
Automated Theorem Proving

Georg Moser

Institute of Computer Science @ UIBK

Winter 2015

http://cl-informatik.uibk.ac.at


Summary

Summary of Last Lecture
Gilmore’s Prover in Pseudo-Code

begin {

contr := false;

n := 0;

while (not contr) do {

D ′ := DNF(C′n);
contr := all constituents of D ′

contain complementary literals;

n := n + 1;

}

}

Disadvantages

• generation of all C′n
• transformation to DNF

• did not yield actual proofs of simple (predicate logic) formulas
GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 21/1



Summary

Outline of the Lecture

Early Approaches in Automated Reasoning

Herbrand’s theorem for dummies, Gilmore’s prover, method of Davis and
Putnam

Starting Points

resolution, tableau provers, Skolemisation, ordered resolution, redundancy
and deletion

Automated Reasoning with Equality

paramodulation, ordered completion and proof orders, superposition

Applications of Automated Reasoning

Neuman-Stubblebinde Key Exchange Protocol, Robbins problem

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 22/1



Summary

Outline of the Lecture

Early Approaches in Automated Reasoning

Herbrand’s theorem for dummies, Gilmore’s prover, method of Davis and
Putnam

Starting Points

resolution, tableau provers, Skolemisation, ordered resolution, redundancy
and deletion

Automated Reasoning with Equality

paramodulation, ordered completion and proof orders, superposition

Applications of Automated Reasoning

Neuman-Stubblebinde Key Exchange Protocol, Robbins problem

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 22/1



Method of Davis and Putnam (for First-Order)

Definitions
• a clause C is called reduced, if every literal occurs at most once in C

• a clause set C is called reduced for tautologies, if every clause in C is
reduced and does not contain complementary literals

Definition (tautology rule)

delete all clauses containing complementary literals

let C′ be ground and reduced for tautologies

Definition (one-literal rule)

let C ∈ C′ and suppose

1 C consists of just one literal L

2 remove all clauses D ∈ C′ such that L occurs in D

3 remove ¬L from all remaining clauses in C′

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 23/1



Method of Davis and Putnam (for First-Order)

Definitions
• a clause C is called reduced, if every literal occurs at most once in C

• a clause set C is called reduced for tautologies, if every clause in C is
reduced and does not contain complementary literals

Definition (tautology rule)

delete all clauses containing complementary literals

let C′ be ground and reduced for tautologies

Definition (one-literal rule)

let C ∈ C′ and suppose

1 C consists of just one literal L

2 remove all clauses D ∈ C′ such that L occurs in D

3 remove ¬L from all remaining clauses in C′

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 23/1



Method of Davis and Putnam (for First-Order)

Definitions
• a clause C is called reduced, if every literal occurs at most once in C

• a clause set C is called reduced for tautologies, if every clause in C is
reduced and does not contain complementary literals

Definition (tautology rule)

delete all clauses containing complementary literals

let C′ be ground and reduced for tautologies

Definition (one-literal rule)

let C ∈ C′ and suppose

1 C consists of just one literal L

2 remove all clauses D ∈ C′ such that L occurs in D

3 remove ¬L from all remaining clauses in C′

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 23/1



Method of Davis and Putnam (for First-Order)

Definitions
• a clause C is called reduced, if every literal occurs at most once in C

• a clause set C is called reduced for tautologies, if every clause in C is
reduced and does not contain complementary literals

Definition (tautology rule)

delete all clauses containing complementary literals

let C′ be ground and reduced for tautologies

Definition (one-literal rule)

let C ∈ C′ and suppose

1 C consists of just one literal L

2 remove all clauses D ∈ C′ such that L occurs in D

3 remove ¬L from all remaining clauses in C′

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 23/1



Method of Davis and Putnam (for First-Order)

Definition (pure literal rule)

let D′ ⊆ C′ such that

1 ∃ literal L that appears in all clauses in D′

2 ¬L doesn’t appear in C′

3 replace C′ by C′ \ D′

Definition (splitting rule)

suppose the clause set C′ can be written as
C′ = {A1, . . . ,An,B1, . . . ,Bm} ∪ D where

1 ∃ literal L, such that neither L nor ¬L occurs in D
2 L occurs in any Ai (but in no Bj); A′i is the result of removing L

3 ¬L occurs in any Bj (but in no Ai ) B ′j is the result of removing ¬L
4 rule consists in splitting C′ into C′1 = {A′1, . . . ,A′n} ∪ D and
C′2 = {B ′1, . . . ,B ′m} ∪ D

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 24/1



Method of Davis and Putnam (for First-Order)

Definition (pure literal rule)

let D′ ⊆ C′ such that

1 ∃ literal L that appears in all clauses in D′

2 ¬L doesn’t appear in C′

3 replace C′ by C′ \ D′

Definition (splitting rule)

suppose the clause set C′ can be written as
C′ = {A1, . . . ,An,B1, . . . ,Bm} ∪ D where

1 ∃ literal L, such that neither L nor ¬L occurs in D
2 L occurs in any Ai (but in no Bj); A′i is the result of removing L

3 ¬L occurs in any Bj (but in no Ai ) B ′j is the result of removing ¬L
4 rule consists in splitting C′ into C′1 = {A′1, . . . ,A′n} ∪ D and
C′2 = {B ′1, . . . ,B ′m} ∪ D

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 24/1



Method of Davis and Putnam (for First-Order)

The Method of Davis and Putnam (for Ground Clauses)

Fact

the method encompasses the above defined four rules

• tautology rule

• one-literal rule

• pure literal rule

• splitting rule

Theorem

1 the rules of the DPLL-method are correct

2 that is, if D is a set of ground clauses and either D′ or D1 and D2

are obtained by the above rules, then D is satisfiable if D′ (D1 or
D2) is satisfiable

