robbins algebra satisfying $\exists x(x+x=x)$ is a Boolean algebra
Proof (Sketch).
automatically provable by EQP in about 5 seconds

Lemma
a Robbins algebra satisfying $\exists x \exists y(x+y=x)$ is a Boolean algebra

Proof (Sketch).
1 originally the lemma was manually proven by Steve Winker
2 based on the above lemma, EQP can find a proof in about 40 minutes

Lemma
a Robbins algebra satisfying $\exists x \exists y(\sim(x+y)=\sim x)$ is a Boolean algebra
Proof (Sketch).
originally the lemma was manually proven by Steve Winker

Lemma
all Robbin algebras satisfy $\exists x \exists y(x+y=x)$

Proof (Sketch).

by EQP, dedicated (incomplete) heuristics are essential

Theorem
commutativity, associativity, and Robinns equation minimally axiomatise Boolean algebra

Robbins Question

Proof.

$$
\begin{array}{ll}
\mathrm{n}(\mathrm{n}(\mathrm{n}(3 x)+x)+5 x)=\mathrm{n}(3 x) & 8855,[6736 \rightarrow 7] \\
\mathrm{n}(\mathrm{n}(\mathrm{n}(\mathrm{n}(3 x)+x)+\mathrm{n}(3 x)+2 x))=\mathrm{n}(\mathrm{n}(3 x)+x)+2 x & 8865,[8855 \rightarrow 7] \\
\mathrm{n}(\mathrm{n}(\mathrm{n}(3 x)+x)+\mathrm{n}(3 x))=x & 8866,[8855 \rightarrow 7] \\
\mathrm{n}(\mathrm{n}(\mathrm{n}(\mathrm{n}(3 x)+x)+\mathrm{n}(3 x)+y)+\mathrm{n}(x+y))=y & 8870,[8866 \rightarrow 7] \\
\mathrm{n}(\mathrm{n}(3 x)+x)+2 x=2 x & 8871,[8865]
\end{array}
$$

- last line asserts: $\exists x \exists y(x+y=x)$
- also derived: $\exists x \exists y(\sim(x+y)=\sim x)$

Remarks

- SPASS could not find proof in 12 hours
- mkbtt cannot parse the problem ©

Proof (of First and Last Lemma).

$$
\begin{aligned}
& \mathrm{n}(\mathrm{n}(\mathrm{n}(x)+y)+\mathrm{n}(x+y))=y \quad \quad 7,(\mathrm{R}) \\
& \mathrm{n}(\mathrm{n}(\mathrm{n}(x+y)+\mathrm{n}(x)+y)+y)=\mathrm{n}(x+y) \\
& 10,[7 \rightarrow 7] \\
& \mathrm{n}(\mathrm{n}(\mathrm{n}(\mathrm{n}(x)+y)+x+y)+y)=\mathrm{n}(\mathrm{n}(x)+y) \\
& \text { 11, }[7 \rightarrow 7] \\
& \mathrm{n}(\mathrm{n}(\mathrm{n}(\mathrm{n}(x)+y)+x+2 y)+\mathrm{n}(\mathrm{n}(x)+y))=y \\
& \text { 29, [11 } \rightarrow 7 \text {] } \\
& \mathrm{n}(\mathrm{n}(\mathrm{n}(\mathrm{n}(\mathrm{n}(x)+y)+x+2 y)+\mathrm{n}(\mathrm{n}(x)+y)+z)+ \\
& +\mathrm{n}(y+z))=z \\
& \text { 54, }[29 \rightarrow 7] \\
& \mathrm{n}(\mathrm{n}(\mathrm{n}(\mathrm{n}(\mathrm{n}(x)+y)+x+2 y)+\mathrm{n}(\mathrm{n}(x)+y)+ \\
& +\mathrm{n}(y+z)+z)+z)=\mathrm{n}(y+z) \\
& \text { 217, [54 } \rightarrow 7 \text {] } \\
& \mathrm{n}(\mathrm{n}(\mathrm{n}(\mathrm{n}(\mathrm{n}(\mathrm{n}(x)+y)+x+2 y)+\mathrm{n}(\mathrm{n}(x)+y)+ \\
& +\mathrm{n}(y+z)+z)+z+u)+\mathrm{n}(\mathrm{n}(y+z)+u))=u \quad \text { 674, [217 } \rightarrow 7] \\
& \mathrm{n}(\mathrm{n}(\mathrm{n}(\mathrm{n}(3 x)+x)+\mathrm{n}(3 x))+\mathrm{n}(\mathrm{n}(\mathrm{n}(3 x)+x)+5 x))= \\
& =\mathrm{n}(\mathrm{n}(3 x)+x) \\
& \text { 6736, }[10 \rightarrow 674]
\end{aligned}
$$

Equational Prover EQP

Definition

- EQP is restricted to equational logic and performs AC unification and matching
- based on basic superposition, that is, paramodulation into substitution parts of terms are forbidded
- incomplete heuristics

Definition

- AC unifiers are found by finding a basis of a linear Diophantine equation
- the complete set of unifiers is given as linear combinations of (members of) the basis

Definition

- a subset yields potential unifier if all unification conditions except unification of subterms are fulfilled
- the super-0 strategy restricts the number of AC unifiers by ignoring supersets if a potential unifier is found

NB: the super-0 strategy yields incompleteness
Definition
for AC matching a dedicated algorithm based on backtracking is used

Definitions

- the weight of a pair of equations be the sum of the size of its members
- the age of a pair is the sum of the ages of its members

Definition

a pairing algorithm used to select the next equation:
1 either the lightest or the oldest pair (not yet selected) is chosen
2 pair selection ratio specifies the ratio $\frac{\text { lightest }}{\text { oldest }}$
3 default ratio is $\frac{1}{0}$

Use of EQP

- successful attack took place over the course of five weeks
- the following search parameters were varied

1 limit on the size of retained equations
2 with or without super-0 heuristics
3 with or without basic restriction
4 pair selection ratio $\frac{1}{0}$ or $\frac{1}{1}$

- subsequent experiments searched for shorter proofs
- yielded direct proof without the use of Winker's lemmas

Thank You for Your Attention!

[^0]: Question (2)
 Is any Robbins algebra a Boolean algebra?

