

Automated Theorem Proving

Georg Moser

Institute of Computer Science @ UIBK

Winter 2015

Summary of Last Lecture Gilmore's Prover in Pseudo-Code

Disadvantages

- generation of all \mathcal{C}'_n
- transformation to DNF
- did not yield actual proofs of simple (predicate logic) formulas

Outline of the Lecture

Early Approaches in Automated Reasoning

Herbrand's theorem for dummies, Gilmore's prover, method of Davis and Putnam

Starting Points

resolution, tableau provers, Skolemisation, ordered resolution, redundancy and deletion

Automated Reasoning with Equality

paramodulation, ordered completion and proof orders, superposition

Applications of Automated Reasoning

Neuman-Stubblebinde Key Exchange Protocol, Robbins problem

Outline of the Lecture

Early Approaches in Automated Reasoning

Herbrand's theorem for dummies, Gilmore's prover, method of Davis and Putnam

Starting Points

resolution, tableau provers, Skolemisation, ordered resolution, redundancy and deletion

Automated Reasoning with Equality

paramodulation, ordered completion and proof orders, superposition

Applications of Automated Reasoning

Neuman-Stubblebinde Key Exchange Protocol, Robbins problem

- a clause C is called reduced, if every literal occurs at most once in C
- a clause set C is called reduced for tautologies, if every clause in C is reduced and does not contain complementary literals

- a clause C is called reduced, if every literal occurs at most once in C
- a clause set C is called reduced for tautologies, if every clause in C is reduced and does not contain complementary literals

Definition (tautology rule)

delete all clauses containing complementary literals

- a clause C is called reduced, if every literal occurs at most once in C
- a clause set C is called reduced for tautologies, if every clause in C is reduced and does not contain complementary literals

Definition (tautology rule)

delete all clauses containing complementary literals

let \mathcal{C}^\prime be ground and reduced for tautologies

- a clause C is called reduced, if every literal occurs at most once in C
- a clause set C is called reduced for tautologies, if every clause in C is reduced and does not contain complementary literals

Definition (tautology rule)

delete all clauses containing complementary literals

let $\underline{\mathcal{C}'}$ be ground and reduced for tautologies

Definition (one-literal rule)

let $C \in C'$ and suppose

- 1 C consists of just one literal L
- **2** remove all clauses $D \in C'$ such that L occurs in D
- 3 remove $\neg L$ from all remaining clauses in C'

Definition (pure literal rule)

- let $\mathcal{D}' \subseteq \mathcal{C}'$ such that
 - **1** \exists literal *L* that appears in all clauses in \mathcal{D}'
 - **2** $\neg L$ doesn't appear in C'
 - 3 replace \mathcal{C}' by $\mathcal{C}' \setminus \mathcal{D}'$

Definition (pure literal rule)

let $\mathcal{D}'\subseteq \mathcal{C}'$ such that

- **1** \exists literal *L* that appears in all clauses in \mathcal{D}'
- **2** $\neg L$ doesn't appear in C'
- 3 replace \mathcal{C}' by $\mathcal{C}' \setminus \mathcal{D}'$

Definition (splitting rule)

suppose the clause set \mathcal{C}' can be written as $\mathcal{C}' = \{A_1, \dots, A_n, B_1, \dots, B_m\} \cup \mathcal{D}$ where

- **1** \exists literal *L*, such that neither *L* nor $\neg L$ occurs in \mathcal{D}
- **2** L occurs in any A_i (but in no B_j); A'_i is the result of removing L
- **3** $\neg L$ occurs in any B_j (but in no A_i) B'_j is the result of removing $\neg L$
- 4 rule consists in splitting C' into $C'_1 = \{A'_1, \ldots, A'_n\} \cup D$ and $C'_2 = \{B'_1, \ldots, B'_m\} \cup D$

The Method of Davis and Putnam (for Ground Clauses)

Fact

the method encompasses the above defined four rules

- tautology rule
- one-literal rule
- pure literal rule
- splitting rule

The Method of Davis and Putnam (for Ground Clauses)

