Automated Theorem Proving

Georg Moser

Institute of Computer Science @ UIBK
Winter 2015

Summary of Last Lecture

Gilmore's Prover in Pseudo-Code

```
begin {
    contr := false;
    n := 0;
    while (not contr) do {
        D' := DNF (C)
        contr := all constituents of D'
                contain complementary literals;
        n := n + 1;
    }
    }
```


Disadvantages

- generation of all \mathcal{C}_{n}^{\prime}
- transformation to DNF
- did not yield actual proofs of simple (predicate logic) formulas

Outline of the Lecture

Early Approaches in Automated Reasoning

Herbrand's theorem for dummies, Gilmore's prover, method of Davis and Putnam

> Starting Points
> resolution, tableau provers, Skolemisation, ordered resolution, redundancy and deletion

Automated Reasoning with Equality
paramodulation, ordered completion and proof orders, superposition
Applications of Automated Reasoning
Neuman-Stubblebinde Key Exchange Protocol, Robbins problem

Outline of the Lecture

Early Approaches in Automated Reasoning

Herbrand's theorem for dummies, Gilmore's prover, method of Davis and Putnam

> Starting Points
> resolution, tableau provers, Skolemisation, ordered resolution, redundancy and deletion

Automated Reasoning with Equality
paramodulation, ordered completion and proof orders, superposition
Applications of Automated Reasoning
Neuman-Stubblebinde Key Exchange Protocol, Robbins problem

Definitions

- a clause C is called reduced, if every literal occurs at most once in C
- a clause set \mathcal{C} is called reduced for tautologies, if every clause in \mathcal{C} is reduced and does not contain complementary literals

Definitions

- a clause C is called reduced, if every literal occurs at most once in C
- a clause set \mathcal{C} is called reduced for tautologies, if every clause in \mathcal{C} is reduced and does not contain complementary literals

Definition (tautology rule) delete all clauses containing complementary literals

Definitions

- a clause C is called reduced, if every literal occurs at most once in C
- a clause set \mathcal{C} is called reduced for tautologies, if every clause in \mathcal{C} is reduced and does not contain complementary literals

Definition (tautology rule) delete all clauses containing complementary literals
let \mathcal{C}^{\prime} be ground and reduced for tautologies

Definitions

- a clause C is called reduced, if every literal occurs at most once in C
- a clause set \mathcal{C} is called reduced for tautologies, if every clause in \mathcal{C} is reduced and does not contain complementary literals

Definition (tautology rule)
delete all clauses containing complementary literals
let \mathcal{C}^{\prime} be ground and reduced for tautologies
Definition (one-literal rule)
let $C \in \mathcal{C}^{\prime}$ and suppose
$1 C$ consists of just one literal L
2 remove all clauses $D \in \mathcal{C}^{\prime}$ such that L occurs in D
3 remove $\neg L$ from all remaining clauses in \mathcal{C}^{\prime}

Definition (pure literal rule)

let $\mathcal{D}^{\prime} \subseteq \mathcal{C}^{\prime}$ such that
$1 \exists$ literal L that appears in all clauses in \mathcal{D}^{\prime}
[$\neg L$ doesn't appear in \mathcal{C}^{\prime}
3 replace \mathcal{C}^{\prime} by $\mathcal{C}^{\prime} \backslash \mathcal{D}^{\prime}$

Definition (pure literal rule)

let $\mathcal{D}^{\prime} \subseteq \mathcal{C}^{\prime}$ such that
$1 \exists$ literal L that appears in all clauses in \mathcal{D}^{\prime}
2. \neg L doesn't appear in \mathcal{C}^{\prime}

B replace \mathcal{C}^{\prime} by $\mathcal{C}^{\prime} \backslash \mathcal{D}^{\prime}$

Definition (splitting rule)

suppose the clause set \mathcal{C}^{\prime} can be written as
$\mathcal{C}^{\prime}=\left\{A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{m}\right\} \cup \mathcal{D}$ where
11 literal L, such that neither L nor $\neg L$ occurs in \mathcal{D}
[L occurs in any A_{i} (but in no B_{j}); A_{i}^{\prime} is the result of removing L
$3 \neg L$ occurs in any B_{j} (but in no A_{i}) B_{j}^{\prime} is the result of removing $\neg L$
4 rule consists in splitting \mathcal{C}^{\prime} into $\mathcal{C}_{1}^{\prime}=\left\{A_{1}^{\prime}, \ldots, A_{n}^{\prime}\right\} \cup \mathcal{D}$ and $\mathcal{C}_{2}^{\prime}=\left\{B_{1}^{\prime}, \ldots, B_{m}^{\prime}\right\} \cup \mathcal{D}$

The Method of Davis and Putnam (for Ground Clauses)

Fact
the method encompasses the above defined four rules

- tautology rule
- one-literal rule
- pure literal rule
- splitting rule

The Method of Davis and Putnam (for Ground Clauses)

Fact
the method encompasses the above defined four rules

- tautology rule
- one-literal rule
- pure literal rule
- splitting rule

Theorem

1 the rules of the DPLL-method are correct
$\sqrt[2]{ }$ that is, if \mathcal{D} is a set of ground clauses and either \mathcal{D}^{\prime} or \mathcal{D}_{1} and \mathcal{D}_{2} are obtained by the above rules, then \mathcal{D} is satisfiable if $\mathcal{D}^{\prime}\left(\mathcal{D}_{1}\right.$ or \mathcal{D}_{2}) is satisfiable
let \mathcal{C}^{\prime} be a set of reduced ground clauses
let \mathcal{C}^{\prime} be a set of reduced ground clauses

