omputational ogic

Automated Theorem Proving

Georg Moser

Institute of Computer Science @ UIBK

Winter 2015

Summary

Definition

- individual constants
$k_{0}, k_{1}, \ldots, k_{j}, \ldots$
denoted c, d, etc.
- function constants with i arguments $f_{0}^{i}, f_{1}^{i}, \ldots, f_{j}^{i}, \ldots$
denoted f, g, h, etc.
- predicate constants with i arguments $R_{0}^{i}, R_{1}^{i}, \ldots, R_{j}^{i}, \ldots$
denoted P, Q, R, etc
- variables, collected in \mathcal{V}
$x_{0}, x_{1}, \ldots, x_{j}, \ldots$
denoted x, y, z, etc.

Definition

- propositional connectives \neg, \vee
- equality sign $=$

```
Method of Davis and Putnam in Pseudo-Code
    if }\mathcal{C}\mathrm{ does not contain function symbols
    then apply DPLL(a)-DPLL(c) on (C)
    else {
        n := 0;
        contr := false;
        while ( }\neg\mathrm{ contr) do {
        apply DPLL(a)-DPLL(c) on (\mathcal{C}
        if the decision tree proves unsatisfiability,
        then contr := true
        else contr := false;
        n}:=\textrm{n}+1
        }}
```


Summary

Outline of the Lecture

Early Approaches in Automated Reasoning
 Herbrand's theorem for dummies, Gilmore's prover, method of Davis and Putnam

Starting Points

resolution, tableau provers, Skolemisation, ordered resolution, redundancy and deletion

Automated Reasoning with Equality
paramodulation, ordered completion and proof orders, superposition
Applications of Automated Reasoning
Neuman-Stubblebinde Key Exchange Protocol, Robbins problem

Resolution Calculus for First-Order I noir restricted to atoms
 Definition
 $$
\begin{array}{cc} \text { resolution } & \text { factoring } \\ C \vee A D \vee \neg B \\ (C \vee D) \sigma & \frac{C \vee A \vee B}{(C \vee A) \sigma} \end{array}
$$

σ is a mgu of the atomic formulas A and B
let \mathcal{C} be a set of clauses; define resolution operator $\operatorname{Res}(\mathcal{C})$

- $\operatorname{Res}(\mathcal{C})=\{D \mid D$ is resolvent or factor with premises in $\mathcal{C}\}$
- $\operatorname{Res}^{0}(\mathcal{C})=\mathcal{C} ; \operatorname{Res}^{n+1}(\mathcal{C})=\operatorname{Res}^{n}(\mathcal{C}) \cup \operatorname{Res}\left(\operatorname{Res}^{n}(\mathcal{C})\right)$
- $\operatorname{Res}^{*}(\mathcal{C})=\bigcup_{n \geqslant 0} \operatorname{Res}^{n}(\mathcal{C})$

Example

$$
\frac{\mathrm{P}(\mathrm{x}) \vee \mathrm{Q}(\mathrm{f}(x, \mathrm{~g}(y), x)) \mathrm{R}(\mathrm{a}, \mathrm{~b}) \vee \neg \mathrm{Q}\left(\mathrm{f}\left(z, \mathrm{~g}\left(x^{\prime}\right), \mathrm{h}\left(x^{\prime}\right)\right)\right)}{\mathrm{P}\left(\mathrm{~h}\left(x^{\prime}\right)\right) \vee \mathrm{R}(\mathrm{a}, \mathrm{~b})}\left\{x \mapsto \mathrm{~h}\left(x^{\prime}\right)\right\}
$$

GM (Institute of Computer Science © UIBK) Automated Theorem Proving

Tableau Expansion Rules
Definition (uniform notation)

conjunctive		disjunctive			
α	α_{1}	α_{2}	β	β_{1}	β_{2}
$A \wedge B$	A	B	$\neg(A \wedge B)$	$\neg A$	$\neg B$
	$\neg(A \vee B)$	$\neg A$	$\neg B$	$A \vee B$	A
B					
$\neg(A \rightarrow B)$	A	$\neg B$	$A \rightarrow B$	$\neg A$	B

Definition (tableau expansion rules)

$$
\begin{array}{lll}
\frac{\neg \neg A}{A} & \frac{\alpha}{\alpha_{1}} & \frac{\beta}{\beta_{1} \mid \beta_{2}} \\
\alpha_{2} & \\
\hline
\end{array}
$$

Soundness and Completeness of Resolution

Theorem
resolution is sound: if F a sentence and \mathcal{C} its clause form such that $\square \in \operatorname{Res}^{*}(\mathcal{C})$, then F is unsatisfiable

Proof.

- the theorem follows by case-distinction on the inferences
- for each inference one verifies that if the assumptions (as formulas) are modelled by an interpretation \mathcal{M}, then the consequence holds in \mathcal{M} as well

Theorem
resolution is (refutationally) complete; if F a sentence and \mathcal{C} its clause form, then $\square \in \operatorname{Res}^{*}(\mathcal{C})$ if F is unsatisfiable

Semantic Tableaux

Reminder: Propositional Semantic Tableaux
Computational Logic: week 3

Definition

let $\left\{A_{1}, \ldots, A_{n}\right\}$ be propositional formulas

- the following tree T is a tableau for $\left\{A_{1}, \ldots, A_{n}\right\}$:

$$
\begin{gathered}
A_{1} \\
A_{2} \\
\vdots \\
A_{n}
\end{gathered}
$$

- suppose T is a tableau for $\left\{A_{1}, \ldots, A_{n}\right\}$ and T^{*} is obtained by applying a tableau expansion rule to T, then T^{*} is a tableau for $\left\{A_{1}, \ldots, A_{n}\right\}$

Example

consider the tableau proof of $(P \rightarrow(Q \rightarrow R)) \rightarrow(P \vee S \rightarrow(Q \rightarrow R) \vee S)$

$$
\begin{gathered}
\neg((\mathrm{P} \rightarrow(\mathrm{Q} \rightarrow \mathrm{R})) \rightarrow(\mathrm{P} \vee \mathrm{~S} \rightarrow(\mathrm{Q} \rightarrow \mathrm{R}) \vee \mathrm{S})) \\
\mathrm{P} \rightarrow(\mathrm{Q} \rightarrow \mathrm{R}) \\
\neg(\mathrm{P} \vee \mathrm{~S} \rightarrow(\mathrm{Q} \rightarrow \mathrm{R}) \vee \mathrm{S}) \\
\\
\mathrm{P} \vee \mathrm{~S} \\
\neg((\mathrm{Q} \rightarrow \mathrm{R}) \vee \mathrm{S}) \\
\neg((\mathrm{Q} \rightarrow \mathrm{R}) \\
\\
\neg \mathrm{S}, ~
\end{gathered}
$$

$$
\neg(\mathrm{P} \vee \mathrm{Q})
$$

Example (cont'd)

now consider the following tableau proof

$$
\begin{gathered}
\neg((P \wedge(Q \rightarrow R \vee S)) \rightarrow P \vee Q) \\
P \wedge(Q \rightarrow R \vee S) \\
\neg(P \vee Q) \\
P \\
Q \rightarrow R \vee S \\
\neg P \\
\neg Q
\end{gathered}
$$

Heuristics Matters

Example
consider $P \wedge(Q \rightarrow R \vee S) \rightarrow P \vee Q$ and the following tableau proof

$$
\begin{gathered}
\neg(P \wedge(Q \rightarrow R \vee S) \rightarrow P \vee Q) \\
P \wedge(Q \rightarrow R \vee S)
\end{gathered}
$$

P

$$
Q \rightarrow R \vee S
$$

Semantic Tableaux

Soundness and Completeness

Definitions

- a branch is closed if the formulas F and $\neg F$ occur on it
- if F is atomic, then the branch is said to be atomically closed
- a tableau is closed if every branch is closed
- a tableau proof of F is a closed tableau for $\neg F$
- in a strict tableau no formula is expanded twice on the same branch

Theorem
the tableau procedure is sound and complete:
F is a tautology $\Longleftrightarrow F$ has a tableau proof

Proof.

use next two lemmas; alternative proof of completeness: propositional model existence lemma

Strong Propositional Completeness

Lemma

any application of a tableau expansion rule to a satisfiable tableau yields another satisfiable tableau

Lemma
suppose F is a valid; a strict tableau construction for $\neg F$ that is continued as long as possible must terminate in an atomically closed tableau

Proof.
see Computational Logic, this week

First-Order Semantic Tableaux

First-Order Semantic Tableaux
Definition (uniform notation)

universal		existential	
γ	$\gamma(t)$	δ	$\delta(t)$
$\forall x A(x)$	$A(t)$	$\exists x A(x)$	$A(t)$
$\neg \exists x A(x)$	$\neg A(t)$	$\neg \forall x A(x)$	$\neg A(t)$

Definition (tableau expansion rules)

$$
\frac{\gamma}{\gamma(t)} \quad t \text { term in } \mathcal{L}^{+} \quad \frac{\delta}{\delta(k)} \quad k \text { fresh constant in } \mathcal{L}^{+}
$$

$1 \mathcal{L}^{+}$denotes extension of base language \mathcal{L}
2 new individual constants are introduced in δ rules
3 fresh means new to the branch of the tableau

Implementation of Semantic Tableaux

```
Naive Approach
tableau_prover(X) :-
                        expand([[neg X]],Y),
                        closed(Y).
```

Slightly More Efficient

```
tableau_prover2(X) :-
    expand([[neg X]],Y),
    !,
```

 closed (Y)
 A Bit More Efficient
tableau_prover3(X) :-
expand_and_close([[neg X]]).

```
First-Order Semantic Tableaux
```

Example
consider $\forall x(P(x) \vee Q(x)) \rightarrow \exists x P(x) \vee \forall x Q(x)$
we give a tableau proof

$$
\begin{aligned}
& \neg(\forall x(P(x) \vee Q(x)) \rightarrow \exists x P(x) \vee \forall x Q(x))) \\
& \forall x(P(x) \vee Q(x)) \\
& \neg(\exists x P(x) \vee \forall x Q(x)) \\
& \neg \exists x P(x) \\
& \neg \forall \times Q(x) \\
& \neg \mathrm{Q} \text { (c) } \\
& \neg P(c) \\
& P(c) \vee Q(c) \\
& \mathrm{P} \text { (c) } \\
& Q(c)
\end{aligned}
$$

Soundness and Completeness of Tableau

Definitions

- a tableau proof of a sentence F is a closed tableau for $\neg F$
- a tableau branch is satisfiable if the set \mathcal{G} of sentences on it is satisfiable, i.e., there exists a model of \mathcal{G}; a tableau is satisfiable if some branch is satisfiable

Theorem
if sentence F has a tableau proof, then F is valid
Proof.
if any tableau expansion rule is applied to a satisfiable tableau, the result is satisfiable

Theorem
if a sentence F is valid, then F has a tableau proof