Fact

the method encompasses the above defined four rules

- tautology rule
- one-literal rule
- pure literal rule
- splitting rule

ENERS

Theorem

- 1 the rules of the DPLL-method are correct
- **2** that is, if \mathcal{D} is a set of ground clauses and either \mathcal{D}' or \mathcal{D}_1 and \mathcal{D}_2 are obtained by the above rules, then \mathcal{D} is satisfiable if \mathcal{D}' (\mathcal{D}_1 or \mathcal{D}_2) is satisfiable

let \mathcal{C}' be a set of reduced ground clauses

let \mathcal{C}' be a set of reduced ground clauses

Definition (DPLL-tree)

- T consists only of the root, labelled by \mathcal{C}'
- let N be a node in T, labelled by \mathcal{D} ; then N is either a
 - 1 leaf node,
 - 2 *N* has one successor N', labelled by \mathcal{D}' , where \mathcal{D}' is obtained as the application of tautology, one-literal, pure literal rule to \mathcal{D} , or
 - 3 *N* has two successors N_1 , N_2 labelled by the clause sets obtained by an application of the split rule to D

let \mathcal{C}' be a set of reduced ground clauses

Definition (DPLL-tree)

- T consists only of the root, labelled by C'
- let N be a node in T, labelled by \mathcal{D} ; then N is either a
 - 1 leaf node,
 - 2 *N* has one successor N', labelled by \mathcal{D}' , where \mathcal{D}' is obtained as the application of tautology, one-literal, pure literal rule to \mathcal{D} , or
 - 3 *N* has two successors N_1 , N_2 labelled by the clause sets obtained by an application of the split rule to D

Definition (DPLL-decision tree)

a DPLL-tree is a decision tree for \mathcal{C}' if

- **1** all leafs are labelled by the empty clause \Box , or
- **2** \exists leaf labelled by the empty clause set \varnothing

Theorem (Soundness)

- let C' be a reduced set of ground clauses and let T be a decision tree proving satisfiability or unsatisfiability for C'
- then C' is satisfiable or unsatisfiable, respectively

Theorem (Soundness)

- let C' be a reduced set of ground clauses and let T be a decision tree proving satisfiability or unsatisfiability for C'
- then C' is satisfiable or unsatisfiable, respectively

Definition (DPLL Method)

- DPLL(a) remove multiple occurrences of literals in \mathcal{C}' to obtain a reduced clause set \mathcal{D}_1
- DPLL(b) apply the tautology rule exhaustively to D_1 to obtain a reduced clause set D_2 that is reduced for tautologies

DPLL(c) construct a decision tree for \mathcal{D}_2 .

- let \mathcal{C}' be as above and let T be a DPLL-tree for \mathcal{C}'
- then T can be extended to a decision tree for \mathcal{C}'

- let C' be as above and let T be a DPLL-tree for C'
- then T can be extended to a decision tree for \mathcal{C}^\prime

Proof.

- let \mathcal{C}' be as above and let T be a DPLL-tree for \mathcal{C}'
- then T can be extended to a decision tree for \mathcal{C}^\prime

Proof.

by induction on the number ℓ of atoms in \mathcal{C}'

1 $\ell = 0$: C' is either empty or contains \Box , T is already a decision tree

- let \mathcal{C}' be as above and let T be a DPLL-tree for \mathcal{C}'
- then T can be extended to a decision tree for \mathcal{C}^\prime

Proof.

- **1** $\ell = 0$: C' is either empty or contains \Box , T is already a decision tree
- **2** $\ell > 0$: we distinguish
 - T consists only of the root, labelled by \mathcal{C}'

- let \mathcal{C}' be as above and let T be a DPLL-tree for \mathcal{C}'
- then T can be extended to a decision tree for \mathcal{C}^\prime

Proof.

- **1** $\ell = 0$: C' is either empty or contains \Box , T is already a decision tree
- **2** $\ell > 0$: we distinguish
 - T consists only of the root, labelled by C' we employ a one-literal, pure literal rule, or a splitting rule; extend T such that the successors nodes are labelled with smaller clause sets; induction hypothesis becomes applicable
 - T contains more than one node

- let \mathcal{C}' be as above and let T be a DPLL-tree for \mathcal{C}'
- then T can be extended to a decision tree for \mathcal{C}^\prime

Proof.