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 25/1



Method of Davis and Putnam (for First-Order)

The Method of Davis and Putnam (for Ground Clauses)

Fact

the method encompasses the above defined four rules

• tautology rule

• one-literal rule

• pure literal rule

• splitting rule

Theorem

1 the rules of the DPLL-method are correct

2 that is, if D is a set of ground clauses and either D′ or D1 and D2

are obtained by the above rules, then D is satisfiable if D′ (D1 or
D2) is satisfiable

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 25/1



Method of Davis and Putnam (for First-Order)

let C′ be a set of reduced ground clauses

Definition (DPLL-tree)

• T consists only of the root, labelled by C′
• let N be a node in T , labelled by D; then N is either a

1 leaf node,
2 N has one successor N ′, labelled by D′, where D′ is obtained as the

application of tautology, one-literal, pure literal rule to D, or
3 N has two successors N1, N2 labelled by the clause sets obtained by

an application of the split rule to D

Definition (DPLL-decision tree)

a DPLL-tree is a decision tree for C′ if

1 all leafs are labelled by the empty clause 2, or

2 ∃ leaf labelled by the empty clause set ∅

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 26/1



Method of Davis and Putnam (for First-Order)

let C′ be a set of reduced ground clauses

Definition (DPLL-tree)

• T consists only of the root, labelled by C′
• let N be a node in T , labelled by D; then N is either a

1 leaf node,
2 N has one successor N ′, labelled by D′, where D′ is obtained as the

application of tautology, one-literal, pure literal rule to D, or
3 N has two successors N1, N2 labelled by the clause sets obtained by

an application of the split rule to D

Definition (DPLL-decision tree)

a DPLL-tree is a decision tree for C′ if

1 all leafs are labelled by the empty clause 2, or

2 ∃ leaf labelled by the empty clause set ∅

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 26/1



Method of Davis and Putnam (for First-Order)

let C′ be a set of reduced ground clauses

Definition (DPLL-tree)

• T consists only of the root, labelled by C′
• let N be a node in T , labelled by D; then N is either a

1 leaf node,
2 N has one successor N ′, labelled by D′, where D′ is obtained as the

application of tautology, one-literal, pure literal rule to D, or
3 N has two successors N1, N2 labelled by the clause sets obtained by

an application of the split rule to D

Definition (DPLL-decision tree)

a DPLL-tree is a decision tree for C′ if

1 all leafs are labelled by the empty clause 2, or

2 ∃ leaf labelled by the empty clause set ∅

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 26/1



Method of Davis and Putnam (for First-Order)

Theorem (Soundness)

• let C′ be a reduced set of ground clauses and let T be a decision
tree proving satisfiability or unsatisfiability for C′

• then C′ is satisfiable or unsatisfiable, respectively

Definition (DPLL Method)

DPLL(a) remove multiple occurrences of literals in C′ to obtain a
reduced clause set D1

DPLL(b) apply the tautology rule exhaustively to D1 to obtain a
reduced clause set D2 that is reduced for tautologies

DPLL(c) construct a decision tree for D2.

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 27/1



Method of Davis and Putnam (for First-Order)

Theorem (Soundness)

• let C′ be a reduced set of ground clauses and let T be a decision
tree proving satisfiability or unsatisfiability for C′

• then C′ is satisfiable or unsatisfiable, respectively

Definition (DPLL Method)

DPLL(a) remove multiple occurrences of literals in C′ to obtain a
reduced clause set D1

DPLL(b) apply the tautology rule exhaustively to D1 to obtain a
reduced clause set D2 that is reduced for tautologies

DPLL(c) construct a decision tree for D2.

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 27/1



Method of Davis and Putnam (for First-Order)

Theorem (Strong (or Constructive) Completeness)

• let C′ be as above and let T be a DPLL-tree for C′

• then T can be extended to a decision tree for C′

Proof.

by induction on the number ` of atoms in C′

1 ` = 0: C′ is either empty or contains 2, T is already a decision tree

2 ` > 0: we distinguish
• T consists only of the root, labelled by C′

we employ a one-literal, pure literal rule, or a splitting rule; extend T
such that the successors nodes are labelled with smaller clause sets;
induction hypothesis becomes applicable

• T contains more than one node

let D1, . . . ,Dn denote all leaf nodes of T ; for at least one of these
nodes we can employ one-literal, pure literal rule, or a splitting rule;
then we argue as in the first sub-case

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 28/1



Method of Davis and Putnam (for First-Order)

Theorem (Strong (or Constructive) Completeness)

• let C′ be as above and let T be a DPLL-tree for C′

• then T can be extended to a decision tree for C′

Proof.

by induction on the number ` of atoms in C′

1 ` = 0: C′ is either empty or contains 2, T is already a decision tree

2 ` > 0: we distinguish
• T consists only of the root, labelled by C′

we employ a one-literal, pure literal rule, or a splitting rule; extend T
such that the successors nodes are labelled with smaller clause sets;
induction hypothesis becomes applicable

• T contains more than one node

let D1, . . . ,Dn denote all leaf nodes of T ; for at least one of these
nodes we can employ one-literal, pure literal rule, or a splitting rule;
then we argue as in the first sub-case

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 28/1



Method of Davis and Putnam (for First-Order)

Theorem (Strong (or Constructive) Completeness)

• let C′ be as above and let T be a DPLL-tree for C′

• then T can be extended to a decision tree for C′

Proof.