Definition (DPLL-tree)

- T consists only of the root, labelled by \mathcal{C}^{\prime}
- let N be a node in T, labelled by \mathcal{D}; then N is either a

1 leaf node,
$2 N$ has one successor N^{\prime}, labelled by \mathcal{D}^{\prime}, where \mathcal{D}^{\prime} is obtained as the application of tautology, one-literal, pure literal rule to \mathcal{D}, or
$3 N$ has two successors N_{1}, N_{2} labelled by the clause sets obtained by an application of the split rule to \mathcal{D}
let \mathcal{C}^{\prime} be a set of reduced ground clauses

Definition (DPLL-tree)

- T consists only of the root, labelled by \mathcal{C}^{\prime}
- let N be a node in T, labelled by \mathcal{D}; then N is either a

1 leaf node,
$2 N$ has one successor N^{\prime}, labelled by \mathcal{D}^{\prime}, where \mathcal{D}^{\prime} is obtained as the application of tautology, one-literal, pure literal rule to \mathcal{D}, or
$3 N$ has two successors N_{1}, N_{2} labelled by the clause sets obtained by an application of the split rule to \mathcal{D}

Definition (DPLL-decision tree)

a DPLL-tree is a decision tree for \mathcal{C}^{\prime} if
1 all leafs are labelled by the empty clause \square, or
$2 \exists$ leaf labelled by the empty clause set \varnothing

Theorem (Soundness)

- let \mathcal{C}^{\prime} be a reduced set of ground clauses and let T be a decision tree proving satisfiability or unsatisfiability for \mathcal{C}^{\prime}
- then \mathcal{C}^{\prime} is satisfiable or unsatisfiable, respectively

Theorem (Soundness)

- let \mathcal{C}^{\prime} be a reduced set of ground clauses and let T be a decision tree proving satisfiability or unsatisfiability for \mathcal{C}^{\prime}
- then \mathcal{C}^{\prime} is satisfiable or unsatisfiable, respectively

Definition (DPLL Method)
$\operatorname{DPLL}(\mathrm{a})$ remove multiple occurrences of literals in \mathcal{C}^{\prime} to obtain a reduced clause set \mathcal{D}_{1}
DPLL(b) apply the tautology rule exhaustively to \mathcal{D}_{1} to obtain a reduced clause set \mathcal{D}_{2} that is reduced for tautologies
$\operatorname{DPLL}(\mathrm{c})$ construct a decision tree for \mathcal{D}_{2}.

Theorem (Strong (or Constructive) Completeness)

- let \mathcal{C}^{\prime} be as above and let T be a DPLL-tree for \mathcal{C}^{\prime}
- then T can be extended to a decision tree for \mathcal{C}^{\prime}

Theorem (Strong (or Constructive) Completeness)

- let \mathcal{C}^{\prime} be as above and let T be a DPLL-tree for \mathcal{C}^{\prime}
- then T can be extended to a decision tree for \mathcal{C}^{\prime}

Proof.

by induction on the number ℓ of atoms in \mathcal{C}^{\prime}

Theorem (Strong (or Constructive) Completeness)

- let \mathcal{C}^{\prime} be as above and let T be a DPLL-tree for \mathcal{C}^{\prime}
- then T can be extended to a decision tree for \mathcal{C}^{\prime}

Proof.

by induction on the number ℓ of atoms in \mathcal{C}^{\prime}
$1 \ell=0: \mathcal{C}^{\prime}$ is either empty or contains \square, T is already a decision tree

Theorem (Strong (or Constructive) Completeness)

- let \mathcal{C}^{\prime} be as above and let T be a DPLL-tree for \mathcal{C}^{\prime}
- then T can be extended to a decision tree for \mathcal{C}^{\prime}

Proof.

by induction on the number ℓ of atoms in \mathcal{C}^{\prime}
$1 \ell=0: \mathcal{C}^{\prime}$ is either empty or contains \square, T is already a decision tree
$2 \ell>0$: we distinguish

- T consists only of the root, labelled by \mathcal{C}^{\prime}
- T contains more than one node

Theorem (Strong (or Constructive) Completeness)

- let \mathcal{C}^{\prime} be as above and let T be a DPLL-tree for \mathcal{C}^{\prime}
- then T can be extended to a decision tree for \mathcal{C}^{\prime}

Proof.

by induction on the number ℓ of atoms in \mathcal{C}^{\prime}
$1 \ell=0: \mathcal{C}^{\prime}$ is either empty or contains \square, T is already a decision tree
$2 \ell>0$: we distinguish

- T consists only of the root, labelled by \mathcal{C}^{\prime} we employ a one-literal, pure literal rule, or a splitting rule; extend T such that the successors nodes are labelled with smaller clause sets; induction hypothesis becomes applicable
- T contains more than one node

Theorem (Strong (or Constructive) Completeness)

- let \mathcal{C}^{\prime} be as above and let T be a DPLL-tree for \mathcal{C}^{\prime}
- then T can be extended to a decision tree for \mathcal{C}^{\prime}

Proof.

by induction on the number ℓ of atoms in \mathcal{C}^{\prime}
$1 \ell=0: \mathcal{C}^{\prime}$ is either empty or contains \square, T is already a decision tree
$2 \ell>0$: we distinguish

- T consists only of the root, labelled by \mathcal{C}^{\prime} we employ a one-literal, pure literal rule, or a splitting rule; extend T such that the successors nodes are labelled with smaller clause sets; induction hypothesis becomes applicable
- T contains more than one node let $\mathcal{D}_{1}, \ldots, \mathcal{D}_{n}$ denote all leaf nodes of T; for at least one of these nodes we can employ one-literal, pure literal rule, or a splitting rule; then we argue as in the first sub-case

Theorem (Strong (or Constructive) Completeness)

- let \mathcal{C}^{\prime} be as above and let T be a DPLL-tree for \mathcal{C}^{\prime}
- then T can be extended to a decision tree for \mathcal{C}^{\prime}

Proof.

by induction on the number ℓ of atoms in \mathcal{C}^{\prime}
$1 \ell=0: \mathcal{C}^{\prime}$ is either empty or contains \square, T is already a decision tree
$2 \ell>0$: we distinguish

- T consists only of the root, labelled by \mathcal{C}^{\prime} we employ a one-literal, pure literal rule, or a splitting rule; extend T such that the successors nodes are labelled with smaller clause sets; induction hypothesis becomes applicable
- T contains more than one node let $\mathcal{D}_{1}, \ldots, \mathcal{D}_{n}$ denote all leaf nodes of T; for at least one of these nodes we can employ one-literal, pure literal rule, or a splitting rule; then we argue as in the first sub-case

The Method of Davis and Putnam (for First-Order Logic)

```
```

Method of Davis and Putnam in Pseudo-Code

```
```

Method of Davis and Putnam in Pseudo-Code
Method of Davis and Putnam in Pseudo-Code

```
```

if C does not contain function symbols

```
if C does not contain function symbols
```

if C does not contain function symbols
then apply DPLL(a)-DPLL(c) on (\mathcal{C}
then apply DPLL(a)-DPLL(c) on (\mathcal{C}
then apply DPLL(a)-DPLL(c) on (\mathcal{C}
else {
else {
else {
n := 0;
n := 0;
n := 0;
contr := false;
contr := false;
contr := false;
while (\neg contr) do {
while (\neg contr) do {
while (\neg contr) do {
apply DPLL(a)-DPLL(c) on (\mathcal{C}
apply DPLL(a)-DPLL(c) on (\mathcal{C}
apply DPLL(a)-DPLL(c) on (\mathcal{C}
if the decision tree proves unsatisfiability,
if the decision tree proves unsatisfiability,
if the decision tree proves unsatisfiability,
then contr := true
then contr := true
then contr := true
else contr := false;
else contr := false;
else contr := false;
n := n + 1;
n := n + 1;
n := n + 1;
}}

```
}}
```

}}

```
```

 n
    ```
    n
```

 n
 }}

```
}}
```

}}

```

\section*{The Language of Clause Logic (with Equality)}

Definition
- individual constants
```

k},\mp@subsup{k}{1}{},···,\mp@subsup{k}{j}{},

- function constants with i arguments $f_{0}^{i}, f_{1}^{i}, \ldots, f_{j}^{i}, \ldots$ denoted f, g, h, etc.
- predicate constants with i arguments
$R_{0}^{i}, R_{1}^{i}, \ldots, R_{j}^{i}, \ldots$
denoted P, Q, R, etc.
- variables, collected in \mathcal{V}
$x_{0}, x_{1}, \ldots, x_{j}, \ldots$
denoted x, y, z, etc.

The Language of Clause Logic (with Equality)

Definition

- individual constants
$k_{0}, k_{1}, \ldots, k_{j}, \ldots$ denoted c, d, etc.
- function constants with i arguments $f_{0}^{i}, f_{1}^{i}, \ldots, f_{j}^{i}, \ldots$ denoted f, g, h, etc.
- predicate constants with i arguments
$R_{0}^{i}, R_{1}^{i}, \ldots, R_{j}^{i}, \ldots$
denoted P, Q, R, etc.
- variables, collected in \mathcal{V}
$x_{0}, x_{1}, \ldots, x_{j}, \ldots$
denoted x, y, z, etc.

Definition

- propositional connectives \neg, \vee
- equality sign $=$

Definition

$1 P\left(t_{1}, \ldots, t_{n}\right)$ is called an atomic formula if t_{1}, \ldots, t_{n} are terms, P a predicate constant

Definition

$1 P\left(t_{1}, \ldots, t_{n}\right)$ is called an atomic formula if t_{1}, \ldots, t_{n} are terms, P a predicate constant
2 a literal is an atomic formula or its negation

Definition

$1 P\left(t_{1}, \ldots, t_{n}\right)$ is called an atomic formula if t_{1}, \ldots, t_{n} are terms, P a predicate constant
2 a literal is an atomic formula or its negation
3 a clause is disjunction of literals

Definition

$1 P\left(t_{1}, \ldots, t_{n}\right)$ is called an atomic formula if t_{1}, \ldots, t_{n} are terms, P a predicate constant
2 a literal is an atomic formula or its negation
3 a clause is disjunction of literals

Theorem
\forall first-order sentence F, \exists set of clauses $\mathcal{C}=\left\{C_{1}, \ldots, C_{m}\right\}$

$$
F \approx \forall x_{1} \cdots \forall x_{n}\left(C_{1} \wedge \cdots \wedge C_{m}\right)
$$

Definition

$1 P\left(t_{1}, \ldots, t_{n}\right)$ is called an atomic formula if t_{1}, \ldots, t_{n} are terms, P a predicate constant
2 a literal is an atomic formula or its negation
3 a clause is disjunction of literals

Theorem
\forall first-order sentence F, \exists set of clauses $\mathcal{C}=\left\{C_{1}, \ldots, C_{m}\right\}$

$$
F \approx \forall x_{1} \cdots \forall x_{n}\left(C_{1} \wedge \cdots \wedge C_{m}\right)
$$

Proof.

- let F be a sentence (in standard first-order language)
- there exists $G \approx F$ such that

$$
G=\forall x_{1} \cdots \forall x_{n}\left(H_{1}\left(x_{1}, \ldots, x_{n}\right) \wedge \cdots \wedge H_{m}\left(x_{1}, \ldots, x_{n}\right)\right)
$$

- each $H_{i}(i=1, \ldots, m)$ is a disjunction of literals, hence a clause

Definition

$1 \square$ is a clause
2 literals are clauses
3 if C, D are clauses, then $C \vee D$ is a clause

Definition

$1 \square$ is a clause
2 literals are clauses
3 if C, D are clauses, then $C \vee D$ is a clause

Convention

 we use (i) the equivalences $A \equiv \neg \neg A$, A atomic formula, that (ii) disjunction \vee is associative and commutative, and (iii) $\square \vee \square=\square$, and $C \vee \square=\square \vee C=C$
Definition

$1 \square$ is a clause
2 literals are clauses
3 if C, D are clauses, then $C \vee D$ is a clause

Convention

we use (i) the equivalences $A \equiv \neg \neg A$, A atomic formula, that (ii) disjunction \vee is associative and commutative, and (iii) $\square \vee \square=\square$, and $C \vee \square=\square \vee C=C$

Definition

- let \mathcal{T} denote the set of terms in our language
- $\operatorname{Var}(E)$ denotes set of variables occurring in E
- a substitution σ is a mapping $\mathcal{V} \rightarrow \mathcal{T}$
such that $\sigma(x)=x$, for almost all x
- we write $\sigma=\left\{x_{1} \mapsto t_{1}, \ldots, x_{n} \mapsto t_{n}\right\}$; empty subst. denoted by ϵ

Most General Unifier

 application of a substitution σ to expression E is denoted as $E \sigma$; $E \sigma$ is called an instance of E
Definition

- $\sigma=\left\{x_{1} \mapsto t_{1}, \ldots, x_{n} \mapsto t_{n}\right\}, \tau=\left\{y_{1} \mapsto r_{1}, \ldots, y_{1} \mapsto r_{m}\right\}$
- composition of σ and τ denoted as $\sigma \tau$:

$$
\left\{x_{1} \mapsto t_{1} \tau, \ldots, x_{n} \mapsto t_{n} \tau\right\} \cup\left\{y_{i} \mapsto r_{i} \mid \text { for all } j=1, \ldots, n, y_{i} \neq x_{j}\right\}
$$

- σ is more general than a substitution τ, if there exists a substitution ρ such that $\sigma \rho=\tau$

Most General Unifier

application of a substitution σ to expression E is denoted as $E \sigma$; $E \sigma$ is called an instance of E

Definition

- $\sigma=\left\{x_{1} \mapsto t_{1}, \ldots, x_{n} \mapsto t_{n}\right\}, \tau=\left\{y_{1} \mapsto r_{1}, \ldots, y_{1} \mapsto r_{m}\right\}$
- composition of σ and τ denoted as $\sigma \tau$:

$$
\left\{x_{1} \mapsto t_{1} \tau, \ldots, x_{n} \mapsto t_{n} \tau\right\} \cup\left\{y_{i} \mapsto r_{i} \mid \text { for all } j=1, \ldots, n, y_{i} \neq x_{j}\right\}
$$

- σ is more general than a substitution τ, if there exists a substitution ρ such that $\sigma \rho=\tau$ $E \tau$ is instance of $E \sigma$

Most General Unifier

application of a substitution σ to expression E is denoted as $E \sigma ; E \sigma$ is called an instance of E

Definition

- $\sigma=\left\{x_{1} \mapsto t_{1}, \ldots, x_{n} \mapsto t_{n}\right\}, \tau=\left\{y_{1} \mapsto r_{1}, \ldots, y_{1} \mapsto r_{m}\right\}$
- composition of σ and τ denoted as $\sigma \tau$:

$$
\left\{x_{1} \mapsto t_{1} \tau, \ldots, x_{n} \mapsto t_{n} \tau\right\} \cup\left\{y_{i} \mapsto r_{i} \mid \text { for all } j=1, \ldots, n, y_{i} \neq x_{j}\right\}
$$

- σ is more general than a substitution τ, if there exists a substitution ρ such that $\sigma \rho=\tau$ $E \tau$ is instance of $E \sigma$

Definition

- a substitution σ such that $E \sigma=F \sigma$ is unifier of E, F generalises to sets U of expressions ($=$ terms or atomic formulas)
- unifier σ is most general if σ is more general than any other unifier
\square

Example

consider $U=\left\{\mathrm{P}(x, \mathrm{f}(x)), \mathrm{P}(y, \mathrm{f}(x)), \mathrm{P}\left(x^{\prime}, y^{\prime}\right)\right\}$

- $\sigma=\left\{x \mapsto 0, y \mapsto 0, x^{\prime} \mapsto 0, y^{\prime} \mapsto \mathrm{f}(0)\right\}$ is a unifier of U
- $\tau=\left\{y \mapsto x, x^{\prime} \mapsto x, y^{\prime} \mapsto \mathrm{f}(x)\right\}$ is most general

Definition

- sequence $E=u_{1} \stackrel{?}{=} v_{1}, \ldots, u_{n} \stackrel{?}{=} v_{n}$ is called an equality problem

Example
consider $U=\left\{\mathrm{P}(x, \mathrm{f}(x)), \mathrm{P}(y, \mathrm{f}(x)), \mathrm{P}\left(x^{\prime}, y^{\prime}\right)\right\}$

- $\sigma=\left\{x \mapsto 0, y \mapsto 0, x^{\prime} \mapsto 0, y^{\prime} \mapsto \mathrm{f}(0)\right\}$ is a unifier of U
- $\tau=\left\{y \mapsto x, x^{\prime} \mapsto x, y^{\prime} \mapsto \mathrm{f}(x)\right\}$ is most general

Definition

- sequence $E=u_{1} \stackrel{?}{=} v_{1}, \ldots, u_{n} \stackrel{?}{=} v_{n}$ is called an equality problem
- unifier of E is the unifier of $\left\{u_{1}=v_{1}, \ldots, u_{n}=v_{n}\right\}$

Example
consider $U=\left\{\mathrm{P}(x, \mathrm{f}(x)), \mathrm{P}(y, \mathrm{f}(x)), \mathrm{P}\left(x^{\prime}, y^{\prime}\right)\right\}$

- $\sigma=\left\{x \mapsto 0, y \mapsto 0, x^{\prime} \mapsto 0, y^{\prime} \mapsto \mathrm{f}(0)\right\}$ is a unifier of U
- $\tau=\left\{y \mapsto x, x^{\prime} \mapsto x, y^{\prime} \mapsto \mathrm{f}(x)\right\}$ is most general

Definition

- sequence $E=u_{1} \stackrel{?}{=} v_{1}, \ldots, u_{n} \stackrel{?}{=} v_{n}$ is called an equality problem
- unifier of E is the unifier of $\left\{u_{1}=v_{1}, \ldots, u_{n}=v_{n}\right\}$
- If $E=x_{1} \stackrel{?}{=} v_{1}, \ldots, x_{n} \stackrel{?}{=} v_{n}$, with x_{i} pairwise distinct and $x_{i} \notin \operatorname{Var}\left(v_{j}\right)$, then E is in solved form

Example

consider $U=\left\{\mathrm{P}(x, \mathrm{f}(x)), \mathrm{P}(y, \mathrm{f}(x)), \mathrm{P}\left(x^{\prime}, y^{\prime}\right)\right\}$