- **1** $\ell = 0$: C' is either empty or contains \Box , T is already a decision tree
- **2** $\ell > 0$: we distinguish
 - T consists only of the root, labelled by C' we employ a one-literal, pure literal rule, or a splitting rule; extend T such that the successors nodes are labelled with smaller clause sets; induction hypothesis becomes applicable
 - T contains more than one node let $\mathcal{D}_1, \ldots, \mathcal{D}_n$ denote all leaf nodes of T; for at least one of these nodes we can employ one-literal, pure literal rule, or a splitting rule; then we argue as in the first sub-case

- let \mathcal{C}' be as above and let T be a DPLL-tree for \mathcal{C}'
- then T can be extended to a decision tree for \mathcal{C}^\prime

Proof.

- **1** $\ell = 0$: C' is either empty or contains \Box , T is already a decision tree
- **2** $\ell > 0$: we distinguish
 - T consists only of the root, labelled by C' we employ a one-literal, pure literal rule, or a splitting rule; extend T such that the successors nodes are labelled with smaller clause sets; induction hypothesis becomes applicable
 - T contains more than one node let $\mathcal{D}_1, \ldots, \mathcal{D}_n$ denote all leaf nodes of T; for at least one of these nodes we can employ one-literal, pure literal rule, or a splitting rule; then we argue as in the first sub-case

The Method of Davis and Putnam (for First-Order Logic)

```
Method of Davis and Putnam in Pseudo-Code
  if \mathcal C does not contain function symbols
  then apply DPLL(a)-DPLL(c) on \mathcal{C}'_0
  else {
    n := 0;
    contr := false;
    while (\neg contr) do {
      apply DPLL(a)-DPLL(c) on C'_n;
      if the decision tree proves unsatisfiability,
      then contr := true
      else contr := false;
      n := n + 1;
    }}
```

The Language of Clause Logic (with Equality)

Definition individual constants denoted *c*, *d*, etc. $k_0, k_1, \ldots, k_i, \ldots$ function constants with i arguments $f_0^i, f_1^i, \ldots, f_i^i, \ldots$ denoted f, g, h, etc. • predicate constants with *i* arguments $R_0^i, R_1^i, \ldots, R_i^i, \ldots$ denoted P, Q, R, etc. • variables, collected in \mathcal{V} denoted x, y, z, etc. $x_0, x_1, \ldots, x_i, \ldots$

The Language of Clause Logic (with Equality)

Definition individual constants denoted *c*, *d*, etc. $k_0, k_1, \ldots, k_i, \ldots$ function constants with i arguments $f_0^i, f_1^i, \ldots, f_i^i, \ldots$ denoted f, g, h, etc. • predicate constants with *i* arguments $R_0^i, R_1^i, \ldots, R_i^i, \ldots$ denoted P, Q, R, etc. • variables, collected in \mathcal{V} denoted x, y, z, etc. $x_0, x_1, \ldots, x_i, \ldots$

- propositional connectives ¬, ∨
- equality sign =

1 $P(t_1,...,t_n)$ is called an atomic formula if $t_1,...,t_n$ are terms, P a predicate constant

- 1 $P(t_1,...,t_n)$ is called an atomic formula if $t_1,...,t_n$ are terms, P a predicate constant
- 2 a literal is an atomic formula or its negation

- 1 $P(t_1,...,t_n)$ is called an atomic formula if $t_1,...,t_n$ are terms, P a predicate constant
- 2 a literal is an atomic formula or its negation
- **3** a clause is disjunction of literals

- 1 $P(t_1,...,t_n)$ is called an atomic formula if $t_1,...,t_n$ are terms, P a predicate constant
- 2 a literal is an atomic formula or its negation
- **3** a clause is disjunction of literals

Theorem

 $\forall \text{ first-order sentence } F, \exists \text{ set of clauses } C = \{C_1, \dots, C_m\}$ $F \approx \forall x_1 \cdots \forall x_n (C_1 \land \dots \land C_m)$

- **1** $P(t_1, ..., t_n)$ is called an atomic formula if $t_1, ..., t_n$ are terms, P a predicate constant
- 2 a literal is an atomic formula or its negation
- **3** a clause is disjunction of literals

Theorem

 $\forall \text{ first-order sentence } F, \exists \text{ set of clauses } C = \{C_1, \dots, C_m\}$ $F \approx \forall x_1 \cdots \forall x_n (C_1 \land \dots \land C_m)$

Proof.