by induction on the number ` of atoms in C′

1 ` = 0: C′ is either empty or contains 2, T is already a decision tree

2 ` > 0: we distinguish
• T consists only of the root, labelled by C′

we employ a one-literal, pure literal rule, or a splitting rule; extend T
such that the successors nodes are labelled with smaller clause sets;
induction hypothesis becomes applicable

• T contains more than one node

let D1, . . . ,Dn denote all leaf nodes of T ; for at least one of these
nodes we can employ one-literal, pure literal rule, or a splitting rule;
then we argue as in the first sub-case

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 28/1



Method of Davis and Putnam (for First-Order)

Theorem (Strong (or Constructive) Completeness)

• let C′ be as above and let T be a DPLL-tree for C′

• then T can be extended to a decision tree for C′

Proof.

by induction on the number ` of atoms in C′

1 ` = 0: C′ is either empty or contains 2, T is already a decision tree

2 ` > 0: we distinguish
• T consists only of the root, labelled by C′

we employ a one-literal, pure literal rule, or a splitting rule; extend T
such that the successors nodes are labelled with smaller clause sets;
induction hypothesis becomes applicable

• T contains more than one node

let D1, . . . ,Dn denote all leaf nodes of T ; for at least one of these
nodes we can employ one-literal, pure literal rule, or a splitting rule;
then we argue as in the first sub-case

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 28/1



Method of Davis and Putnam (for First-Order)

Theorem (Strong (or Constructive) Completeness)

• let C′ be as above and let T be a DPLL-tree for C′

• then T can be extended to a decision tree for C′

Proof.

by induction on the number ` of atoms in C′

1 ` = 0: C′ is either empty or contains 2, T is already a decision tree

2 ` > 0: we distinguish
• T consists only of the root, labelled by C′

we employ a one-literal, pure literal rule, or a splitting rule; extend T
such that the successors nodes are labelled with smaller clause sets;
induction hypothesis becomes applicable

• T contains more than one node

let D1, . . . ,Dn denote all leaf nodes of T ; for at least one of these
nodes we can employ one-literal, pure literal rule, or a splitting rule;
then we argue as in the first sub-case

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 28/1



Method of Davis and Putnam (for First-Order)

Theorem (Strong (or Constructive) Completeness)

• let C′ be as above and let T be a DPLL-tree for C′

• then T can be extended to a decision tree for C′

Proof.

by induction on the number ` of atoms in C′

1 ` = 0: C′ is either empty or contains 2, T is already a decision tree

2 ` > 0: we distinguish
• T consists only of the root, labelled by C′

we employ a one-literal, pure literal rule, or a splitting rule; extend T
such that the successors nodes are labelled with smaller clause sets;
induction hypothesis becomes applicable

• T contains more than one node
let D1, . . . ,Dn denote all leaf nodes of T ; for at least one of these
nodes we can employ one-literal, pure literal rule, or a splitting rule;
then we argue as in the first sub-case

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 28/1



Method of Davis and Putnam (for First-Order)

Theorem (Strong (or Constructive) Completeness)

• let C′ be as above and let T be a DPLL-tree for C′

• then T can be extended to a decision tree for C′

Proof.

by induction on the number ` of atoms in C′

1 ` = 0: C′ is either empty or contains 2, T is already a decision tree

2 ` > 0: we distinguish
• T consists only of the root, labelled by C′

we employ a one-literal, pure literal rule, or a splitting rule; extend T
such that the successors nodes are labelled with smaller clause sets;
induction hypothesis becomes applicable

• T contains more than one node
let D1, . . . ,Dn denote all leaf nodes of T ; for at least one of these
nodes we can employ one-literal, pure literal rule, or a splitting rule;
then we argue as in the first sub-case

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 28/1



Method of Davis and Putnam (for First-Order)

The Method of Davis and Putnam (for First-Order Logic)

Method of Davis and Putnam in Pseudo-Code
if C does not contain function symbols

then apply DPLL(a)-DPLL(c) on C′0
else {

n := 0;

contr := false;

while (¬ contr) do {

apply DPLL(a)-DPLL(c) on C′n;
if the decision tree proves unsatisfiability ,

then contr := true

else contr := false;

n := n + 1;

}}

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 29/1



Clause Logic

The Language of Clause Logic (with Equality)

Definition
• individual constants
k0, k1, . . . , kj , . . . denoted c , d , etc.

• function constants with i arguments
f i0 , f

i
1 , . . . , f

i
j , . . . denoted f , g , h, etc.

• predicate constants with i arguments
R i
0,R

i
1, . . . ,R

i
j , . . . denoted P,Q,R, etc.

• variables, collected in V
x0, x1, . . . , xj , . . . denoted x , y , z , etc.

Definition
• propositional connectives ¬, ∨
• equality sign =

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 30/1



Clause Logic

The Language of Clause Logic (with Equality)

Definition
• individual constants
k0, k1, . . . , kj , . . . denoted c , d , etc.

• function constants with i arguments
f i0 , f

i
1 , . . . , f

i
j , . . . denoted f , g , h, etc.

• predicate constants with i arguments
R i
0,R

i
1, . . . ,R

i
j , . . . denoted P,Q,R, etc.

• variables, collected in V
x0, x1, . . . , xj , . . . denoted x , y , z , etc.

