

# Automated Theorem Proving

Georg Moser

Institute of Computer Science @ UIBK

Winter 2015



# Summary of Last Lecture

### Definition

$$\frac{\gamma}{\gamma(t)}$$
 t term in  $\mathcal{L}^+$   $\frac{\delta}{\delta(k)}$  k fresh constant in  $\mathcal{L}^+$ 

- $f 1 \ {\cal L}^+$  denotes extension of base language  ${\cal L}$
- f 2 new individual constants are introduced in  $\delta$  rules
- 3 fresh means new to the branch of the tableau

#### **Theorem**

a sentence F is valid iff F has a tableau proof

### Outline of the Lecture

## Early Approaches in Automated Reasoning

Herbrand's theorem for dummies, Gilmore's prover, method of Davis and Putnam

### Starting Points

resolution, tableau provers, Skolemisation, ordered resolution, redundancy and deletion

# Automated Reasoning with Equality

paramodulation, ordered completion and proof orders, superposition

# Applications of Automated Reasoning

Neuman-Stubblebinde Key Exchange Protocol, Robbins problem

### Outline of the Lecture

# Early Approaches in Automated Reasoning

Herbrand's theorem for dummies, Gilmore's prover, method of Davis and Putnam

### Starting Points

resolution, tableau provers, Skolemisation, ordered resolution, redundancy and deletion

# Automated Reasoning with Equality

paramodulation, ordered completion and proof orders, superposition

# Applications of Automated Reasoning

Neuman-Stubblebinde Key Exchange Protocol, Robbins problem

## First-Order Tableau

### Example

consider the tableau proof of

$$\exists x \forall y R(x,y) \rightarrow \forall y \exists x R(x,y)$$

on the whiteboard

### Free-Variable Semantic Tableaux

Definition (expansion rules)

$$\frac{\gamma}{\gamma(x)}$$
 x a free variable  $\frac{\delta}{\delta(f(x_1,\ldots,x_n))}$  f a Skolem function

- $x_1, \ldots, x_n$  denote all free variables of the formula  $\delta$
- Skolem function f must be new on the branch

## Free-Variable Semantic Tableaux

# Definition (expansion rules)

$$\frac{\gamma}{\gamma(x)}$$
 x a free variable  $\frac{\delta}{\delta(f(x_1,\ldots,x_n))}$  f a Skolem function

- $x_1, \ldots, x_n$  denote all free variables of the formula  $\delta$
- Skolem function f must be new on the branch

#### Remark

- $\delta$ -rule still leaves a lot of room for improvement
- requirement that f must be new on the branch forces the introduction of inefficiently many new Skolem functions
- prevented with cleverer notions of the  $\delta$ -rule

## Definition (atomic closure rule)

- **I**  $\exists$  branch in tableau T that contains two literals A and ¬B
- $\supseteq \exists \mathsf{mgu} \ \sigma \ \mathsf{of} \ A \ \mathsf{and} \ B$
- 3 then  $T\sigma$  is also a tableau



# Definition (atomic closure rule)

- **1**  $\exists$  branch in tableau T that contains two literals A and ¬B
- $\supseteq$   $\exists$  mgu  $\sigma$  of A and B
- 3 then  $T\sigma$  is also a tableau

### Definition

consider the following tableau substitution rule:

- $oldsymbol{\mathsf{T}}$  is a tableau for  $\mathcal G$
- **2**  $\sigma$  is free for any sentence in  $\mathcal G$
- $\blacksquare$  then  $T\sigma$  is also a tableau

# Definition (atomic closure rule)

- **1**  $\exists$  branch in tableau T that contains two literals A and ¬B
- $2 \exists \mathsf{mgu} \ \sigma \ \mathsf{of} \ A \ \mathsf{and} \ B$
- $\blacksquare$  then  $T\sigma$  is also a tableau

### Definition

consider the following tableau substitution rule:

- $oldsymbol{\mathsf{T}}$  is a tableau for  $\mathcal G$
- **2**  $\sigma$  is free for any sentence in  $\mathcal G$
- $\blacksquare$  then  $T\sigma$  is also a tableau

### Remark

completeness of free-variable tableaux can (eventually) be proven via model existence