- let F be a sentence (in standard first-order language)
- there exists $G \approx F$ such that

$$G = \forall x_1 \cdots \forall x_n (H_1(x_1, \ldots, x_n) \land \cdots \land H_m(x_1, \ldots, x_n))$$

• each H_i (i = 1, ..., m) is a disjunction of literals, hence a clause

- 1 □ is a clause
- 2 literals are clauses
- **3** if C, D are clauses, then $C \vee D$ is a clause

- 1 □ is a clause
- 2 literals are clauses
- 3 if C, D are clauses, then $C \lor D$ is a clause

Convention

we use (i) the equivalences $A \equiv \neg \neg A$, A atomic formula, that (ii) disjunction \lor is associative and commutative, and (iii) $\Box \lor \Box = \Box$, and $C \lor \Box = \Box \lor C = C$

- 1 □ is a clause
- 2 literals are clauses
- **3** if C, D are clauses, then $C \lor D$ is a clause

Convention

we use (i) the equivalences $A \equiv \neg \neg A$, A atomic formula, that (ii) disjunction \lor is associative and commutative, and (iii) $\Box \lor \Box = \Box$, and $C \lor \Box = \Box \lor C = C$

- let \mathcal{T} denote the set of terms in our language
- $\mathcal{V}ar(E)$ denotes set of variables occurring in E
- a substitution σ is a mapping $\mathcal{V} \to \mathcal{T}$ such that $\sigma(x) = x$, for almost all x
- we write $\sigma = \{x_1 \mapsto t_1, \dots, x_n \mapsto t_n\}$; empty subst. denoted by ϵ

Most General Unifier

application of a substitution σ to expression E is denoted as $E\sigma$; $E\sigma$ is called an instance of E

Definition

- $\sigma = \{x_1 \mapsto t_1, \ldots, x_n \mapsto t_n\}, \tau = \{y_1 \mapsto r_1, \ldots, y_1 \mapsto r_m\}$
- composition of σ and τ denoted as $\sigma\tau$:

$$\{x_1 \mapsto t_1 \tau, \dots, x_n \mapsto t_n \tau\} \cup \{y_i \mapsto r_i \mid \text{for all } j = 1, \dots, n, y_i \neq x_j\}$$

• σ is more general than a substitution $\tau,$ if there exists a substitution ρ such that $\sigma\rho=\tau$

Most General Unifier

application of a substitution σ to expression E is denoted as $E\sigma$; $E\sigma$ is called an instance of E

Definition

- $\sigma = \{x_1 \mapsto t_1, \ldots, x_n \mapsto t_n\}, \tau = \{y_1 \mapsto r_1, \ldots, y_1 \mapsto r_m\}$
- composition of σ and τ denoted as $\sigma\tau$:

$$\{x_1 \mapsto t_1 \tau, \dots, x_n \mapsto t_n \tau\} \cup \{y_i \mapsto r_i \mid \text{for all } j = 1, \dots, n, y_i \neq x_j\}$$

• σ is more general than a substitution τ , if there exists a substitution ρ such that $\sigma \rho = \tau$ $E\tau$ is instance of $E\sigma$

Most General Unifier

application of a substitution σ to expression E is denoted as $E\sigma$; $E\sigma$ is called an instance of E

Definition

- $\sigma = \{x_1 \mapsto t_1, \ldots, x_n \mapsto t_n\}, \tau = \{y_1 \mapsto r_1, \ldots, y_1 \mapsto r_m\}$
- composition of σ and τ denoted as $\sigma\tau$:

$$\{x_1 \mapsto t_1 \tau, \dots, x_n \mapsto t_n \tau\} \cup \{y_i \mapsto r_i \mid \text{for all } j = 1, \dots, n, y_i \neq x_j\}$$

