

# Automated Theorem Proving

Georg Moser



Institute of Computer Science @ UIBK

Winter 2015

## Definition

| <ul> <li>individual constants</li> </ul>                                            |                          |
|-------------------------------------------------------------------------------------|--------------------------|
| $k_0, k_1, \ldots, k_j, \ldots$                                                     | denoted $c, d$ , etc.    |
| • function constants with <i>i</i> arguments $f_0^i, f_1^i, \ldots, f_j^i, \ldots$  | denoted $f, g, h$ , etc. |
| • predicate constants with <i>i</i> arguments $R_0^i, R_1^i, \ldots, R_j^i, \ldots$ | denoted $P, Q, R$ , etc. |
| • variables, collected in $\mathcal{V}$<br>$x_0, x_1, \dots, x_j, \dots$            | denoted x, y, z, etc.    |

## Definition

- propositional connectives  $\neg$ ,  $\lor$
- equality sign =

# Summary of Last Lecture

```
Method of Davis and Putnam in Pseudo-Code
if C does not contain function symbols
then apply DPLL(a)-DPLL(c) on C'_0
else {
    n := 0;
    contr := false;
    while (¬ contr) do {
        apply DPLL(a)-DPLL(c) on C'_n;
        if the decision tree proves unsatisfiability,
        then contr := true
        else contr := false;
        n := n + 1;
    }}
```

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving

#### ummary

# Outline of the Lecture

#### Early Approaches in Automated Reasoning

Herbrand's theorem for dummies, Gilmore's prover, method of Davis and Putnam

#### Starting Points

resolution, tableau provers, Skolemisation, ordered resolution, redundancy and deletion

Automated Reasoning with Equality

paramodulation, ordered completion and proof orders, superposition

#### Applications of Automated Reasoning

Neuman-Stubblebinde Key Exchange Protocol, Robbins problem



let C be a set of clauses; define resolution operator Res(C)

- $\operatorname{Res}(\mathcal{C}) = \{D \mid D \text{ is resolvent or factor with premises in } \mathcal{C}\}$
- $\operatorname{Res}^{0}(\mathcal{C}) = \mathcal{C}$ ;  $\operatorname{Res}^{n+1}(\mathcal{C}) = \operatorname{Res}^{n}(\mathcal{C}) \cup \operatorname{Res}(\operatorname{Res}^{n}(\mathcal{C}))$
- $\operatorname{Res}^*(\mathcal{C}) = \bigcup_{n \ge 0} \operatorname{Res}^n(\mathcal{C})$

## Example

$$\frac{\mathsf{P}(\mathsf{x}) \lor \mathsf{Q}(\mathsf{f}(x,\mathsf{g}(y),x)) - \mathsf{R}(\mathsf{a},\mathsf{b}) \lor \neg \mathsf{Q}(\mathsf{f}(z,\mathsf{g}(x'),\mathsf{h}(x')))}{\mathsf{P}(\mathsf{h}(x')) \lor \mathsf{R}(\mathsf{a},\mathsf{b})} \ \{x \mapsto \mathsf{h}(x')\}$$

Automated Theorem Proving

#### emantic Tableau

# Tableau Expansion Rules

GM (Institute of Computer Science @ UIBK

## Definition (uniform notation)

| conjunctive              |            |            | disjunctive                      |           |           |
|--------------------------|------------|------------|----------------------------------|-----------|-----------|
| $\alpha$                 | $\alpha_1$ | $\alpha_2$ | β                                | $\beta_1$ | $\beta_2$ |
| $A \wedge B$             | Α          | В          | $\neg (A \land B)$<br>$A \lor B$ | $\neg A$  | $\neg B$  |
| $\neg (A \lor B)$        | $\neg A$   | $\neg B$   | $A \lor B$                       | Α         | В         |
| $\neg (A \rightarrow B)$ | Α          | $\neg B$   | $A \rightarrow B$                | $\neg A$  | В         |



# Soundness and Completeness of Resolution

#### Theorem

resolution is sound: if F a sentence and C its clause form such that  $\Box \in \text{Res}^*(\mathcal{C})$ , then *F* is unsatisfiable

#### Proof.

- the theorem follows by case-distinction on the inferences
- for each inference one verifies that if the assumptions (as formulas) are modelled by an interpretation  $\mathcal{M}$ , then the consequence holds in  $\mathcal{M}$  as well

#### Theorem

resolution is (refutationally) complete; if F a sentence and C its clause form, then  $\Box \in \text{Res}^*(\mathcal{C})$  if *F* is unsatisfiable

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving

#### Semantic Tableaux

Reminder: Propositional Semantic Tableaux Computational Logic: week 3

#### Definition

let  $\{A_1, \ldots, A_n\}$  be propositional formulas

- the following tree T is a tableau for  $\{A_1, \ldots, A_n\}$ :
  - $A_1$  $A_2$  $A_n$
- suppose T is a tableau for  $\{A_1, \ldots, A_n\}$  and  $T^*$  is obtained by applying a tableau expansion rule to T, then  $T^*$  is a tableau for  $\{A_1, ..., A_n\}$