Definition
• propositional connectives ¬, ∨
• equality sign =

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 30/1



Clause Logic

Definition
1 P(t1, . . . , tn) is called an atomic formula if t1, . . . , tn are terms, P a

predicate constant

2 a literal is an atomic formula or its negation

3 a clause is disjunction of literals

Theorem

∀ first-order sentence F , ∃ set of clauses C = {C1, . . . ,Cm}
F ≈ ∀x1 · · · ∀xn(C1 ∧ · · · ∧ Cm)

Proof.
• let F be a sentence (in standard first-order language)

• there exists G ≈ F such that

G = ∀x1 · · · ∀xn(H1(x1, . . . , xn) ∧ · · · ∧ Hm(x1, . . . , xn))

• each Hi (i = 1, . . . ,m) is a disjunction of literals, hence a clause

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 31/1



Clause Logic

Definition
1 P(t1, . . . , tn) is called an atomic formula if t1, . . . , tn are terms, P a

predicate constant

2 a literal is an atomic formula or its negation

3 a clause is disjunction of literals

Theorem

∀ first-order sentence F , ∃ set of clauses C = {C1, . . . ,Cm}
F ≈ ∀x1 · · · ∀xn(C1 ∧ · · · ∧ Cm)

Proof.
• let F be a sentence (in standard first-order language)

• there exists G ≈ F such that

G = ∀x1 · · · ∀xn(H1(x1, . . . , xn) ∧ · · · ∧ Hm(x1, . . . , xn))

• each Hi (i = 1, . . . ,m) is a disjunction of literals, hence a clause

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 31/1



Clause Logic

Definition
1 P(t1, . . . , tn) is called an atomic formula if t1, . . . , tn are terms, P a

predicate constant

2 a literal is an atomic formula or its negation

3 a clause is disjunction of literals

Theorem

∀ first-order sentence F , ∃ set of clauses C = {C1, . . . ,Cm}
F ≈ ∀x1 · · · ∀xn(C1 ∧ · · · ∧ Cm)

Proof.
• let F be a sentence (in standard first-order language)

• there exists G ≈ F such that

G = ∀x1 · · · ∀xn(H1(x1, . . . , xn) ∧ · · · ∧ Hm(x1, . . . , xn))

• each Hi (i = 1, . . . ,m) is a disjunction of literals, hence a clause

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 31/1



Clause Logic

Definition
1 P(t1, . . . , tn) is called an atomic formula if t1, . . . , tn are terms, P a

predicate constant

2 a literal is an atomic formula or its negation

3 a clause is disjunction of literals

Theorem

∀ first-order sentence F , ∃ set of clauses C = {C1, . . . ,Cm}
F ≈ ∀x1 · · · ∀xn(C1 ∧ · · · ∧ Cm)

Proof.
• let F be a sentence (in standard first-order language)

• there exists G ≈ F such that

G = ∀x1 · · · ∀xn(H1(x1, . . . , xn) ∧ · · · ∧ Hm(x1, . . . , xn))

• each Hi (i = 1, . . . ,m) is a disjunction of literals, hence a clause

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 31/1



Clause Logic

Definition
1 P(t1, . . . , tn) is called an atomic formula if t1, . . . , tn are terms, P a

predicate constant

2 a literal is an atomic formula or its negation

3 a clause is disjunction of literals

Theorem

∀ first-order sentence F , ∃ set of clauses C = {C1, . . . ,Cm}
F ≈ ∀x1 · · · ∀xn(C1 ∧ · · · ∧ Cm)

Proof.
• let F be a sentence (in standard first-order language)

• there exists G ≈ F such that

G = ∀x1 · · · ∀xn(H1(x1, . . . , xn) ∧ · · · ∧ Hm(x1, . . . , xn))

• each Hi (i = 1, . . . ,m) is a disjunction of literals, hence a clause

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 31/1



Clause Logic

Definition
1 2 is a clause

2 literals are clauses

3 if C , D are clauses, then C ∨ D is a clause

Convention
we use (i) the equivalences A ≡ ¬¬A, A atomic formula, that (ii) dis-
junction ∨ is associative and commutative, and (iii) 2 ∨ 2 = 2, and
C ∨2 = 2 ∨ C = C

Definition
• let T denote the set of terms in our language

• Var(E ) denotes set of variables occurring in E

• a substitution σ is a mapping V → T
such that σ(x) = x , for almost all x

• we write σ = {x1 7→ t1, . . . , xn 7→ tn}; empty subst. denoted by ε

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 32/1



Clause Logic

Definition
1 2 is a clause

2 literals are clauses

3 if C , D are clauses, then C ∨ D is a clause

Convention
we use (i) the equivalences A ≡ ¬¬A, A atomic formula, that (ii) dis-
junction ∨ is associative and commutative, and (iii) 2 ∨ 2 = 2, and
C ∨2 = 2 ∨ C = C

Definition
• let T denote the set of terms in our language

• Var(E ) denotes set of variables occurring in E

• a substitution σ is a mapping V → T
such that σ(x) = x , for almost all x

• we write σ = {x1 7→ t1, . . . , xn 7→ tn}; empty subst. denoted by ε

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 32/1



Clause Logic

Definition
1 2 is a clause

2 literals are clauses

3 if C , D are clauses, then C ∨ D is a clause

Convention
we use (i) the equivalences A ≡ ¬¬A, A atomic formula, that (ii) dis-
junction ∨ is associative and commutative, and (iii) 2 ∨ 2 = 2, and
C ∨2 = 2 ∨ C = C

Definition
• let T denote the set of terms in our language

• Var(E ) denotes set of variables occurring in E

• a substitution σ is a mapping V → T
such that σ(x) = x , for almost all x

• we write σ = {x1 7→ t1, . . . , xn 7→ tn}; empty subst. denoted by ε

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 32/1



Most General Unifier

Most General Unifier
application of a substitution σ to expression E is denoted as Eσ; Eσ is
called an instance of E

Definition
• σ = {x1 7→ t1, . . . , xn 7→ tn}, τ = {y1 7→ r1, . . . , y1 7→ rm}
• composition of σ and τ denoted as στ :