• σ is more general than a substitution τ , if there exists a substitution ρ such that $\sigma \rho = \tau$ $E\tau$ is instance of $E\sigma$

- a substitution σ such that Eσ = Fσ is unifier of E, F generalises to sets U of expressions (= terms or atomic formulas)
- unifier σ is most general if σ is more general than any other unifier

consider $U = \{ P(x, f(x)), P(y, f(x)), P(x', y') \}$

- $\sigma = \{x \mapsto 0, y \mapsto 0, x' \mapsto 0, y' \mapsto f(0)\}$ is a unifier of U
- $\tau = \{y \mapsto x, x' \mapsto x, y' \mapsto f(x)\}$ is most general

consider $U = \{P(x, f(x)), P(y, f(x)), P(x', y')\}$

- $\sigma = \{x \mapsto 0, y \mapsto 0, x' \mapsto 0, y' \mapsto f(0)\}$ is a unifier of U
- $\tau = \{y \mapsto x, x' \mapsto x, y' \mapsto f(x)\}$ is most general

• sequence
$$E = u_1 \stackrel{?}{=} v_1, \ldots, u_n \stackrel{?}{=} v_n$$
 is called an equality problem

consider $U = \{P(x, f(x)), P(y, f(x)), P(x', y')\}$

- $\sigma = \{x \mapsto 0, y \mapsto 0, x' \mapsto 0, y' \mapsto f(0)\}$ is a unifier of U
- $\tau = \{y \mapsto x, x' \mapsto x, y' \mapsto f(x)\}$ is most general

- sequence $E = u_1 \stackrel{?}{=} v_1, \ldots, u_n \stackrel{?}{=} v_n$ is called an equality problem
- unifier of E is the unifier of $\{u_1 = v_1, \ldots, u_n = v_n\}$

consider $U = \{P(x, f(x)), P(y, f(x)), P(x', y')\}$

- $\sigma = \{x \mapsto 0, y \mapsto 0, x' \mapsto 0, y' \mapsto f(0)\}$ is a unifier of U
- $\tau = \{y \mapsto x, x' \mapsto x, y' \mapsto f(x)\}$ is most general

- sequence $E = u_1 \stackrel{?}{=} v_1, \ldots, u_n \stackrel{?}{=} v_n$ is called an equality problem
- unifier of *E* is the unifier of $\{u_1 = v_1, \ldots, u_n = v_n\}$
- If $E = x_1 \stackrel{?}{=} v_1, \dots, x_n \stackrel{?}{=} v_n$, with x_i pairwise distinct and $x_i \notin \mathcal{V}ar(v_j)$, then E is in solved form

consider $U = \{P(x, f(x)), P(y, f(x)), P(x', y')\}$

- $\sigma = \{x \mapsto 0, y \mapsto 0, x' \mapsto 0, y' \mapsto f(0)\}$ is a unifier of U
- $\tau = \{y \mapsto x, x' \mapsto x, y' \mapsto f(x)\}$ is most general

Definition

- sequence $E = u_1 \stackrel{?}{=} v_1, \ldots, u_n \stackrel{?}{=} v_n$ is called an equality problem
- unifier of *E* is the unifier of $\{u_1 = v_1, \ldots, u_n = v_n\}$
- If $E = x_1 \stackrel{?}{=} v_1, \dots, x_n \stackrel{?}{=} v_n$, with x_i pairwise distinct and $x_i \notin \mathcal{V}ar(v_j)$, then E is in solved form

- U becomes
- au becomes

$$P(x, f(x)) \stackrel{?}{=} P(y, f(x)), P(y, f(x)) \stackrel{?}{=} P(x', y')$$

$$y \stackrel{?}{=} x, x' \stackrel{?}{=} x, y' \stackrel{?}{=} f(x)$$

$$u \stackrel{?}{=} u, E \Rightarrow E$$

$$u \stackrel{?}{=} u, E \Rightarrow E$$
$$f(s_1, \dots, s_n) \stackrel{?}{=} f(t_1, \dots, t_n), E \Rightarrow s_1 \stackrel{?}{=} t_1, \dots, s_n \stackrel{?}{=} t_n, E$$

$$u \stackrel{?}{=} u, E \Rightarrow E$$

$$f(s_1, \dots, s_n) \stackrel{?}{=} f(t_1, \dots, t_n), E \Rightarrow s_1 \stackrel{?}{=} t_1, \dots, s_n \stackrel{?}{=} t_n, E$$

$$f(s_1, \dots, s_n) \stackrel{?}{=} g(t_1, \dots, t_n), E \Rightarrow \bot \quad f \neq g$$

$$u \stackrel{?}{=} u, E \Rightarrow E$$

$$f(s_1, \dots, s_n) \stackrel{?}{=} f(t_1, \dots, t_n), E \Rightarrow s_1 \stackrel{?}{=} t_1, \dots, s_n \stackrel{?}{=} t_n, E$$

$$f(s_1, \dots, s_n) \stackrel{?}{=} g(t_1, \dots, t_n), E \Rightarrow \bot \quad f \neq g$$

$$x \stackrel{?}{=} v, E \Rightarrow x \stackrel{?}{=} v, E\{x \mapsto v\} \quad x \in \mathcal{V}ar(E), x \notin \mathcal{V}ar(v)$$

$$u \stackrel{?}{=} u, E \Rightarrow E$$

$$f(s_1, \dots, s_n) \stackrel{?}{=} f(t_1, \dots, t_n), E \Rightarrow s_1 \stackrel{?}{=} t_1, \dots, s_n \stackrel{?}{=} t_n, E$$

$$f(s_1, \dots, s_n) \stackrel{?}{=} g(t_1, \dots, t_n), E \Rightarrow \bot \quad f \neq g$$

$$x \stackrel{?}{=} v, E \Rightarrow x \stackrel{?}{=} v, E\{x \mapsto v\} \quad x \in \mathcal{V}ar(E), x \notin \mathcal{V}ar(v)$$

$$x \stackrel{?}{=} v, E \Rightarrow \bot \quad x \neq v, x \in \mathcal{V}ar(v)$$

$$u \stackrel{?}{=} u, E \Rightarrow E$$

$$f(s_1, \dots, s_n) \stackrel{?}{=} f(t_1, \dots, t_n), E \Rightarrow s_1 \stackrel{?}{=} t_1, \dots, s_n \stackrel{?}{=} t_n, E$$

$$f(s_1, \dots, s_n) \stackrel{?}{=} g(t_1, \dots, t_n), E \Rightarrow \bot \quad f \neq g$$

$$x \stackrel{?}{=} v, E \Rightarrow x \stackrel{?}{=} v, E\{x \mapsto v\} \quad x \in \mathcal{V}ar(E), x \notin \mathcal{V}ar(v)$$

$$x \stackrel{?}{=} v, E \Rightarrow \bot \quad x \neq v, x \in \mathcal{V}ar(v)$$

$$v \stackrel{?}{=} x, E \Rightarrow x \stackrel{?}{=} v, E \quad v \notin \mathcal{V}$$

$$u \stackrel{?}{=} u, E \Rightarrow E$$

$$f(s_1, \dots, s_n) \stackrel{?}{=} f(t_1, \dots, t_n), E \Rightarrow s_1 \stackrel{?}{=} t_1, \dots, s_n \stackrel{?}{=} t_n, E$$

$$f(s_1, \dots, s_n) \stackrel{?}{=} g(t_1, \dots, t_n), E \Rightarrow \bot \quad f \neq g$$

$$x \stackrel{?}{=} v, E \Rightarrow x \stackrel{?}{=} v, E\{x \mapsto v\} \quad x \in \mathcal{V}ar(E), x \notin \mathcal{V}ar(v)$$

$$x \stackrel{?}{=} v, E \Rightarrow \bot \quad x \neq v, x \in \mathcal{V}ar(v)$$

$$v \stackrel{?}{=} x, E \Rightarrow x \stackrel{?}{=} v, E \quad v \notin \mathcal{V}$$