- $\sigma=\left\{x \mapsto 0, y \mapsto 0, x^{\prime} \mapsto 0, y^{\prime} \mapsto \mathrm{f}(0)\right\}$ is a unifier of U
- $\tau=\left\{y \mapsto x, x^{\prime} \mapsto x, y^{\prime} \mapsto \mathrm{f}(x)\right\}$ is most general

Definition

- sequence $E=u_{1} \stackrel{?}{=} v_{1}, \ldots, u_{n} \stackrel{?}{=} v_{n}$ is called an equality problem
- unifier of E is the unifier of $\left\{u_{1}=v_{1}, \ldots, u_{n}=v_{n}\right\}$
- If $E=x_{1} \stackrel{?}{=} v_{1}, \ldots, x_{n} \stackrel{?}{=} v_{n}$, with x_{i} pairwise distinct and $x_{i} \notin \operatorname{Var}\left(v_{j}\right)$, then E is in solved form

Example

$$
\begin{array}{ll}
U \text { becomes } & \mathrm{P}(x, \mathrm{f}(x)) \stackrel{?}{=} \mathrm{P}(y, \mathrm{f}(x)), \mathrm{P}(y, \mathrm{f}(x)) \stackrel{?}{=} \mathrm{P}\left(x^{\prime}, y^{\prime}\right) \\
\tau \text { becomes } & y \stackrel{?}{=} x, x^{\prime} \stackrel{?}{=} x, y^{\prime} \stackrel{?}{=} \mathrm{f}(x)
\end{array}
$$

\qquad
\qquad
\qquad

\square

2

 1

|

\qquad

Unification Algorithm

$$
u \stackrel{?}{=} u, E \Rightarrow E
$$

Unification Algorithm

$$
\begin{aligned}
u \stackrel{?}{=} u, E & \Rightarrow E \\
f\left(s_{1}, \ldots, s_{n}\right) \stackrel{?}{=} f\left(t_{1}, \ldots, t_{n}\right), E & \Rightarrow s_{1} \stackrel{?}{=} t_{1}, \ldots, s_{n} \stackrel{?}{=} t_{n}, E
\end{aligned}
$$

Unification Algorithm

$$
u \stackrel{?}{=} u, E \Rightarrow E
$$

$$
\begin{aligned}
& f\left(s_{1}, \ldots, s_{n}\right) \stackrel{?}{=} f\left(t_{1}, \ldots, t_{n}\right), E \Rightarrow s_{1} \stackrel{?}{=} t_{1}, \ldots, s_{n} \stackrel{?}{=} t_{n}, E \\
& f\left(s_{1}, \ldots, s_{n}\right) \stackrel{?}{=} g\left(t_{1}, \ldots, t_{n}\right), E \Rightarrow \perp \quad f \neq g
\end{aligned}
$$

Unification Algorithm

$$
u \stackrel{?}{=} u, E \Rightarrow E
$$

$$
\begin{aligned}
& f\left(s_{1}, \ldots, s_{n}\right) \stackrel{?}{=} f\left(t_{1}, \ldots, t_{n}\right), E \Rightarrow s_{1} \stackrel{?}{=} t_{1}, \ldots, s_{n} \stackrel{?}{=} t_{n}, E \\
& f\left(s_{1}, \ldots, s_{n}\right) \stackrel{?}{=} g\left(t_{1}, \ldots, t_{n}\right), E \Rightarrow \perp \quad f \neq g \\
& x \stackrel{?}{=} v, E \Rightarrow x \stackrel{?}{=} v, E\{x \mapsto v\} \quad x \in \mathcal{V} \operatorname{ar}(E), x \notin \operatorname{V} \operatorname{ar}(v)
\end{aligned}
$$

Unification Algorithm

$$
u \stackrel{?}{=} u, E \Rightarrow E
$$

$$
\begin{aligned}
& f\left(s_{1}, \ldots, s_{n}\right) \stackrel{?}{=} f\left(t_{1}, \ldots, t_{n}\right), E \\
& f\left(s_{1}, \ldots, s_{n}\right) \stackrel{?}{=} g\left(t_{1}, \ldots, t_{n}\right), E \Rightarrow \perp \quad f \neq g \\
& x \stackrel{?}{=} v, E \Rightarrow s_{n} \stackrel{?}{=} t_{n}, E \\
& x \stackrel{?}{=} v, E\{x \mapsto v\} \quad x \in \mathcal{V} \operatorname{ar}(E), x \notin \mathcal{V} \operatorname{ar}(v) \\
& \Rightarrow \perp \quad x \neq v, x \in \mathcal{V} \operatorname{ar}(v)
\end{aligned}
$$

Unification Algorithm

$$
u \stackrel{?}{=} u, E \Rightarrow E
$$

$$
\begin{aligned}
f\left(s_{1}, \ldots, s_{n}\right) \stackrel{?}{=} f\left(t_{1}, \ldots, t_{n}\right), E & \Rightarrow s_{1} \stackrel{?}{=} t_{1}, \ldots, s_{n} \stackrel{?}{=} t_{n}, E \\
f\left(s_{1}, \ldots, s_{n}\right) \stackrel{?}{=} g\left(t_{1}, \ldots, t_{n}\right), E & \Rightarrow \perp \quad f \neq g \\
x \stackrel{?}{=} v, E & \Rightarrow x \stackrel{?}{=} v, E\{x \mapsto v\} \quad x \in \operatorname{Var}(E), x \notin \operatorname{Var}(v) \\
x \stackrel{?}{=} v, E & \Rightarrow \perp \quad x \neq v, x \in \mathcal{V} \operatorname{ar}(v) \\
v \stackrel{?}{=} x, E & \Rightarrow x \stackrel{?}{=} v, E \quad v \notin \mathcal{V}
\end{aligned}
$$

Unification Algorithm

$$
\begin{gathered}
u \stackrel{?}{=} u, E \Rightarrow E \\
f\left(s_{1}, \ldots, s_{n}\right) \stackrel{?}{=} f\left(t_{1}, \ldots, t_{n}\right), E \Rightarrow s_{1} \stackrel{?}{=} t_{1}, \ldots, s_{n} \stackrel{?}{=} t_{n}, E \\
f\left(s_{1}, \ldots, s_{n}\right) \stackrel{?}{=} g\left(t_{1}, \ldots, t_{n}\right), E \Rightarrow \perp \quad f \neq g \\
x \stackrel{?}{=} v, E \Rightarrow x \stackrel{?}{=} v, E\{x \mapsto v\} \quad x \in \operatorname{Var}(E), x \notin \operatorname{Var}(v) \\
x \stackrel{?}{=} v, E \Rightarrow \perp \quad x \neq v, x \in \operatorname{Var}(v) \\
v \stackrel{?}{=} x, E \Rightarrow x \stackrel{?}{=} v, E \quad v \notin \mathcal{V}
\end{gathered}
$$

Example

$$
\mathrm{f}(x, \mathrm{~g}(y), x) \stackrel{?}{=} \mathrm{f}\left(z, \mathrm{~g}\left(x^{\prime}\right), \mathrm{h}\left(x^{\prime}\right)\right) \Rightarrow x \stackrel{?}{=} z, \mathrm{~g}(y) \stackrel{?}{=} \mathrm{g}\left(x^{\prime}\right), x \stackrel{?}{=} \mathrm{h}\left(x^{\prime}\right)
$$

Unification Algorithm

$$
\begin{aligned}
u \stackrel{?}{=} u, E & \Rightarrow E \\
f\left(s_{1}, \ldots, s_{n}\right) \stackrel{?}{=} f\left(t_{1}, \ldots, t_{n}\right), E & \Rightarrow s_{1} \stackrel{?}{=} t_{1}, \ldots, s_{n} \stackrel{?}{=} t_{n}, E \\
f\left(s_{1}, \ldots, s_{n}\right) \stackrel{?}{=} g\left(t_{1}, \ldots, t_{n}\right), E & \Rightarrow \perp \quad f \neq g \\
x \stackrel{?}{=} v, E & \Rightarrow x \stackrel{?}{=} v, E\{x \mapsto v\} \quad x \in \operatorname{V} \operatorname{ar}(E), x \notin \operatorname{V} \operatorname{ar}(v) \\
x \stackrel{?}{=} v, E & \Rightarrow \perp \quad x \neq v, x \in \mathcal{V} \operatorname{ar}(v) \\
v \stackrel{?}{=} x, E & \Rightarrow x \stackrel{?}{=} v, E \quad v \notin \mathcal{V}
\end{aligned}
$$

Example

$$
\begin{aligned}
\mathrm{f}(x, \mathrm{~g}(y), x) \stackrel{?}{=} \mathrm{f}\left(z, \mathrm{~g}\left(x^{\prime}\right), \mathrm{h}\left(x^{\prime}\right)\right) & \Rightarrow x \stackrel{?}{=} z, \mathrm{~g}(y) \stackrel{?}{=} \mathrm{g}\left(x^{\prime}\right), x \stackrel{?}{=} \mathrm{h}\left(x^{\prime}\right) \\
& \Rightarrow x \stackrel{?}{=} z, \mathrm{~g}(y) \stackrel{?}{=} \mathrm{g}\left(x^{\prime}\right), z \stackrel{?}{=} \mathrm{h}\left(x^{\prime}\right)
\end{aligned}
$$

Unification Algorithm

$$
\begin{aligned}
u \stackrel{?}{=} u, E & \Rightarrow E \\
f\left(s_{1}, \ldots, s_{n}\right) \stackrel{?}{=} f\left(t_{1}, \ldots, t_{n}\right), E & \Rightarrow s_{1} \stackrel{?}{=} t_{1}, \ldots, s_{n} \stackrel{?}{=} t_{n}, E \\
f\left(s_{1}, \ldots, s_{n}\right) \stackrel{?}{=} g\left(t_{1}, \ldots, t_{n}\right), E & \Rightarrow \perp \quad f \neq g \\
x \stackrel{?}{=} v, E & \Rightarrow x \stackrel{?}{=} v, E\{x \mapsto v\} \quad x \in \operatorname{V} \operatorname{ar}(E), x \notin \operatorname{V} \operatorname{ar}(v) \\
x \stackrel{?}{=} v, E & \Rightarrow \perp \quad x \neq v, x \in \mathcal{V} \operatorname{ar}(v) \\
v \stackrel{?}{=} x, E & \Rightarrow x \stackrel{?}{=} v, E \quad v \notin \mathcal{V}
\end{aligned}
$$

Example

$$
\begin{aligned}
\mathrm{f}(x, \mathrm{~g}(y), x) \stackrel{?}{=} \mathrm{f}\left(z, \mathrm{~g}\left(x^{\prime}\right), \mathrm{h}\left(x^{\prime}\right)\right) & \Rightarrow x \stackrel{?}{=} z, \mathrm{~g}(y) \stackrel{?}{=} \mathrm{g}\left(x^{\prime}\right), x \stackrel{?}{=} \mathrm{h}\left(x^{\prime}\right) \\
& \Rightarrow x \stackrel{?}{=} z, \mathrm{~g}(y) \stackrel{?}{=} \mathrm{g}\left(x^{\prime}\right), z \stackrel{?}{=} \mathrm{h}\left(x^{\prime}\right) \\
& \Rightarrow x \stackrel{?}{=} z, y \stackrel{?}{=} x^{\prime}, z \stackrel{?}{=} \mathrm{h}\left(x^{\prime}\right)
\end{aligned}
$$

Unification Algorithm

$$
\begin{aligned}
u \stackrel{?}{=} u, E & \Rightarrow E \\
f\left(s_{1}, \ldots, s_{n}\right) \stackrel{?}{=} f\left(t_{1}, \ldots, t_{n}\right), E & \Rightarrow s_{1} \stackrel{?}{=} t_{1}, \ldots, s_{n} \stackrel{?}{=} t_{n}, E \\
f\left(s_{1}, \ldots, s_{n}\right) \stackrel{?}{=} g\left(t_{1}, \ldots, t_{n}\right), E & \Rightarrow \perp \quad f \neq g \\
x \stackrel{?}{=} v, E & \Rightarrow x \stackrel{?}{=} v, E\{x \mapsto v\} \quad x \in \operatorname{V} \operatorname{ar}(E), x \notin \operatorname{V} \operatorname{ar}(v) \\
x \stackrel{?}{=} v, E & \Rightarrow \perp \quad x \neq v, x \in \mathcal{V} \operatorname{ar}(v) \\
v \stackrel{?}{=} x, E & \Rightarrow x \stackrel{?}{=} v, E \quad v \notin \mathcal{V}
\end{aligned}
$$

Example

$$
\begin{aligned}