### Example

consider the tableau proof of

$$\exists x \forall y R(x,y) \rightarrow \forall y \exists x R(x,y)$$

and

$$\forall x \forall y (P(x) \land P(y)) \rightarrow \forall x \forall y (P(x) \lor P(y))$$

on the whiteboard

### Soundness of Free-Variable Tableaux

### Definition

- a branch in a free-variable tableau is called satisfiable, if  $\exists$  structure  $\mathcal{A}$  and  $\forall$  environment  $\ell$ :  $(\mathcal{A}, \ell) \models \mathcal{G}$
- a free-variable tableau is satisfiable, if there exists a satisfiable branch



### Soundness of Free-Variable Tableaux

### Definition

- a branch in a free-variable tableau is called satisfiable, if  $\exists$  structure  $\mathcal{A}$  and  $\forall$  environment  $\ell$ :  $(\mathcal{A}, \ell) \models \mathcal{G}$
- a free-variable tableau is satisfiable, if there exists a satisfiable branch

#### Lemma

- 1 T be a satisfiable (free-variable) tableau
- propositional or (free-variable) first-order expansion rule is applied
- 3 then the result is satisfiable

### Soundness of Free-Variable Tableaux

### Definition

- a branch in a free-variable tableau is called satisfiable, if  $\exists$  structure  $\mathcal{A}$  and  $\forall$  environment  $\ell$ :  $(\mathcal{A}, \ell) \models \mathcal{G}$
- a free-variable tableau is satisfiable, if there exists a satisfiable branch

#### Lemma

- 1 T be a satisfiable (free-variable) tableau
- **2** propositional or (free-variable) first-order expansion rule is applied
- 3 then the result is satisfiable

### Proof

the lemma follows by case-distinction on the applied expansion rule, it suffices to consider the  $\delta$ -rule all other cases are similar

**1** suppose B is a satisfiable branch in T such that  $\delta$  occurs on B

- lacksquare suppose B is a satisfiable branch in T such that  $\delta$  occurs on B
- 2 extend B with  $\delta(f(x_1,...,x_n))$  and call the result B'; T' denotes the corresponding tableau

- f I suppose B is a satisfiable branch in T such that  $\delta$  occurs on B
- 2 extend B with  $\delta(f(x_1,...,x_n))$  and call the result B'; T' denotes the corresponding tableau
- ${f 3}$   ${f \mathcal G}$  collects all formulas on B and assume  $({\mathcal A},\ell)\models {\mathcal G}$

- $lue{1}$  suppose B is a satisfiable branch in T such that  $\delta$  occurs on B
- 2 extend B with  $\delta(f(x_1,...,x_n))$  and call the result B'; T' denotes the corresponding tableau
- $oldsymbol{\mathcal{G}}$  collects all formulas on B and assume  $(\mathcal{A},\ell)\models\mathcal{G}$
- 4 let x be the existentially bound variable replaced by  $f(x_1, \ldots, x_n)$

- $lue{1}$  suppose B is a satisfiable branch in T such that  $\delta$  occurs on B
- 2 extend B with  $\delta(f(x_1,...,x_n))$  and call the result B'; T' denotes the corresponding tableau
- $oldsymbol{\mathcal{G}}$  collects all formulas on B and assume  $(\mathcal{A},\ell)\models\mathcal{G}$
- 4 let x be the existentially bound variable replaced by  $f(x_1, \ldots, x_n)$
- **5**  $\exists$  witness  $a \in \mathcal{A}$  for x such that  $(\mathcal{A}, \ell\{x \mapsto a\}) \models \delta(x)$

- $lue{1}$  suppose B is a satisfiable branch in T such that  $\delta$  occurs on B
- 2 extend B with  $\delta(f(x_1,...,x_n))$  and call the result B'; T' denotes the corresponding tableau
- ${f 3}$   ${f \mathcal G}$  collects all formulas on  ${f B}$  and assume  $({f \mathcal A},\ell)\models{f \mathcal G}$
- 4 let x be the existentially bound variable replaced by  $f(x_1, \ldots, x_n)$
- **5**  $\exists$  witness  $a \in \mathcal{A}$  for x such that  $(\mathcal{A}, \ell\{x \mapsto a\}) \models \delta(x)$
- 6 construct A' such that

$$f^{\mathcal{A}'}(\ell(x_1),\ldots,\ell(x_n)) := a$$

- lacksquare suppose B is a satisfiable branch in T such that  $\delta$  occurs on B
- 2 extend B with  $\delta(f(x_1,...,x_n))$  and call the result B'; T' denotes the corresponding tableau
- ${f 3}$   ${f \mathcal G}$  collects all formulas on  ${f B}$  and assume  $({f \mathcal A},\ell)\models{f \mathcal G}$
- 4 let x be the existentially bound variable replaced by  $f(x_1, \ldots, x_n)$
- **5**  $\exists$  witness  $a \in \mathcal{A}$  for x such that  $(\mathcal{A}, \ell\{x \mapsto a\}) \models \delta(x)$
- **6** construct A' such that