$$f(x,g(y),x) \stackrel{?}{=} f(z,g(x'),h(x')) \Rightarrow x \stackrel{?}{=} z,g(y) \stackrel{?}{=} g(x'),x \stackrel{?}{=} h(x')$$

$$u \stackrel{?}{=} u, E \Rightarrow E$$

$$f(s_1, \dots, s_n) \stackrel{?}{=} f(t_1, \dots, t_n), E \Rightarrow s_1 \stackrel{?}{=} t_1, \dots, s_n \stackrel{?}{=} t_n, E$$

$$f(s_1, \dots, s_n) \stackrel{?}{=} g(t_1, \dots, t_n), E \Rightarrow \bot \quad f \neq g$$

$$x \stackrel{?}{=} v, E \Rightarrow x \stackrel{?}{=} v, E\{x \mapsto v\} \quad x \in \mathcal{V}ar(E), x \notin \mathcal{V}ar(v)$$

$$x \stackrel{?}{=} v, E \Rightarrow \bot \quad x \neq v, x \in \mathcal{V}ar(v)$$

$$v \stackrel{?}{=} x, E \Rightarrow x \stackrel{?}{=} v, E \quad v \notin \mathcal{V}$$

$$f(x, g(y), x) \stackrel{?}{=} f(z, g(x'), h(x')) \Rightarrow x \stackrel{?}{=} z, g(y) \stackrel{?}{=} g(x'), x \stackrel{?}{=} h(x')$$
$$\Rightarrow x \stackrel{?}{=} z, g(y) \stackrel{?}{=} g(x'), z \stackrel{?}{=} h(x')$$

$$u \stackrel{?}{=} u, E \Rightarrow E$$

$$f(s_1, \dots, s_n) \stackrel{?}{=} f(t_1, \dots, t_n), E \Rightarrow s_1 \stackrel{?}{=} t_1, \dots, s_n \stackrel{?}{=} t_n, E$$

$$f(s_1, \dots, s_n) \stackrel{?}{=} g(t_1, \dots, t_n), E \Rightarrow \bot \quad f \neq g$$

$$x \stackrel{?}{=} v, E \Rightarrow x \stackrel{?}{=} v, E\{x \mapsto v\} \quad x \in \mathcal{V}ar(E), x \notin \mathcal{V}ar(v)$$

$$x \stackrel{?}{=} v, E \Rightarrow \bot \quad x \neq v, x \in \mathcal{V}ar(v)$$

$$v \stackrel{?}{=} x, E \Rightarrow x \stackrel{?}{=} v, E \quad v \notin \mathcal{V}$$

$$f(x, g(y), x) \stackrel{?}{=} f(z, g(x'), h(x')) \Rightarrow x \stackrel{?}{=} z, g(y) \stackrel{?}{=} g(x'), x \stackrel{?}{=} h(x')$$
$$\Rightarrow x \stackrel{?}{=} z, g(y) \stackrel{?}{=} g(x'), z \stackrel{?}{=} h(x')$$
$$\Rightarrow x \stackrel{?}{=} z, y \stackrel{?}{=} x', z \stackrel{?}{=} h(x')$$

$$u \stackrel{?}{=} u, E \Rightarrow E$$

$$f(s_1, \dots, s_n) \stackrel{?}{=} f(t_1, \dots, t_n), E \Rightarrow s_1 \stackrel{?}{=} t_1, \dots, s_n \stackrel{?}{=} t_n, E$$

$$f(s_1, \dots, s_n) \stackrel{?}{=} g(t_1, \dots, t_n), E \Rightarrow \bot \quad f \neq g$$

$$x \stackrel{?}{=} v, E \Rightarrow x \stackrel{?}{=} v, E\{x \mapsto v\} \quad x \in \mathcal{V}ar(E), x \notin \mathcal{V}ar(v)$$

$$x \stackrel{?}{=} v, E \Rightarrow \bot \quad x \neq v, x \in \mathcal{V}ar(v)$$

$$v \stackrel{?}{=} x, E \Rightarrow x \stackrel{?}{=} v, E \quad v \notin \mathcal{V}$$