\mathrm{f}(x, \mathrm{~g}(y), x) \stackrel{?}{=} \mathrm{f}\left(z, \mathrm{~g}\left(x^{\prime}\right), \mathrm{h}\left(x^{\prime}\right)\right) & \Rightarrow x \stackrel{?}{=} z, \mathrm{~g}(y) \stackrel{?}{=} \mathrm{g}\left(x^{\prime}\right), x \stackrel{?}{=} \mathrm{h}\left(x^{\prime}\right) \\
& \Rightarrow x \stackrel{?}{=} z, \mathrm{~g}(y) \stackrel{?}{=} \mathrm{g}\left(x^{\prime}\right), z \stackrel{?}{=} \mathrm{h}\left(x^{\prime}\right) \\
& \Rightarrow x \stackrel{?}{=} z, y \stackrel{?}{=} x^{\prime}, z \stackrel{?}{=} \mathrm{h}\left(x^{\prime}\right) \\
& \Rightarrow x \stackrel{?}{=} \mathrm{h}\left(x^{\prime}\right), y \stackrel{?}{=} x^{\prime}, z \stackrel{?}{=} \mathrm{h}\left(x^{\prime}\right)
\end{aligned}
$$

Definition

let $E=x_{1} \stackrel{?}{=} v_{1}, \ldots, x_{n} \stackrel{?}{=} v_{n}$ be a equality problem in solved form E induces substitution $\sigma_{E}=\left\{x_{1} \mapsto v_{1}, \ldots, x_{n} \mapsto v_{n}\right\}$

Definition

let $E=x_{1} \stackrel{?}{=} v_{1}, \ldots, x_{n} \stackrel{?}{=} v_{n}$ be a equality problem in solved form E induces substitution $\sigma_{E}=\left\{x_{1} \mapsto v_{1}, \ldots, x_{n} \mapsto v_{n}\right\}$

Theorem

1 equality problems E is unifiable iff the unification algorithm stops with a solved form

2 if $E \Rightarrow^{*} E^{\prime}$ such that E^{\prime} is a solved form, then $\sigma_{E^{\prime}}$ is a most general unifier (mgu for short) of E;

Definition

let $E=x_{1} \stackrel{?}{=} v_{1}, \ldots, x_{n} \stackrel{?}{=} v_{n}$ be a equality problem in solved form E induces substitution $\sigma_{E}=\left\{x_{1} \mapsto v_{1}, \ldots, x_{n} \mapsto v_{n}\right\}$

Theorem

1 equality problems E is unifiable iff the unification algorithm stops with a solved form

2 if $E \Rightarrow^{*} E^{\prime}$ such that E^{\prime} is a solved form, then $\sigma_{E^{\prime}}$ is a most general unifier (mgu for short) of E;

Proof.

in proof, we verify the following three facts:

Definition

let $E=x_{1} \stackrel{?}{=} v_{1}, \ldots, x_{n} \stackrel{?}{=} v_{n}$ be a equality problem in solved form E induces substitution $\sigma_{E}=\left\{x_{1} \mapsto v_{1}, \ldots, x_{n} \mapsto v_{n}\right\}$

Theorem

1 equality problems E is unifiable iff the unification algorithm stops with a solved form
2 if $E \Rightarrow^{*} E^{\prime}$ such that E^{\prime} is a solved form, then $\sigma_{E^{\prime}}$ is a most general unifier (mgu for short) of E;

Proof.

in proof, we verify the following three facts:

- if $E \Rightarrow E^{\prime}$, then σ is a unifier of E iff σ is a unifier of E^{\prime}

Definition

let $E=x_{1} \stackrel{?}{=} v_{1}, \ldots, x_{n} \stackrel{?}{=} v_{n}$ be a equality problem in solved form E induces substitution $\sigma_{E}=\left\{x_{1} \mapsto v_{1}, \ldots, x_{n} \mapsto v_{n}\right\}$

Theorem

1 equality problems E is unifiable iff the unification algorithm stops with a solved form
2 if $E \Rightarrow^{*} E^{\prime}$ such that E^{\prime} is a solved form, then $\sigma_{E^{\prime}}$ is a most general unifier (mgu for short) of E;

Proof.

in proof, we verify the following three facts:

- if $E \Rightarrow E^{\prime}$, then σ is a unifier of E iff σ is a unifier of E^{\prime}
- if $E \Rightarrow^{*} \perp$, then E is not unifiable

Definition

let $E=x_{1} \stackrel{?}{=} v_{1}, \ldots, x_{n} \stackrel{?}{=} v_{n}$ be a equality problem in solved form E induces substitution $\sigma_{E}=\left\{x_{1} \mapsto v_{1}, \ldots, x_{n} \mapsto v_{n}\right\}$

Theorem

1 equality problems E is unifiable iff the unification algorithm stops with a solved form
2 if $E \Rightarrow^{*} E^{\prime}$ such that E^{\prime} is a solved form, then $\sigma_{E^{\prime}}$ is a most general unifier (mgu for short) of E;

Proof.

in proof, we verify the following three facts:

- if $E \Rightarrow E^{\prime}$, then σ is a unifier of E iff σ is a unifier of E^{\prime}
- if $E \Rightarrow^{*} \perp$, then E is not unifiable
- if $E \Rightarrow^{*} E^{\prime}$ such that E^{\prime} is a solved form, then $\sigma_{E^{\prime}}$ is a mgu of E

