

# Automated Theorem Proving

Georg Moser

Institute of Computer Science @ UIBK

Winter 2015



# Completeness of First-Order Resolution

### **Definitions**

- a clause is called ground if it doesn't contain variables
- a ground substitution is a substitution whose range contains only terms without variables

Automated Theorem Proving

• let  $\square \notin Res^*(\mathcal{C})$ , then  $\mathcal{C}$  is consistent

# Completeness of First-Order Resolution

### **Definitions**

- a clause is called ground if it doesn't contain variables
- a ground substitution is a substitution whose range contains only terms without variables
- let  $\square \notin Res^*(\mathcal{C})$ , then  $\mathcal{C}$  is consistent

#### Lemma

- let S denote the set of all consistent ground clause sets
- ullet then S is a first-order consistency property with respect to  ${\mathcal L}$

# Completeness of First-Order Resolution

### **Definitions**

- a clause is called ground if it doesn't contain variables
- a ground substitution is a substitution whose range contains only terms without variables
- let  $\square \notin Res^*(\mathcal{C})$ , then  $\mathcal{C}$  is consistent

#### Lemma

- let S denote the set of all consistent ground clause sets
- ullet then S is a first-order consistency property with respect to  ${\mathcal L}$

### Proof.

on the whiteboard

# Lifting Lemmas

### Lemma

• let  $\tau_1$  and  $\tau_2$  be ground substitutions and consider

$$\frac{C\tau_1 \vee A\tau_1 \quad D\tau_2 \vee \neg B\tau_2}{C\tau_1 \vee D\tau_2}$$

where  $A\tau_1 = B\tau_2$ 

•  $\exists$  mgu  $\sigma$  of A and B, such that  $\sigma$  is more general then  $\tau_1$  and  $\tau_2$  and the following resolution step is valid:

$$\frac{C \vee A \quad D \vee \neg B}{(C \vee D)\sigma}$$

# Lifting Lemmas

### Lemma

• let  $au_1$  and  $au_2$  be ground substitutions and consider

$$\frac{C\tau_1 \vee A\tau_1 \quad D\tau_2 \vee \neg B\tau_2}{C\tau_1 \vee D\tau_2}$$

where  $A\tau_1 = B\tau_2$ 

•  $\exists$  mgu  $\sigma$  of A and B, such that  $\sigma$  is more general then  $\tau_1$  and  $\tau_2$  and the following resolution step is valid:

$$\frac{C \vee A \quad D \vee \neg B}{(C \vee D)\sigma}$$

### Proof.

on the whiteboard



#### Lemma

• let  $\tau$  be ground substitutions and consider the following ground factoring step:

$$\frac{C\tau \vee A\tau \vee B\tau}{C\tau \vee A\tau}$$

where  $A\tau = B\tau$ 

•  $\exists$  mgu  $\sigma$ , such that  $\sigma$  is more general then  $\tau$  and the following resolution step is valid:

$$\frac{C \vee A \quad D \vee \neg B}{(C \vee D)\sigma}$$

#### Lemma

• let  $\tau$  be ground substitutions and consider the following ground factoring step:

$$\frac{C\tau \vee A\tau \vee B\tau}{C\tau \vee A\tau}$$

where  $A\tau = B\tau$ 

•  $\exists$  mgu  $\sigma$ , such that  $\sigma$  is more general then  $\tau$  and the following resolution step is valid:

$$\frac{C \vee A \quad D \vee \neg B}{(C \vee D)\sigma}$$

Proof.

again the lemma follows from the properties of an mgu

resolution is complete; if F a sentence and  $\mathcal C$  its clause form, then

 $\square \in \mathsf{Res}^*(\mathcal{C})$  if F is unsatisfiable

resolution is complete; if F a sentence and  $\mathcal C$  its clause form, then

 $\square \in \mathsf{Res}^*(\mathcal{C})$  if F is unsatisfiable

# Proof.

 $\blacksquare$  suppose F is unsatisfiable

resolution is complete; if F a sentence and  $\mathcal C$  its clause form, then

 $\square \in \mathsf{Res}^*(\mathcal{C})$  if F is unsatisfiable

- $\blacksquare$  suppose F is unsatisfiable
- $\supseteq$   $\exists$  a set of ground clauses  $\mathcal{C}'$  that are instances of the clauses in  $\mathcal{C}$  such that  $\mathcal{C}'$  is unsatisfiable

resolution is complete; if F a sentence and  $\mathcal C$  its clause form, then

 $\square \in \mathsf{Res}^*(\mathcal{C})$  if F is unsatisfiable

- $\blacksquare$  suppose F is unsatisfiable
- $\supseteq$   $\exists$  a set of ground clauses  $\mathcal{C}'$  that are instances of the clauses in  $\mathcal{C}$  such that  $\mathcal{C}'$  is unsatisfiable

resolution is complete; if F a sentence and  $\mathcal C$  its clause form, then

 $\square \in \mathsf{Res}^*(\mathcal{C})$  if F is unsatisfiable

- $\blacksquare$  suppose F is unsatisfiable
- $\supseteq$   $\exists$  a set of ground clauses  $\mathcal{C}'$  that are instances of the clauses in  $\mathcal{C}$  such that  $\mathcal{C}'$  is unsatisfiable
- 4 by definition C' is consistent

resolution is complete; if F a sentence and  $\mathcal C$  its clause form, then

 $\square \in \mathsf{Res}^*(\mathcal{C})$  if F is unsatisfiable

- $\blacksquare$  suppose F is unsatisfiable
- $\supseteq$   $\exists$  a set of ground clauses  $\mathcal{C}'$  that are instances of the clauses in  $\mathcal{C}$  such that  $\mathcal{C}'$  is unsatisfiable
- 4 by definition C' is consistent
- 5 by model existence C' is satisfiable

resolution is complete; if F a sentence and  $\mathcal C$  its clause form, then

 $\square \in \mathsf{Res}^*(\mathcal{C})$  if F is unsatisfiable

- $\blacksquare$  suppose F is unsatisfiable
- $\supseteq$   $\exists$  a set of ground clauses  $\mathcal{C}'$  that are instances of the clauses in  $\mathcal{C}$  such that  $\mathcal{C}'$  is unsatisfiable
- 4 by definition C' is consistent
- **5** by model existence C' is satisfiable
- 6 contradiction to our assumption, hence  $\Box \in \text{Res}^*(\mathcal{C}')$

resolution is complete; if F a sentence and C its clause form, then

 $\square \in \mathsf{Res}^*(\mathcal{C})$  if F is unsatisfiable

- 1 suppose F is unsatisfiable
- $\supseteq$   $\exists$  a set of ground clauses  $\mathcal{C}'$  that are instances of the clauses in  $\mathcal{C}$ such that  $\mathcal{C}'$  is unsatisfiable
- by definition C' is consistent
- by model existence C' is satisfiable
- **6** contradiction to our assumption, hence  $\Box \in \text{Res}^*(\mathcal{C}')$
- **T** the lifting lemmas allows to lift this derivation to show  $\Box \in \text{Res}^*(\mathcal{C})$

# Summary of Last Lecture

#### **Theorem**

- let  $\Gamma$  be a resolution refutation of a clause set  $\mathcal C$
- let n denote the length  $|\Gamma|$  of this refutation (counting the number of clauses in the refutation)
- then  $HC(C) \leq 2^{2n}$

## Definition

$$2_0 = 1 \qquad 2_{n+1} = 2^{2_n}$$

NB: note that  $2_n$  is a non-elementary function

### **Theorem**

 $\exists$  a (finite) set of clauses  $C_n$  such that  $HC(C_n) \geqslant \frac{1}{2} \cdot 2_n$ 

# Outline of the Lecture

# Early Approaches in Automated Reasoning

Herbrand's theorem for dummies, Gilmore's prover, method of Davis and Putnam

# Starting Points

resolution, tableau provers, Skolemisation, ordered resolution, redundancy and deletion

# Automated Reasoning with Equality

paramodulation, ordered completion and proof orders, superposition

# Applications of Automated Reasoning

Neuman-Stubblebinde Key Exchange Protocol, Robbins problem

## Outline of the Lecture

# Early Approaches in Automated Reasoning

Herbrand's theorem for dummies, Gilmore's prover, method of Davis and Putnam

# Starting Points

resolution, tableau provers, Skolemisation, ordered resolution, redundancy and deletion

# Automated Reasoning with Equality

paramodulation, ordered completion and proof orders, superposition

# Applications of Automated Reasoning

Neuman-Stubblebinde Key Exchange Protocol, Robbins problem

∃ clause sets whose refutation in resolution is non-elementarily longer than its refutation in natural deduction



 $\exists$  clause sets whose refutation in resolution is non-elementarily longer than its refutation in natural deduction

- $oxed{1}$  consider Statman's example  $\mathcal{C}_n$
- **2** the shortest resolution refutation is  $\Omega(2_{n-1})$
- 3 the length of the informal refutation is O(n) and can be formalised in natural deduction



# How to Skolemise Properly

- if  $\forall x$  occurs positively (negatively) then  $\forall x$  is called strong (weak)
- dual for  $\exists x$



# How to Skolemise Properly

#### **Definitions**

- if  $\forall x$  occurs positively (negatively) then  $\forall x$  is called strong (weak)
- dual for  $\exists x$

- a formula is called rectified if different quantifiers bind different variables
- a formula is in negation normal form (NNF), if it does not contain implication, and every negation sign occurs directly in front of an atomic formula

- let A be a rectified formula and Qx G a subformula of A
- for any subformula Q'y H of G we say Q'y is in scope of Qx; denoted as  $Qx <_A Q'y$



### Definition

- let A be a rectified formula and Qx G a subformula of A
- for any subformula Q'y H of G we say Q'y is in scope of Qx; denoted as Qx <<sub>A</sub> Q'y

## Definition

let A be rectified sentence in NNF

### Definition

- let A be a rectified formula and Qx G a subformula of A
- for any subformula Q'y H of G we say Q'y is in scope of Qx; denoted as Qx <<sub>A</sub> Q'y

- let A be rectified sentence in NNF
- let  $\exists x B$  a subformula of A at position p
- let  $\{y_1, \dots, y_k\} = \{y \mid \forall y <_A \exists x\}$  and let  $\{z_1, \dots, z_l\} = \mathcal{FV}$ ar $(\exists xB)$

## Definition

- let A be a rectified formula and Qx G a subformula of A
- for any subformula Q'y H of G we say Q'y is in scope of Qx; denoted as  $Qx <_A Q'y$

- let A be rectified sentence in NNF
- let  $\exists x B$  a subformula of A at position p
- let  $\{y_1, \dots, y_k\} = \{y \mid \forall y <_A \exists x\}$  and let  $\{z_1, \dots, z_l\} = \mathcal{FV} \text{ar}(\exists xB)$
- $A[B\{x\mapsto f(y_1,\ldots,y_k)\}]$  is obtained by an outer Skolemisation step

## Definition

- let A be a rectified formula and Qx G a subformula of A
- for any subformula Q'y H of G we say Q'y is in scope of Qx; denoted as  $Qx <_A Q'y$

- let A be rectified sentence in NNF
- let  $\exists x B$  a subformula of A at position p
- let  $\{y_1, \dots, y_k\} = \{y \mid \forall y <_A \exists x\}$  and let  $\{z_1, \dots, z_l\} = \mathcal{FV}$ ar $(\exists xB)$
- $A[B\{x \mapsto f(y_1, \dots, y_k)\}]$  is obtained by an outer Skolemisation step
- $A[B\{x \mapsto f(z_1, \dots, z_l)\}]$  is obtained by an inner Skolemisation step

## Definition

let A be closed, rectified, and in NNF

#### Definition

let A be closed, rectified, and in NNF we define the mapping rsk as follows:

$$\operatorname{rsk}(A) = \begin{cases} A & \text{no existential quant. in } A \\ \operatorname{rsk}(A_{-\exists y}) \{ y \mapsto f(x_1, \dots, x_n) \} & \forall x_1, \dots, \forall x_n <_A \exists y \end{cases}$$

### Definition

let A be closed, rectified, and in NNF we define the mapping  $\operatorname{rsk}$  as follows:

$$\operatorname{rsk}(A) = \begin{cases} A & \text{no existential quant. in } A \\ \operatorname{rsk}(A_{-\exists y}) \{ y \mapsto f(x_1, \dots, x_n) \} & \forall x_1, \dots, \forall x_n <_A \exists y \end{cases}$$

- $\exists y$  is the first existential quantifier in A
- $\blacksquare$  the Skolem function symbol f is fresh

### Definition

let A be closed, rectified, and in NNF we define the mapping rsk as follows:

$$\operatorname{rsk}(A) = \begin{cases} A & \text{no existential quant. in } A \\ \operatorname{rsk}(A_{-\exists y}) \{ y \mapsto f(x_1, \dots, x_n) \} & \forall x_1, \dots, \forall x_n <_A \exists y \end{cases}$$

- $\exists y$  is the first existential quantifier in A
- $\blacksquare$  the Skolem function symbol f is fresh

the formula rsk(A) is the (refutational) structural Skolem form of A

### **Definitions**

• let A be a sentence and A' a prenex normal form of A; then rsk(A') is the prenex Skolem form of A

- let A be a sentence and A' a prenex normal form of A; then rsk(A') is the prenex Skolem form of A
- the antiprenex form of A is obtained my minimising the quantifier range by quantifier shifting rules

- let A be a sentence and A' a prenex normal form of A; then rsk(A') is the prenex Skolem form of A
- the antiprenex form of A is obtained my minimising the quantifier range by quantifier shifting rules
- if A' is the antiprenex form of A, then rsk(A') is the antiprenex
   Skolem form

### **Definitions**

- let A be a sentence and A' a prenex normal form of A; then rsk(A') is the prenex Skolem form of A
- the antiprenex form of A is obtained my minimising the quantifier range by quantifier shifting rules
- if A' is the antiprenex form of A, then rsk(A') is the antiprenex Skolem form

### **Theorem**

let A be a closed formula in NNF, then  $A \approx \operatorname{rsk}(A)$ 

# Example

consider 
$$F = \forall x (\exists y P(x, y) \land \exists z Q(z)) \land \forall u (\neg P(a, u) \lor \neg Q(u))$$

$$\textit{G}_1 = \forall x (P(x, f(x)) \land Q(g(x))) \land \forall u (\neg P(a, u) \lor \neg Q(u))$$

$$G_2 = \forall x P(x, f(x)) \land Q(c) \land \forall u (\neg P(a, u) \lor \neg Q(u))$$

$$G_3 = \forall x \forall u (P(x, h(x, u)) \land Q(i(x, u)) \land \neg P(a, u) \lor \neg Q(u))$$

 $G_1$  denotes the refutational structural Skolemisation,  $G_2$  the antiprenex refutational Skolemisation, and  $G_3$  is the prenex refutational Skolemisation

# Example

consider 
$$F = \forall x (\exists y P(x, y) \land \exists z Q(z)) \land \forall u (\neg P(a, u) \lor \neg Q(u))$$

$$G_1 = \forall x (P(x, f(x)) \land Q(g(x))) \land \forall u (\neg P(a, u) \lor \neg Q(u))$$

$$G_2 = \forall x P(x, f(x)) \land Q(c) \land \forall u (\neg P(a, u) \lor \neg Q(u))$$

$$G_3 = \forall x \forall u (P(x, h(x, u)) \land Q(i(x, u)) \land \neg P(a, u) \lor \neg Q(u))$$

 $G_1$  denotes the refutational structural Skolemisation,  $G_2$  the antiprenex refutational Skolemisation, and  $G_3$  is the prenex refutational Skolemisation

### **Theorem**

- **1** ∃ a set of sentences  $\mathcal{D}_n$  with  $HC(\mathcal{D}'_n) = 2^{2^{2^{O(n)}}}$  for the structural Skolem form  $\mathcal{D}'_n$
- **2**  $HC(\mathcal{D}''_n) \geqslant \frac{1}{2}2_n$  for the prenex Skolem form

# Definition (Andrew's Skolem form)

let A be a rectified sentence in NNF; (refutational) Andrew's Skolem form is defined as follows:

$$\mathsf{rsk}_{\mathcal{A}}(A) = \begin{cases} A & \text{no existential quantifiers} \\ \mathsf{rsk}_{\mathcal{A}}(A_{-\exists y})\{y \mapsto f(\vec{x})\} & \forall x_1, \dots, \forall x_n <_A \exists y \end{cases}$$

- $\exists y \ B$  is a subformula of A and  $\exists y$  is the first existential quantifier in A
- 2 all  $x_1, \ldots, x_n$  occur free in  $\exists y \ B$

# Definition (Andrew's Skolem form)

let A be a rectified sentence in NNF; (refutational) Andrew's Skolem form is defined as follows:

$$\mathsf{rsk}_{\mathcal{A}}(A) = \begin{cases} A & \text{no existential quantifiers} \\ \mathsf{rsk}_{\mathcal{A}}(A_{-\exists y})\{y \mapsto f(\vec{x})\} & \forall x_1, \dots, \forall x_n <_A \exists y \end{cases}$$

- $\exists y \ B$  is a subformula of A and  $\exists y$  is the first existential quantifier in A
- 2 all  $x_1, \ldots, x_n$  occur free in  $\exists y \ B$

### Theorem

let A be a closed formula in NNF, then  $A \approx \operatorname{rsk}_A(A)$ 

# Example

consider  $\forall z \forall y \ (\exists x \ P(y,x) \lor Q(y,z))$ ; Andrew's Skolem form is given as follows:

$$\forall z \forall y \ (P(y, f(y)) \lor Q(y, z))$$

on the other hand the antiprenex Skolem form is less succinct:

$$\forall z \forall y \ (P(y, g(z, y)) \lor Q(y, z))$$



# Example

consider  $\forall z \forall y \ (\exists x \ P(y,x) \lor Q(y,z))$ ; Andrew's Skolem form is given as follows:

$$\forall z \forall y \ (P(y, f(y)) \lor Q(y, z))$$

on the other hand the antiprenex Skolem form is less succinct:

$$\forall z \forall y \ (P(y, g(z, y)) \lor Q(y, z))$$

# Example

consider  $\forall y \forall z \ \exists x (P(y,x) \lor Q(y,z))$ , then Andrew's Skolem form is:

$$\forall y \forall z \ (P(y, h(y, z)) \lor Q(y, z))$$