{x1 7→ t1τ, . . . , xn 7→ tnτ} ∪ {yi 7→ ri | for all j = 1, . . . , n, yi 6= xj}

• σ is more general than a substitution τ , if there exists a substitution
ρ such that σρ = τ

Eτ is instance of Eσ

Definition
• a substitution σ such that Eσ = Fσ is unifier of E , F

generalises to sets U of expressions (= terms or atomic formulas)

• unifier σ is most general if σ is more general than any other unifier

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 33/1



Most General Unifier

Most General Unifier
application of a substitution σ to expression E is denoted as Eσ; Eσ is
called an instance of E

Definition
• σ = {x1 7→ t1, . . . , xn 7→ tn}, τ = {y1 7→ r1, . . . , y1 7→ rm}
• composition of σ and τ denoted as στ :

{x1 7→ t1τ, . . . , xn 7→ tnτ} ∪ {yi 7→ ri | for all j = 1, . . . , n, yi 6= xj}

• σ is more general than a substitution τ , if there exists a substitution
ρ such that σρ = τ Eτ is instance of Eσ

Definition
• a substitution σ such that Eσ = Fσ is unifier of E , F

generalises to sets U of expressions (= terms or atomic formulas)

• unifier σ is most general if σ is more general than any other unifier

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 33/1



Most General Unifier

Most General Unifier
application of a substitution σ to expression E is denoted as Eσ; Eσ is
called an instance of E

Definition
• σ = {x1 7→ t1, . . . , xn 7→ tn}, τ = {y1 7→ r1, . . . , y1 7→ rm}
• composition of σ and τ denoted as στ :

{x1 7→ t1τ, . . . , xn 7→ tnτ} ∪ {yi 7→ ri | for all j = 1, . . . , n, yi 6= xj}

• σ is more general than a substitution τ , if there exists a substitution
ρ such that σρ = τ Eτ is instance of Eσ

Definition
• a substitution σ such that Eσ = Fσ is unifier of E , F

generalises to sets U of expressions (= terms or atomic formulas)

• unifier σ is most general if σ is more general than any other unifier

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 33/1



Most General Unifier

Example
consider U = {P(x , f(x)),P(y , f(x)),P(x ′, y ′)}
• σ = {x 7→ 0, y 7→ 0, x ′ 7→ 0, y ′ 7→ f(0)} is a unifier of U

• τ = {y 7→ x , x ′ 7→ x , y ′ 7→ f(x)} is most general

Definition

• sequence E = u1
?
= v1, . . . , un

?
= vn is called an equality problem

• unifier of E is the unifier of {u1 = v1, . . . , un = vn}

• If E = x1
?
= v1, . . . , xn

?
= vn, with xi pairwise distinct and

xi 6∈ Var(vj), then E is in solved form

Example

U becomes P(x , f(x))
?
= P(y , f(x)),P(y , f(x))

?
= P(x ′, y ′)

τ becomes y
?
= x , x ′

?
= x , y ′

?
= f(x)

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 34/1



Most General Unifier

Example
consider U = {P(x , f(x)),P(y , f(x)),P(x ′, y ′)}
• σ = {x 7→ 0, y 7→ 0, x ′ 7→ 0, y ′ 7→ f(0)} is a unifier of U

• τ = {y 7→ x , x ′ 7→ x , y ′ 7→ f(x)} is most general

Definition

• sequence E = u1
?
= v1, . . . , un

?
= vn is called an equality problem

• unifier of E is the unifier of {u1 = v1, . . . , un = vn}

• If E = x1
?
= v1, . . . , xn

?
= vn, with xi pairwise distinct and

xi 6∈ Var(vj), then E is in solved form

Example

U becomes P(x , f(x))
?
= P(y , f(x)),P(y , f(x))

?
= P(x ′, y ′)

τ becomes y
?
= x , x ′

?
= x , y ′

?
= f(x)

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 34/1



Most General Unifier

Example
consider U = {P(x , f(x)),P(y , f(x)),P(x ′, y ′)}
• σ = {x 7→ 0, y 7→ 0, x ′ 7→ 0, y ′ 7→ f(0)} is a unifier of U

• τ = {y 7→ x , x ′ 7→ x , y ′ 7→ f(x)} is most general

Definition

• sequence E = u1
?
= v1, . . . , un

?
= vn is called an equality problem

• unifier of E is the unifier of {u1 = v1, . . . , un = vn}

• If E = x1
?
= v1, . . . , xn

?
= vn, with xi pairwise distinct and

xi 6∈ Var(vj), then E is in solved form

Example

U becomes P(x , f(x))
?
= P(y , f(x)),P(y , f(x))

?
= P(x ′, y ′)

τ becomes y
?
= x , x ′

?
= x , y ′

?
= f(x)

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 34/1



Most General Unifier

Example
consider U = {P(x , f(x)),P(y , f(x)),P(x ′, y ′)}
• σ = {x 7→ 0, y 7→ 0, x ′ 7→ 0, y ′ 7→ f(0)} is a unifier of U

• τ = {y 7→ x , x ′ 7→ x , y ′ 7→ f(x)} is most general

Definition

• sequence E = u1
?
= v1, . . . , un

?
= vn is called an equality problem

• unifier of E is the unifier of {u1 = v1, . . . , un = vn}

• If E = x1
?
= v1, . . . , xn

?
= vn, with xi pairwise distinct and

xi 6∈ Var(vj), then E is in solved form

Example

U becomes P(x , f(x))
?
= P(y , f(x)),P(y , f(x))

?
= P(x ′, y ′)

τ becomes y
?
= x , x ′

?
= x , y ′

?
= f(x)

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 34/1



Most General Unifier

Example
consider U = {P(x , f(x)),P(y , f(x)),P(x ′, y ′)}
• σ = {x 7→ 0, y 7→ 0, x ′ 7→ 0, y ′ 7→ f(0)} is a unifier of U

• τ = {y 7→ x , x ′ 7→ x , y ′ 7→ f(x)} is most general

Definition

• sequence E = u1
?
= v1, . . . , un

?
= vn is called an equality problem

• unifier of E is the unifier of {u1 = v1, . . . , un = vn}

• If E = x1
?
= v1, . . . , xn

?
= vn, with xi pairwise distinct and

xi 6∈ Var(vj), then E is in solved form

Example

U becomes P(x , f(x))
?
= P(y , f(x)),P(y , f(x))

?
= P(x ′, y ′)

τ becomes y
?
= x , x ′

?
= x , y ′

?
= f(x)

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 34/1



Most General Unifier

Unification Algorithm

u
?
= u,E ⇒ E

f (s1, . . . , sn)
?
= f (t1, . . . , tn),E ⇒ s1

?
= t1, . . . , sn

?
= tn,E

f (s1, . . . , sn)
?
= g(t1, . . . , tn),E ⇒⊥ f 6= g

x
?
= v ,E ⇒ x

?
= v ,E{x 7→ v} x ∈ Var(E ), x 6∈ Var(v)

x
?
= v ,E ⇒⊥ x 6= v , x ∈ Var(v)

v
?
= x ,E ⇒ x

?
= v ,E v 6∈ V

Example

f(x , g(y), x)
?
= f(z , g(x ′), h(x ′))⇒ x

?
= z , g(y)

?
= g(x ′), x

?
= h(x ′)

⇒ x
?
= z , g(y)

?
= g(x ′), z

?
= h(x ′)

⇒ x
?
= z , y

?
= x ′, z

?
= h(x ′)

⇒ x
?
= h(x ′), y

?
= x ′, z

?
= h(x ′)

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 35/1



Most General Unifier

Unification Algorithm

u
?
= u,E ⇒ E

f (s1, . . . , sn)
?
= f (t1, . . . , tn),E ⇒ s1

?
= t1, . . . , sn

?
= tn,E

f (s1, . . . , sn)
?
= g(t1, . . . , tn),E ⇒⊥ f 6= g

x
?
= v ,E ⇒ x

?
= v ,E{x 7→ v} x ∈ Var(E ), x 6∈ Var(v)

x
?
= v ,E ⇒⊥ x 6= v , x ∈ Var(v)

v
?
= x ,E ⇒ x

?
= v ,E v 6∈ V

Example

f(x , g(y), x)
?
= f(z , g(x ′), h(x ′))⇒ x

?
= z , g(y)

?
= g(x ′), x

?
= h(x ′)

⇒ x
?
= z , g(y)

?
= g(x ′), z

?
= h(x ′)

⇒ x
?
= z , y

?
= x ′, z

?
= h(x ′)

⇒ x
?
= h(x ′), y

?
= x ′, z

?
= h(x ′)

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 35/1



Most General Unifier

Unification Algorithm

u
?
= u,E ⇒ E

f (s1, . . . , sn)
?
= f (t1, . . . , tn),E ⇒ s1

?
= t1, . . . , sn

?
= tn,E

f (s1, . . . , sn)
?
= g(t1, . . . , tn),E ⇒⊥ f 6= g

x
?
= v ,E ⇒ x

?
= v ,E{x 7→ v} x ∈ Var(E ), x 6∈ Var(v)

x
?
= v ,E ⇒⊥ x 6= v , x ∈ Var(v)

v
?
= x ,E ⇒ x

?
= v ,E v 6∈ V

Example

f(x , g(y), x)
?
= f(z , g(x ′), h(x ′))⇒ x

?
= z , g(y)

?
= g(x ′), x

?
= h(x ′)

⇒ x
?
= z , g(y)

?
= g(x ′), z

?
= h(x ′)

⇒ x
?
= z , y

?
= x ′, z

?
= h(x ′)

⇒ x
?
= h(x ′), y

?
= x ′, z

?
= h(x ′)

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 35/1



Most General Unifier

Unification Algorithm

u
?
= u,E ⇒ E

f (s1, . . . , sn)
?
= f (t1, . . . , tn),E ⇒ s1

?
= t1, . . . , sn

?
= tn,E

f (s1, . . . , sn)
?
= g(t1, . . . , tn),E ⇒⊥ f 6= g

x
?
= v ,E ⇒ x

?
= v ,E{x 7→ v} x ∈ Var(E ), x 6∈ Var(v)

x
?
= v ,E ⇒⊥ x 6= v , x ∈ Var(v)

v
?
= x ,E ⇒ x

?
= v ,E v 6∈ V

Example

f(x , g(y), x)
?
= f(z , g(x ′), h(x ′))⇒ x

?
= z , g(y)

?
= g(x ′), x

?
= h(x ′)

⇒ x
?
= z , g(y)

?
= g(x ′), z

?
= h(x ′)

⇒ x
?
= z , y

?
= x ′, z

?
= h(x ′)

⇒ x
?
= h(x ′), y

?
= x ′, z

?
= h(x ′)

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 35/1



Most General Unifier

Unification Algorithm

u
?
= u,E ⇒ E

f (s1, . . . , sn)
?
= f (t1, . . . , tn),E ⇒ s1

?
= t1, . . . , sn

?
= tn,E

f (s1, . . . , sn)
?
= g(t1, . . . , tn),E ⇒⊥ f 6= g

x
?
= v ,E ⇒ x

?
= v ,E{x 7→ v} x ∈ Var(E ), x 6∈ Var(v)

x
?
= v ,E ⇒⊥ x 6= v , x ∈ Var(v)

v
?
= x ,E ⇒ x

?
= v ,E v 6∈ V

Example

f(x , g(y), x)
?
= f(z , g(x ′), h(x ′))⇒ x

?
= z , g(y)

?
= g(x ′), x

?
= h(x ′)

⇒ x
?
= z , g(y)

?
= g(x ′), z

?
= h(x ′)

⇒ x
?
= z , y

?
= x ′, z

?
= h(x ′)

⇒ x
?
= h(x ′), y

?
= x ′, z

?
= h(x ′)

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 35/1



Most General Unifier

Unification Algorithm

u
?
= u,E ⇒ E

f (s1, . . . , sn)
?
= f (t1, . . . , tn),E ⇒ s1

?
= t1, . . . , sn

?
= tn,E

f (s1, . . . , sn)
?
= g(t1, . . . , tn),E ⇒⊥ f 6= g

x
?
= v ,E ⇒ x

?
= v ,E{x 7→ v} x ∈ Var(E ), x 6∈ Var(v)

x
?
= v ,E ⇒⊥ x 6= v , x ∈ Var(v)

v
?
= x ,E ⇒ x

?
= v ,E v 6∈ V

Example

f(x , g(y), x)
?
= f(z , g(x ′), h(x ′))⇒ x

?
= z , g(y)

?
= g(x ′), x

?
= h(x ′)

⇒ x
?
= z , g(y)

?
= g(x ′), z

?
= h(x ′)

⇒ x
?
= z , y

?
= x ′, z

?
= h(x ′)

⇒ x
?
= h(x ′), y

?
= x ′, z

?
= h(x ′)

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 35/1



Most General Unifier

Unification Algorithm

u
?
= u,E ⇒ E

f (s1, . . . , sn)
?
= f (t1, . . . , tn),E ⇒ s1

?
= t1, . . . , sn

?
= tn,E

f (s1, . . . , sn)
?
= g(t1, . . . , tn),E ⇒⊥ f 6= g

x
?
= v ,E ⇒ x

?
= v ,E{x 7→ v} x ∈ Var(E ), x 6∈ Var(v)

x
?
= v ,E ⇒⊥ x 6= v , x ∈ Var(v)

v
?
= x ,E ⇒ x

?
= v ,E v 6∈ V

Example

f(x , g(y), x)
?
= f(z , g(x ′), h(x ′))⇒ x

?
= z , g(y)

?
= g(x ′), x

?
= h(x ′)

⇒ x
?
= z , g(y)

?
= g(x ′), z

?
= h(x ′)

⇒ x
?
= z , y

?
= x ′, z

?
= h(x ′)

⇒ x
?
= h(x ′), y

?
= x ′, z

?
= h(x ′)

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 35/1



Most General Unifier

Unification Algorithm

u
?
= u,E ⇒ E

f (s1, . . . , sn)
?
= f (t1, . . . , tn),E ⇒ s1

?
= t1, . . . , sn

?
= tn,E

f (s1, . . . , sn)
?
= g(t1, . . . , tn),E ⇒⊥ f 6= g

x
?
= v ,E ⇒ x

?
= v ,E{x 7→ v} x ∈ Var(E ), x 6∈ Var(v)

x
?
= v ,E ⇒⊥ x 6= v , x ∈ Var(v)

v
?
= x ,E ⇒ x

?
= v ,E v 6∈ V

Example

f(x , g(y), x)
?
= f(z , g(x ′), h(x ′))⇒ x

?
= z , g(y)

?
= g(x ′), x

?
= h(x ′)

⇒ x
?
= z , g(y)

?
= g(x ′), z

?
= h(x ′)

⇒ x
?
= z , y

?
= x ′, z

?
= h(x ′)

⇒ x
?
= h(x ′), y

?
= x ′, z

?
= h(x ′)

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 35/1



Most General Unifier

Unification Algorithm

u
?
= u,E ⇒ E

f (s1, . . . , sn)
?
= f (t1, . . . , tn),E ⇒ s1

?
= t1, . . . , sn

?
= tn,E

f (s1, . . . , sn)
?
= g(t1, . . . , tn),E ⇒⊥ f 6= g

x
?
= v ,E ⇒ x

?
= v ,E{x 7→ v} x ∈ Var(E ), x 6∈ Var(v)

x
?
= v ,E ⇒⊥ x 6= v , x ∈ Var(v)

v
?
= x ,E ⇒ x

?
= v ,E v 6∈ V

Example

f(x , g(y), x)
?
= f(z , g(x ′), h(x ′))⇒ x

?
= z , g(y)

?
= g(x ′), x

?
= h(x ′)

⇒ x
?
= z , g(y)

?
= g(x ′), z

?
= h(x ′)

⇒ x
?
= z , y

?
= x ′, z

?
= h(x ′)

⇒ x
?
= h(x ′), y

?
= x ′, z

?
= h(x ′)

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 35/1



Most General Unifier

Unification Algorithm

u
?
= u,E ⇒ E

f (s1, . . . , sn)
?
= f (t1, . . . , tn),E ⇒ s1

?
= t1, . . . , sn

?
= tn,E

f (s1, . . . , sn)
?
= g(t1, . . . , tn),E ⇒⊥ f 6= g

x
?
= v ,E ⇒ x

?
= v ,E{x 7→ v} x ∈ Var(E ), x 6∈ Var(v)

x
?
= v ,E ⇒⊥ x 6= v , x ∈ Var(v)

v
?
= x ,E ⇒ x

?
= v ,E v 6∈ V

Example

f(x , g(y), x)
?
= f(z , g(x ′), h(x ′))⇒ x

?
= z , g(y)

?
= g(x ′), x

?
= h(x ′)

⇒ x
?
= z , g(y)

