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Summary

Summary of Last Lecture

Method of Davis and Putnam in Pseudo-Code
if C does not contain function symbols

then apply DPLL(a)-DPLL(c) on C′0
else {

n := 0;

contr := false;

while (¬ contr) do {

apply DPLL(a)-DPLL(c) on C′n;
if the decision tree proves unsatisfiability ,

then contr := true

else contr := false;

n := n + 1;

}}
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Summary

Definition
• individual constants
k0, k1, . . . , kj , . . . denoted c , d , etc.

• function constants with i arguments
f i0 , f

i
1 , . . . , f

i
j , . . . denoted f , g , h, etc.

• predicate constants with i arguments
R i
0,R

i
1, . . . ,R

i
j , . . . denoted P,Q,R, etc.

• variables, collected in V
x0, x1, . . . , xj , . . . denoted x , y , z , etc.

Definition
• propositional connectives ¬, ∨
• equality sign =
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Summary

Outline of the Lecture

Early Approaches in Automated Reasoning

Herbrand’s theorem for dummies, Gilmore’s prover, method of Davis and
Putnam

Starting Points

resolution, tableau provers, Skolemisation, ordered resolution, redundancy
and deletion

Automated Reasoning with Equality

paramodulation, ordered completion and proof orders, superposition

Applications of Automated Reasoning

Neuman-Stubblebinde Key Exchange Protocol, Robbins problem
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The Resolution Calculus

Resolution Calculus for First-Order Logic

Definition
resolution factoring

C ∨ A D ∨ ¬B
(C ∨ D)σ

C ∨ A ∨ B
(C ∨ A)σ

σ is a mgu of the atomic formulas A and B

let C be a set of clauses; define resolution operator Res(C)

• Res(C) = {D | D is resolvent or factor with premises in C}
• Res0(C) = C; Resn+1(C) = Resn(C) ∪ Res(Resn(C))

• Res∗(C) =
⋃

n>0 Resn(C)

restricted to atoms

Example

P(x) ∨ Q(f(x , g(y), x)) R(a, b) ∨ ¬Q(f(z , g(x ′), h(x ′)))

P(h(x ′)) ∨ R(a, b)
{x 7→ h(x ′)}
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Soundness and Completeness of Resolution

Soundness and Completeness of Resolution

Theorem

resolution is sound: if F a sentence and C its clause form such that
2 ∈ Res∗(C), then F is unsatisfiable

Proof.
• the theorem follows by case-distinction on the inferences

• for each inference one verifies that if the assumptions (as formulas)
are modelled by an interpretation M, then the consequence holds in
M as well

Theorem

resolution is (refutationally) complete; if F a sentence and C its clause
form, then 2 ∈ Res∗(C) if F is unsatisfiable
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Semantic Tableaux

Tableau Expansion Rules

Definition (uniform notation)

conjunctive disjunctive

α α1 α2 β β1 β2
A ∧ B A B ¬(A ∧ B) ¬A ¬B
¬(A ∨ B) ¬A ¬B A ∨ B A B
¬(A→ B) A ¬B A→ B ¬A B

Definition (tableau expansion rules)

¬¬A
A

α
α1

α2

β

β1|β2
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Semantic Tableaux

Reminder: Propositional Semantic Tableaux
Computational Logic: week 3

Definition

let {A1, . . . ,An} be propositional formulas

• the following tree T is a tableau for {A1, . . . ,An}:

A1

A2
...
An

• suppose T is a tableau for {A1, . . . ,An} and T ∗ is obtained by
applying a tableau expansion rule to T , then T ∗ is a tableau for
{A1, . . . ,An}
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Semantic Tableaux

Example

consider the tableau proof of (P→ (Q→ R))→ (P ∨ S→ (Q→ R) ∨ S)

¬ ((P→ (Q→ R))→ (P ∨ S→ (Q→ R) ∨ S))

P→ (Q→ R)

¬(P ∨ S→ (Q→ R) ∨ S)

P ∨ S

¬((Q→ R) ∨ S)

¬((Q → R)

¬S

¬P Q→ R

P S
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Semantic Tableaux

Heuristics Matters

Example

consider P ∧ (Q→ R ∨ S)→ P ∨ Q and the following tableau proof

¬ (P ∧ (Q→ R ∨ S)→ P ∨ Q)

P ∧ (Q→ R ∨ S)

¬(P ∨ Q)

P

Q→ R ∨ S

¬Q R ∨ S

¬P

¬Q
R S

¬P

¬Q

¬P

¬Q
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Semantic Tableaux

Example (cont’d)

now consider the following tableau proof

¬ ((P ∧ (Q→ R ∨ S))→ P ∨ Q)

P ∧ (Q→ R ∨ S)

¬(P ∨ Q)

P

Q→ R ∨ S

¬P

¬Q
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Semantic Tableaux

Soundness and Completeness
Definitions
• a branch is closed if the formulas F and ¬F occur on it

• if F is atomic, then the branch is said to be atomically closed

• a tableau is closed if every branch is closed

• a tableau proof of F is a closed tableau for ¬F
• in a strict tableau no formula is expanded twice on the same branch

Theorem

the tableau procedure is sound and complete:

F is a tautology⇐⇒ F has a tableau proof

Proof.

use next two lemmas; alternative proof of completeness: propositional
model existence lemma
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Semantic Tableaux

Strong Propositional Completeness

Lemma

any application of a tableau expansion rule to a satisfiable tableau yields
another satisfiable tableau

Lemma

suppose F is a valid; a strict tableau construction for ¬F that is
continued as long as possible must terminate in an atomically closed
tableau

Proof.

see Computational Logic, this week
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Semantic Tableaux

Implementation of Semantic Tableaux

Naive Approach
tableau_prover(X) :-

expand ([[ neg X]],Y),

closed(Y).

Slightly More Efficient
tableau_prover2(X) :-

expand ([[ neg X]],Y),

!,

closed(Y).

A Bit More Efficient
tableau_prover3(X) :-

expand_and_close ([[ neg X]]).
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First-Order Semantic Tableaux

First-Order Semantic Tableaux

Definition (uniform notation)

universal existential

γ γ(t) δ δ(t)

∀xA(x) A(t) ∃xA(x) A(t)

¬∃xA(x) ¬A(t) ¬∀xA(x) ¬A(t)

Definition (tableau expansion rules)
γ

γ(t)
t term in L+ δ

δ(k)
k fresh constant in L+

1 L+ denotes extension of base language L
2 new individual constants are introduced in δ rules

3 fresh means new to the branch of the tableau
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First-Order Semantic Tableaux

Example

consider ∀x(P(x) ∨ Q(x))→ ∃xP(x) ∨ ∀xQ(x)
we give a tableau proof

¬ (∀x(P(x) ∨ Q(x))→ ∃xP(x) ∨ ∀xQ(x)))

∀x(P(x) ∨ Q(x))

¬(∃xP(x) ∨ ∀xQ(x))

¬∃xP(x)

¬∀xQ(x)

¬Q(c)

¬P(c)

P(c) ∨ Q(c)

P(c) Q(c)
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First-Order Semantic Tableaux

Soundness and Completeness of Tableau

Definitions
• a tableau proof of a sentence F is a closed tableau for ¬F
• a tableau branch is satisfiable if the set G of sentences on it is

satisfiable, i.e., there exists a model of G; a tableau is satisfiable if
some branch is satisfiable

Theorem

if sentence F has a tableau proof, then F is valid

Proof.

if any tableau expansion rule is applied to a satisfiable tableau, the result
is satisfiable

Theorem

if a sentence F is valid, then F has a tableau proof
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