$$f(x, g(y), x) \stackrel{?}{=} f(z, g(x'), h(x')) \Rightarrow x \stackrel{?}{=} z, g(y) \stackrel{?}{=} g(x'), x \stackrel{?}{=} h(x')$$
$$\Rightarrow x \stackrel{?}{=} z, g(y) \stackrel{?}{=} g(x'), z \stackrel{?}{=} h(x')$$
$$\Rightarrow x \stackrel{?}{=} z, y \stackrel{?}{=} x', z \stackrel{?}{=} h(x')$$
$$\Rightarrow x \stackrel{?}{=} h(x'), y \stackrel{?}{=} x', z \stackrel{?}{=} h(x')$$

let $E = x_1 \stackrel{?}{=} v_1, \dots, x_n \stackrel{?}{=} v_n$ be a equality problem in solved form *E* induces substitution $\sigma_E = \{x_1 \mapsto v_1, \dots, x_n \mapsto v_n\}$

let $E = x_1 \stackrel{?}{=} v_1, \dots, x_n \stackrel{?}{=} v_n$ be a equality problem in solved form *E* induces substitution $\sigma_E = \{x_1 \mapsto v_1, \dots, x_n \mapsto v_n\}$

Theorem

- **1** equality problems *E* is unifiable iff the unification algorithm stops with a solved form
- 2 if $E \Rightarrow^* E'$ such that E' is a solved form, then $\sigma_{E'}$ is a most general unifier (mgu for short) of E;

let $E = x_1 \stackrel{?}{=} v_1, \dots, x_n \stackrel{?}{=} v_n$ be a equality problem in solved form *E* induces substitution $\sigma_E = \{x_1 \mapsto v_1, \dots, x_n \mapsto v_n\}$

Theorem

- equality problems E is unifiable iff the unification algorithm stops with a solved form
- 2 if $E \Rightarrow^* E'$ such that E' is a solved form, then $\sigma_{E'}$ is a most general unifier (mgu for short) of E;

Proof.

in proof, we verify the following three facts:

let $E = x_1 \stackrel{?}{=} v_1, \dots, x_n \stackrel{?}{=} v_n$ be a equality problem in solved form *E* induces substitution $\sigma_E = \{x_1 \mapsto v_1, \dots, x_n \mapsto v_n\}$

Theorem

- equality problems E is unifiable iff the unification algorithm stops with a solved form
- 2 if $E \Rightarrow^* E'$ such that E' is a solved form, then $\sigma_{E'}$ is a most general unifier (mgu for short) of E;

Proof.

in proof, we verify the following three facts:

• if $E \Rightarrow E'$, then σ is a unifier of E iff σ is a unifier of E'

let $E = x_1 \stackrel{?}{=} v_1, \dots, x_n \stackrel{?}{=} v_n$ be a equality problem in solved form *E* induces substitution $\sigma_E = \{x_1 \mapsto v_1, \dots, x_n \mapsto v_n\}$

Theorem

- equality problems E is unifiable iff the unification algorithm stops with a solved form
- 2 if $E \Rightarrow^* E'$ such that E' is a solved form, then $\sigma_{E'}$ is a most general unifier (mgu for short) of E;

Proof.

in proof, we verify the following three facts:

- if $E \Rightarrow E'$, then σ is a unifier of E iff σ is a unifier of E'
- if $E \Rightarrow^* \bot$, then E is not unifiable

let $E = x_1 \stackrel{?}{=} v_1, \dots, x_n \stackrel{?}{=} v_n$ be a equality problem in solved form *E* induces substitution $\sigma_E = \{x_1 \mapsto v_1, \dots, x_n \mapsto v_n\}$

Theorem

- equality problems E is unifiable iff the unification algorithm stops with a solved form
- 2 if $E \Rightarrow^* E'$ such that E' is a solved form, then $\sigma_{E'}$ is a most general unifier (mgu for short) of E;

Proof.

in proof, we verify the following three facts:

- if $E \Rightarrow E'$, then σ is a unifier of E iff σ is a unifier of E'
- if $E \Rightarrow^* \perp$, then E is not unifiable
- if $E \Rightarrow^* E'$ such that E' is a solved form, then $\sigma_{E'}$ is a mgu of E