$$f^{\mathcal{A}'}(\ell(x_1),\ldots,\ell(x_n)):=a$$

**7** extendable to a total definition of  $f^{\mathcal{A}'}$ 

- lacksquare suppose B is a satisfiable branch in T such that  $\delta$  occurs on B
- 2 extend B with  $\delta(f(x_1,...,x_n))$  and call the result B'; T' denotes the corresponding tableau
- ${f 3}$   ${f \mathcal G}$  collects all formulas on  ${f B}$  and assume  $({\mathcal A},\ell)\models{f \mathcal G}$
- 4 let x be the existentially bound variable replaced by  $f(x_1, \ldots, x_n)$
- **5**  $\exists$  witness  $a \in \mathcal{A}$  for x such that  $(\mathcal{A}, \ell\{x \mapsto a\}) \models \delta(x)$
- **6** construct A' such that

$$f^{\mathcal{A}'}(\ell(x_1),\ldots,\ell(x_n)):=a$$

- 7 extendable to a total definition of  $f^{\mathcal{A}'}$
- 8 we conclude

$$(\mathcal{A},\ell) \models \delta \implies (\mathcal{A}',\ell) \models \delta(f(x_1,\ldots,x_n))$$

- $lue{1}$  suppose B is a satisfiable branch in T such that  $\delta$  occurs on B
- 2 extend B with  $\delta(f(x_1,...,x_n))$  and call the result B'; T' denotes the corresponding tableau
- ${f 3}$   ${f \mathcal G}$  collects all formulas on  ${f B}$  and assume  $({\mathcal A},\ell)\models{f \mathcal G}$
- 4 let x be the existentially bound variable replaced by  $f(x_1, \ldots, x_n)$
- **5**  $\exists$  witness  $a \in \mathcal{A}$  for x such that  $(\mathcal{A}, \ell\{x \mapsto a\}) \models \delta(x)$
- 6 construct A' such that

$$f^{\mathcal{A}'}(\ell(x_1),\ldots,\ell(x_n)):=a$$

- **7** extendable to a total definition of  $f^{\mathcal{A}'}$
- 8 we conclude

$$(\mathcal{A},\ell) \models \delta \implies (\mathcal{A}',\ell) \models \delta(f(x_1,\ldots,x_n))$$

if the atomic closure rule is applicable to a tableau T and T is satisfiable, then the result is also satisfiable



if the atomic closure rule is applicable to a tableau T and T is satisfiable, then the result is also satisfiable

### Proof.

1 we show a more general statement: if the substitution rule is applied to a satisfiable tableau T, then its result is satisfiable

if the atomic closure rule is applicable to a tableau T and T is satisfiable, then the result is also satisfiable

### Proof.

- 1 we show a more general statement: if the substitution rule is applied to a satisfiable tableau T, then its result is satisfiable
- **2**  $\forall$  environments  $\ell$ ,  $\exists$  environment  $\ell'$  such that  $t^{(\mathcal{A},\ell')} = t\sigma^{(\mathcal{A},\ell)}$

if the atomic closure rule is applicable to a tableau T and T is satisfiable, then the result is also satisfiable

### Proof.

- we show a more general statement: if the substitution rule is applied to a satisfiable tableau T, then its result is satisfiable
- **2**  $\forall$  environments  $\ell$ ,  $\exists$  environment  $\ell'$  such that  $t^{(\mathcal{A},\ell')} = t\sigma^{(\mathcal{A},\ell)}$
- $\blacksquare$  we have to show that  $T\sigma$  is satisfiable

### Theorem

if the sentence F has a free-variable tableau proof, then F is valid

if the atomic closure rule is applicable to a tableau T and T is satisfiable, then the result is also satisfiable

### Proof.

- 1 we show a more general statement: if the substitution rule is applied to a satisfiable tableau T, then its result is satisfiable
- **2**  $\forall$  environments  $\ell$ ,  $\exists$  environment  $\ell'$  such that  $t^{(\mathcal{A},\ell')} = t\sigma^{(\mathcal{A},\ell)}$
- ${f 3}$  we have to show that  $T\sigma$  is satisfiable
- 4 this follows from the observation and definition of satisfiability

#### **Theorem**

if the sentence F has a free-variable tableau proof, then F is valid

if the atomic closure rule is applicable to a tableau T and T is satisfiable, then the result is also satisfiable

### Proof.

- 1 we show a more general statement: if the substitution rule is applied to a satisfiable tableau T, then its result is satisfiable
- **2**  $\forall$  environments  $\ell$ ,  $\exists$  environment  $\ell'$  such that  $t^{(\mathcal{A},\ell')} = t\sigma^{(\mathcal{A},\ell)}$
- ${f 3}$  we have to show that  $T\sigma$  is satisfiable
- 4 this follows from the observation and definition of satisfiability

#### **Theorem**

if the sentence F has a free-variable tableau proof, then F is valid

# Strong Completeness of Free-Variable Tableaux

NB: may consider a sequence of atomic closure rules that leads to an (atomically closed) tableau as one block



# Strong Completeness of Free-Variable Tableaux

NB: may consider a sequence of atomic closure rules that leads to an (atomically closed) tableau as one block

### Definition

- T be a tableau with branches  $B_1, \ldots, B_n$
- $\forall i \ A_i \ \text{and} \ \neg B_i \ \text{are literals on} \ B_i$
- if  $\sigma$  is a mgu of  $A_1 = B_1, \ldots, A_n = B_n$
- ullet then  $\sigma$  is called most general atomic closure substitution

# Strong Completeness of Free-Variable Tableaux

NB: may consider a sequence of atomic closure rules that leads to an (atomically closed) tableau as one block

### Definition

- T be a tableau with branches  $B_1, \ldots, B_n$
- $\forall i \ A_i$  and  $\neg B_i$  are literals on  $B_i$
- if  $\sigma$  is a mgu of  $A_1 = B_1, \ldots, A_n = B_n$
- ullet then  $\sigma$  is called most general atomic closure substitution

# Lemma (Lifting Lemma)

- **1** au a substitution free for tableau T such that each branch in T au is atomically closed
- **2** then  $\exists$  a most general atomic closure substitution  $\sigma$  and
- $\mathbf{I}$   $\mathbf{I}$   $\mathbf{I}$   $\mathbf{I}$  is closed by  $\mathbf{I}$  applications of the atomic closure rule

- a strategy *S* details:
  - 1 which expansion rule is supposed to be applied
  - 2 or that no expansion rule can be applied
- a strategy may use extra information which is updated

- a strategy *S* details:
  - 1 which expansion rule is supposed to be applied
  - 2 or that no expansion rule can be applied
- a strategy may use extra information which is updated

### Definition

a strategy S is fair if for sequence of tableaux  $T_1, T_2, \ldots$  following S:

- a strategy *S* details:
  - 1 which expansion rule is supposed to be applied
  - 2 or that no expansion rule can be applied
- a strategy may use extra information which is updated

### Definition

- a strategy S is fair if for sequence of tableaux  $T_1, T_2, \ldots$  following S:
  - $\blacksquare$  any non-literal formula in  $T_i$  is eventually expanded, and

- a strategy *S* details:
  - 1 which expansion rule is supposed to be applied
  - 2 or that no expansion rule can be applied
- a strategy may use extra information which is updated

### Definition

- a strategy S is fair if for sequence of tableaux  $T_1, T_2, \ldots$  following S:
  - $\blacksquare$  any non-literal formula in  $T_i$  is eventually expanded, and
  - 2 any  $\gamma$ -formula occurrence in  $T_i$  has the  $\gamma$ -rule applied to it arbitrarily often

#### Definition

- a strategy *S* details:
  - 1 which expansion rule is supposed to be applied
  - 2 or that no expansion rule can be applied
- a strategy may use extra information which is updated

#### Definition

- a strategy S is fair if for sequence of tableaux  $T_1, T_2, \ldots$  following S:
  - $\blacksquare$  any non-literal formula in  $T_i$  is eventually expanded, and
  - 2 any  $\gamma$ -formula occurrence in  $T_i$  has the  $\gamma$ -rule applied to it arbitrarily often

# Example

strategy employed in the implementation of free-variable tableaux is fair

- for each tableau the extra information includes
  - 1 which formula occurrences have been used on which branch
  - 2 priority order for formula occurrences on each branch
  - 3 priority order for branches

- for each tableau the extra information includes
  - 1 which formula occurrences have been used on which branch
  - 2 priority order for formula occurrences on each branch
  - 3 priority order for branches
- extra information for initial tableau
  - $\Box \neg F$  is not used