Example consider the tableau proof of  $(P \rightarrow (Q \rightarrow R)) \rightarrow (P \lor S \rightarrow (Q \rightarrow R) \lor S)$  $\neg ((P \rightarrow (Q \rightarrow R)) \rightarrow (P \lor S \rightarrow (Q \rightarrow R) \lor S))$  $P \rightarrow (Q \rightarrow R)$  $\neg (P \lor S \rightarrow (Q \rightarrow R) \lor S)$  $P \lor S$  $\neg ((Q \rightarrow R) \lor S)$  $\neg ((Q \rightarrow R)$  $\neg P$  $Q \rightarrow R$ PS

Automated Theorem Proving

Semantic Tableaux

(Institute of Computer Science @ UIBK

Example (cont'd) now consider the following tableau proof  $\neg ((P \land (Q \rightarrow R \lor S)) \rightarrow P \lor Q)$  $P \land (Q \rightarrow R \lor S)$  $\neg (P \lor Q)$ P $Q \rightarrow R \lor S$  $\neg P$  $\neg Q$ 

## Heuristics Matters

#### Example

consider  $\mathsf{P} \land (\mathsf{Q} \to \mathsf{R} \lor \mathsf{S}) \to \mathsf{P} \lor \mathsf{Q}$  and the following tableau proof



GM (Institute of Computer Science @ UIBK) Automated Theorem Proving

45/

#### Semantic Tableaux

# Soundness and Completeness

#### Definitions

- a branch is closed if the formulas F and  $\neg F$  occur on it
- if F is atomic, then the branch is said to be atomically closed
- a tableau is closed if every branch is closed
- a tableau proof of F is a closed tableau for  $\neg F$
- in a strict tableau no formula is expanded twice on the same branch

#### Theorem

the tableau procedure is sound and complete:

F is a tautology  $\iff$  F has a tableau proof

#### Proof.

use next two lemmas; alternative proof of completeness: propositional model existence lemma

44/1

# Strong Propositional Completeness

#### Lemma

any application of a tableau expansion rule to a satisfiable tableau yields another satisfiable tableau

#### Lemma

suppose F is a valid; a strict tableau construction for  $\neg F$  that is continued as long as possible must terminate in an atomically closed tableau

## Proof.

see Computational Logic, this week

GM (Institute of Computer Science @ UIBK)

48/1

#### First-Order Semantic Tableaux

# First-Order Semantic Tableaux

## Definition (uniform notation)

| unive                 | rsal        | existential           |             |  |
|-----------------------|-------------|-----------------------|-------------|--|
| $\gamma$              | $\gamma(t)$ | δ                     | $\delta(t)$ |  |
| $\forall x A(x)$      | A(t)        | $\exists x A(x)$      | A(t)        |  |
| $\neg \exists x A(x)$ | $\neg A(t)$ | $\neg \forall x A(x)$ | $\neg A(t)$ |  |

Automated Theorem Proving

#### Definition (tableau expansion rules)

$$rac{\gamma}{\gamma(t)}$$
 t term in  $\mathcal{L}^+$   $rac{\delta}{\delta(k)}$  k fresh constant in  $\mathcal{L}^+$ 

- 1  $\mathcal{L}^+$  denotes extension of base language  $\mathcal{L}$
- **2** new individual constants are introduced in  $\delta$  rules
- **3** fresh means new to the branch of the tableau

#### (Institute of Computer Science @ UIBK) Automated Theorem Proving

#### emantic Tableau

# Implementation of Semantic Tableaux

```
Naive Approach
tableau_prover(X) :-
        expand([[neg X]],Y),
        closed(Y).
```

```
Slightly More Efficient
tableau_prover2(X) :-
        expand([[neg X]],Y),
        !,
        closed(Y).
```

```
A Bit More Efficient
tableau_prover3(X) :-
expand_and_close([[neg X]]).
```

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving

49/1

#### First-Order Semantic Tableaux

#### Example

consider  $\forall x(P(x) \lor Q(x)) \rightarrow \exists x P(x) \lor \forall x Q(x)$ we give a tableau proof



# Soundness and Completeness of Tableau

## Definitions

- a tableau proof of a sentence F is a closed tableau for  $\neg F$
- a tableau branch is satisfiable if the set  $\mathcal{G}$  of sentences on it is satisfiable, i.e., there exists a model of  $\mathcal{G}$ ; a tableau is satisfiable if some branch is satisfiable

## Theorem

if sentence F has a tableau proof, then F is valid

## Proof.

if any tableau expansion rule is applied to a satisfiable tableau, the result is satisfiable  $\hfill\blacksquare$ 

52/1

## Theorem

if a sentence  ${\sf F}$  is valid, then  ${\sf F}$  has a tableau proof

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving