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Prelude: Completeness of First-Order Resolution

Completeness of First-Order Resolution

Definitions
• a clause is called ground if it doesn’t contain variables

• a ground substitution is a substitution whose range contains only
terms without variables

• let 2 6∈ Res∗(C), then C is consistent

Lemma
• let S denote the set of all consistent ground clause sets

• then S is a first-order consistency property with respect to L

Proof.

on the whiteboard
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Prelude: Completeness of First-Order Resolution

Lifting Lemmas

Lemma
• let τ1 and τ2 be ground substitutions and consider

Cτ1 ∨ Aτ1 Dτ2 ∨ ¬Bτ2
Cτ1 ∨ Dτ2

where Aτ1 = Bτ2

• ∃ mgu σ of A and B, such that σ is more general then τ1 and τ2
and the following resolution step is valid:

C ∨ A D ∨ ¬B
(C ∨ D)σ

Proof.

on the whiteboard
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Prelude: Completeness of First-Order Resolution

Lemma
• let τ be ground substitutions and consider the following ground

factoring step:
Cτ ∨ Aτ ∨ Bτ

Cτ ∨ Aτ

where Aτ = Bτ

• ∃ mgu σ, such that σ is more general then τ and the following
resolution step is valid:

C ∨ A D ∨ ¬B
(C ∨ D)σ

Proof.

again the lemma follows from the properties of an mgu
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Prelude: Completeness of First-Order Resolution

Theorem

resolution is complete; if F a sentence and C its clause form, then
2 ∈ Res∗(C) if F is unsatisfiable

Proof.

1 suppose F is unsatisfiable

2 ∃ a set of ground clauses C′ that are instances of the clauses in C
such that C′ is unsatisfiable

3 suppose 2 6∈ Res∗(C′)
4 by definition C′ is consistent

5 by model existence C′ is satisfiable

6 contradiction to our assumption, hence 2 ∈ Res∗(C′)
7 the lifting lemmas allows to lift this derivation to show 2 ∈ Res∗(C)
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Summary

Summary of Last Lecture

Theorem
• let Γ be a resolution refutation of a clause set C
• let n denote the length |Γ| of this refutation (counting the number

of clauses in the refutation)

• then HC(C) 6 22n

Definition
20 = 1 2n+1 = 22n

NB: note that 2n is a non-elementary function

Theorem

∃ a (finite) set of clauses Cn such that HC(Cn) > 1
2 · 2n
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Summary

Outline of the Lecture

Early Approaches in Automated Reasoning

Herbrand’s theorem for dummies, Gilmore’s prover, method of Davis and
Putnam

Starting Points

resolution, tableau provers, Skolemisation, ordered resolution, redundancy
and deletion

Automated Reasoning with Equality

paramodulation, ordered completion and proof orders, superposition

Applications of Automated Reasoning

Neuman-Stubblebinde Key Exchange Protocol, Robbins problem
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Summary

Theorem

∃ clause sets whose refutation in resolution is non-elementarily longer
than its refutation in natural deduction

Proof.

1 consider Statman’s example Cn
2 the shortest resolution refutation is Ω(2n−1)

3 the length of the informal refutation is O(n) and can be formalised
in natural deduction
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Structural Skolemisation

How to Skolemise Properly

Definitions

• if ∀x occurs positively (negatively) then ∀x is called strong (weak)

• dual for ∃x

Definitions
• a formula is called rectified if different quantifiers bind different

variables

• a formula is in negation normal form (NNF), if it does not contain
implication, and every negation sign occurs directly in front of an
atomic formula
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Structural Skolemisation

Inner and Outer (Refutational) Skolemisation

Definition
• let A be a rectified formula and Qx G a subformula of A

• for any subformula Q′y H of G we say Q′y is in scope of Qx ;
denoted as Qx <A Q′y

Definition
• let A be rectified sentence in NNF

• let ∃xB a subformula of A at position p

• let {y1, . . . , yk} = {y | ∀y <A ∃x} and let
{z1, . . . , zl} = FVar(∃xB)

• A[B{x 7→ f (y1, . . . , yk)}] is obtained by an outer Skolemisation step

• A[B{x 7→ f (z1, . . . , zl)}] is obtained by an inner Skolemisation step
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Structural Skolemisation

Structural Skolem Form

Definition

let A be closed, rectified, and in NNF we define the mapping rsk as
follows:

rsk(A) =

{
A no existential quant. in A

rsk(A−∃y ){y 7→ f (x1, . . . , xn)} ∀x1, . . . ,∀xn <A ∃y

1 ∃y is the first existential quantifier in A

2 A−∃y denotes A after omission of ∃y
3 the Skolem function symbol f is fresh

the formula rsk(A) is the (refutational) structural Skolem form of A

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 92/1

Structural Skolemisation

Prenex and Antiprenex Skolem Form

Definitions

• let A be a sentence and A′ a prenex normal form of A; then rsk(A′)
is the prenex Skolem form of A

• the antiprenex form of A is obtained my minimising the quantifier
range by quantifier shifting rules

• if A′ is the antiprenex form of A, then rsk(A′) is the antiprenex
Skolem form

Theorem

let A be a closed formula in NNF, then A ≈ rsk(A)
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Structural Skolemisation

Example

consider F = ∀x(∃yP(x , y) ∧ ∃zQ(z)) ∧ ∀u(¬P(a, u) ∨ ¬Q(u))

G1 = ∀x(P(x , f(x)) ∧ Q(g(x))) ∧ ∀u(¬P(a, u) ∨ ¬Q(u))

G2 = ∀xP(x , f(x)) ∧ Q(c) ∧ ∀u(¬P(a, u) ∨ ¬Q(u))

G3 = ∀x∀u(P(x , h(x , u)) ∧ Q(i(x , u)) ∧ ¬P(a, u) ∨ ¬Q(u))

G1 denotes the refutational structural Skolemisation, G2 the antiprenex
refutational Skolemisation, and G3 is the prenex refutational
Skolemisation

Theorem

1 ∃ a set of sentences Dn with HC(D′n) = 22
2O(n)

for the structural
Skolem form D′n

2 HC(D′′n) > 1
22n for the prenex Skolem form
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Structural Skolemisation

Definition (Andrew’s Skolem form)

let A be a rectified sentence in NNF; (refutational) Andrew’s Skolem
form is defined as follows:

rskA(A) =

{
A no existential quantifiers

rskA(A−∃y ){y 7→ f (~x)} ∀x1, . . . ,∀xn <A ∃y

1 ∃y B is a subformula of A and ∃y is the first existential quantifier
in A

2 all x1, . . . , xn occur free in ∃y B

Theorem

let A be a closed formula in NNF, then A ≈ rskA(A)
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Structural Skolemisation

Example

consider ∀z∀y (∃x P(y , x) ∨ Q(y , z)); Andrew’s Skolem form is given as
follows:

∀z∀y (P(y , f(y)) ∨ Q(y , z))

on the other hand the antiprenex Skolem form is less succinct:

∀z∀y (P(y , g(z , y)) ∨ Q(y , z))

Example

consider ∀y∀z ∃x(P(y , x) ∨ Q(y , z)), then Andrew’s Skolem form is:

∀y∀z (P(y , h(y , z)) ∨ Q(y , z))
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