  - 3 single branch has top priority

- for each tableau the extra information includes
  - 1 which formula occurrences have been used on which branch
  - priority order for formula occurrences on each branch
  - 3 priority order for branches
- extra information for initial tableau
  - $\neg F$  is not used

  - 3 single branch has top priority
- select branch of highest priority with unused formula
- select formula occurrence on this branch of highest priority
- apply expansion rule; give formula occurrence and branch lowest priority

- for each tableau the extra information includes
  - 1 which formula occurrences have been used on which branch
  - 2 priority order for formula occurrences on each branch
  - 3 priority order for branches
- extra information for initial tableau
  - $\neg F$  is not used

  - 3 single branch has top priority
- select branch of highest priority with unused formula
- select formula occurrence on this branch of highest priority
- apply expansion rule; give formula occurrence and branch lowest priority
- if every non-literal formula has been used on any branch no continuation is possible

- for each tableau the extra information includes
  - 1 which formula occurrences have been used on which branch
  - 2 priority order for formula occurrences on each branch
  - 3 priority order for branches
- extra information for initial tableau
  - 1  $\neg F$  is not used

  - 3 single branch has top priority
- select branch of highest priority with unused formula
- select formula occurrence on this branch of highest priority
- apply expansion rule; give formula occurrence and branch lowest priority
- if every non-literal formula has been used on any branch no continuation is possible

this strategy is not fair

- S be a fair strategy
- **2** F be a valid sentence
- **3** *F* has a tableau proof with the following properties:
  - all tableau expansion rules are considered first and follow strategy S
  - a block of atomic closure rules closes the tableau

- S be a fair strategy
- **2** F be a valid sentence
- **3** *F* has a tableau proof with the following properties:
  - all tableau expansion rules are considered first and follow strategy S
  - a block of atomic closure rules closes the tableau

### Proof Sketch.

we argue indirectly and suppose that a given formula F does not admit a tableau proof

- S be a fair strategy
- 2 F be a valid sentence
- **3** F has a tableau proof with the following properties:
  - all tableau expansion rules are considered first and follow strategy S
  - a block of atomic closure rules closes the tableau

- we argue indirectly and suppose that a given formula F does not admit a tableau proof
- **2**  $\exists$  open branch starting with  $\neg F$

- S be a fair strategy
- 2 F be a valid sentence
- **3** *F* has a tableau proof with the following properties:
  - all tableau expansion rules are considered first and follow strategy S
  - a block of atomic closure rules closes the tableau

- we argue indirectly and suppose that a given formula F does not admit a tableau proof
- **2**  $\exists$  open branch starting with  $\neg F$
- **3** based on syntactic properties (to be presented) we can conclude that all formula on the branch are satisfiable<sup>a</sup>

- S be a fair strategy
- 2 F be a valid sentence
- **3** *F* has a tableau proof with the following properties:
  - all tableau expansion rules are considered first and follow strategy S
  - a block of atomic closure rules closes the tableau

- we argue indirectly and suppose that a given formula F does not admit a tableau proof
- **2**  $\exists$  open branch starting with  $\neg F$
- 3 based on syntactic properties (to be presented) we can conclude that all formula on the branch are satisfiable<sup>a</sup>
- 4 hence  $\neg F$  is satisfiable, and we have found a counter model

- S be a fair strategy
- **2** F be a valid sentence
- **3** F has a tableau proof with the following properties:
  - all tableau expansion rules are considered first and follow strategy S
  - a block of atomic closure rules closes the tableau

- we argue indirectly and suppose that a given formula F does not admit a tableau proof
- **2**  $\exists$  open branch starting with  $\neg F$
- 3 based on syntactic properties (to be presented) we can conclude that all formula on the branch are satisfiable<sup>a</sup>
- 4 hence  $\neg F$  is satisfiable, and we have found a counter model

athe formulas on the branch form a Hintikka set

# Implementation of $\gamma$ -Rule

```
\gamma-rule (simplified)
```

```
singlestep([OldBranch | Rest], NewTree) :-
member (NotatedGamma, OldBranch),
notation (NotatedGamma, Free),
fmla(NotatedGamma, Gamma),
is_universal(Gamma),
remove(NotatedGamma, OldBranch, TempBranch),
NewFree = [V | Free].
 instance (Gamma, V, GammaInstance),
notation(NotatedGammaInstance, NewFree),
fmla(NotatedGammaInstance, GammaInstance),
 append([NotatedGammaInstance | TempBranch],
        [NotatedGamma], NewBranch),
 append (Rest, [NewBranch], NewTree).
```