?
= g(x ′), z

?
= h(x ′)

⇒ x
?
= z , y

?
= x ′, z

?
= h(x ′)

⇒ x
?
= h(x ′), y

?
= x ′, z

?
= h(x ′)

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 35/1



Most General Unifier

Unification Algorithm

u
?
= u,E ⇒ E

f (s1, . . . , sn)
?
= f (t1, . . . , tn),E ⇒ s1

?
= t1, . . . , sn

?
= tn,E

f (s1, . . . , sn)
?
= g(t1, . . . , tn),E ⇒⊥ f 6= g

x
?
= v ,E ⇒ x

?
= v ,E{x 7→ v} x ∈ Var(E ), x 6∈ Var(v)

x
?
= v ,E ⇒⊥ x 6= v , x ∈ Var(v)

v
?
= x ,E ⇒ x

?
= v ,E v 6∈ V

Example

f(x , g(y), x)
?
= f(z , g(x ′), h(x ′))⇒ x

?
= z , g(y)

?
= g(x ′), x

?
= h(x ′)

⇒ x
?
= z , g(y)

?
= g(x ′), z

?
= h(x ′)

⇒ x
?
= z , y

?
= x ′, z

?
= h(x ′)

⇒ x
?
= h(x ′), y

?
= x ′, z

?
= h(x ′)

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 35/1



Most General Unifier

Definition

let E = x1
?
= v1, . . . , xn

?
= vn be a equality problem in solved form

E induces substitution σE = {x1 7→ v1, . . . , xn 7→ vn}

Theorem

1 equality problems E is unifiable iff the unification algorithm stops
with a solved form

2 if E ⇒∗ E ′ such that E ′ is a solved form, then σE ′ is a most general
unifier (mgu for short) of E ;

Proof.

in proof, we verify the following three facts:

• if E ⇒ E ′, then σ is a unifier of E iff σ is a unifier of E ′

• if E ⇒∗⊥, then E is not unifiable

• if E ⇒∗ E ′ such that E ′ is a solved form, then σE ′ is a mgu of E

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 36/1



Most General Unifier

Definition

let E = x1
?
= v1, . . . , xn

?
= vn be a equality problem in solved form

E induces substitution σE = {x1 7→ v1, . . . , xn 7→ vn}

Theorem
1 equality problems E is unifiable iff the unification algorithm stops

with a solved form

2 if E ⇒∗ E ′ such that E ′ is a solved form, then σE ′ is a most general
unifier (mgu for short) of E ;

Proof.

in proof, we verify the following three facts:

• if E ⇒ E ′, then σ is a unifier of E iff σ is a unifier of E ′

• if E ⇒∗⊥, then E is not unifiable

• if E ⇒∗ E ′ such that E ′ is a solved form, then σE ′ is a mgu of E

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 36/1



Most General Unifier

Definition

let E = x1
?
= v1, . . . , xn

?
= vn be a equality problem in solved form

E induces substitution σE = {x1 7→ v1, . . . , xn 7→ vn}

Theorem
1 equality problems E is unifiable iff the unification algorithm stops

with a solved form

2 if E ⇒∗ E ′ such that E ′ is a solved form, then σE ′ is a most general
unifier (mgu for short) of E ;

Proof.

in proof, we verify the following three facts:

• if E ⇒ E ′, then σ is a unifier of E iff σ is a unifier of E ′

• if E ⇒∗⊥, then E is not unifiable

• if E ⇒∗ E ′ such that E ′ is a solved form, then σE ′ is a mgu of E

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 36/1



Most General Unifier

Definition

let E = x1
?
= v1, . . . , xn

?
= vn be a equality problem in solved form

E induces substitution σE = {x1 7→ v1, . . . , xn 7→ vn}

Theorem
1 equality problems E is unifiable iff the unification algorithm stops

with a solved form

2 if E ⇒∗ E ′ such that E ′ is a solved form, then σE ′ is a most general
unifier (mgu for short) of E ;

Proof.

in proof, we verify the following three facts:

• if E ⇒ E ′, then σ is a unifier of E iff σ is a unifier of E ′

• if E ⇒∗⊥, then E is not unifiable

• if E ⇒∗ E ′ such that E ′ is a solved form, then σE ′ is a mgu of E

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 36/1



Most General Unifier

Definition

let E = x1
?
= v1, . . . , xn

?
= vn be a equality problem in solved form

E induces substitution σE = {x1 7→ v1, . . . , xn 7→ vn}

Theorem
1 equality problems E is unifiable iff the unification algorithm stops

with a solved form

2 if E ⇒∗ E ′ such that E ′ is a solved form, then σE ′ is a most general
unifier (mgu for short) of E ;

Proof.

in proof, we verify the following three facts:

• if E ⇒ E ′, then σ is a unifier of E iff σ is a unifier of E ′

• if E ⇒∗⊥, then E is not unifiable

• if E ⇒∗ E ′ such that E ′ is a solved form, then σE ′ is a mgu of E

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 36/1



Most General Unifier

Definition

let E = x1
?
= v1, . . . , xn

?
= vn be a equality problem in solved form

E induces substitution σE = {x1 7→ v1, . . . , xn 7→ vn}

Theorem
1 equality problems E is unifiable iff the unification algorithm stops

with a solved form

2 if E ⇒∗ E ′ such that E ′ is a solved form, then σE ′ is a most general
unifier (mgu for short) of E ;

Proof.

in proof, we verify the following three facts:

• if E ⇒ E ′, then σ is a unifier of E iff σ is a unifier of E ′

• if E ⇒∗⊥, then E is not unifiable

• if E ⇒∗ E ′ such that E ′ is a solved form, then σE ′ is a mgu of E

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 36/1


