

Automated Theorem Proving

Institute of Computer Science @ UIBK

Georg Moser

Winter 2015

Lifting Lemmas

Lemma

• let τ_1 and τ_2 be ground substitutions and consider

$$\frac{C\tau_1 \vee A\tau_1 \quad D\tau_2 \vee \neg B\tau_2}{C\tau_1 \vee D\tau_2}$$

where $A\tau_1 = B\tau_2$

• \exists mgu σ of A and B, such that σ is more general then τ_1 and τ_2 and the following resolution step is valid:

> $C \lor A \quad D \lor \neg B$ $(C \lor D)\sigma$

Proof.

on the whiteboard

Completeness of First-Order Resolution

Definitions

- a clause is called ground if it doesn't contain variables
- a ground substitution is a substitution whose range contains only terms without variables
- let $\Box \notin \operatorname{Res}^*(\mathcal{C})$, then \mathcal{C} is consistent

Lemma

- let S denote the set of all consistent ground clause sets
- then S is a first-order consistency property with respect to \mathcal{L}

Proof.

on the whiteboard

GM (Institute of Computer Science @ UIBK Automated Theorem Provin

Prelude: Completeness of First-Order Resolution

Lemma

• let τ be ground substitutions and consider the following ground factoring step:

$$\frac{C\tau \lor A\tau \lor B\tau}{C\tau \lor A\tau}$$

where $A\tau = B\tau$

• \exists mgu σ , such that σ is more general then τ and the following resolution step is valid:

$$\frac{C \lor A \quad D \lor \neg B}{(C \lor D)\sigma}$$

Proof.

again the lemma follows from the properties of an mgu

84/1

Theorem

resolution is complete; if F a sentence and C its clause form, then $\Box \in \text{Res}^*(C)$ if F is unsatisfiable

Proof.

- **1** suppose *F* is unsatisfiable
- **2** \exists a set of ground clauses C' that are instances of the clauses in C such that C' is unsatisfiable
- **3** suppose $\Box \notin \text{Res}^*(\mathcal{C}')$
- 4 by definition \mathcal{C}' is consistent
- **5** by model existence C' is satisfiable
- **6** contradiction to our assumption, hence $\Box \in \mathsf{Res}^*(\mathcal{C}')$
- **7** the lifting lemmas allows to lift this derivation to show $\Box \in \mathsf{Res}^*(\mathcal{C})$

Automated Theorem Proving

GM (Institute of Computer Science @ UIBK)

Summary

Outline of the Lecture

Early Approaches in Automated Reasoning

Herbrand's theorem for dummies, Gilmore's prover, method of Davis and Putnam

Starting Points

resolution, tableau provers, Skolemisation, ordered resolution, redundancy and deletion

Automated Reasoning with Equality

paramodulation, ordered completion and proof orders, superposition

Applications of Automated Reasoning

Neuman-Stubblebinde Key Exchange Protocol, Robbins problem

Summary of Last Lecture

Theorem

- let Γ be a resolution refutation of a clause set ${\mathcal C}$
- let n denote the length |Γ| of this refutation (counting the number of clauses in the refutation)
- then $HC(\mathcal{C}) \leq 2^{2n}$

Definition

$$2_0 = 1$$
 $2_{n+1} = 2^{2_n}$

Automated Theorem Proving

NB: note that 2_n is a non-elementary function

Theorem

 \exists a (finite) set of clauses C_n such that $HC(C_n) \ge \frac{1}{2} \cdot 2_n$

GM (Institute of Computer Science @ UIBK)

Summary

Theorem

 \exists clause sets whose refutation in resolution is non-elementarily longer than its refutation in natural deduction

Proof.

- **1** consider Statman's example C_n
- **2** the shortest resolution refutation is $\Omega(2_{n-1})$
- 3 the length of the informal refutation is O(n) and can be formalised in natural deduction

How to Skolemise Properly

Definitions

- if $\forall x$ occurs positively (negatively) then $\forall x$ is called strong (weak)
- dual for $\exists x$

Definitions

- a formula is called rectified if different quantifiers bind different variables
- a formula is in negation normal form (NNF), if it does not contain implication, and every negation sign occurs directly in front of an atomic formula

Automated Theorem Proving

GM (Institute of Computer Science @ UIBK

90/1

Α

structural Skolemisation

Structural Skolem Form

Definition

let A be closed, rectified, and in NNF we define the mapping rsk as follows:

$$\mathsf{rsk}(A) = \begin{cases} A & \text{no existential quant. in} \\ \mathsf{rsk}(A_{-\exists y}) \{ y \mapsto f(x_1, \dots, x_n) \} & \forall x_1, \dots, \forall x_n <_A \exists y \end{cases}$$

- **1** $\exists y$ is the first existential quantifier in A
- **2** $A_{-\exists y}$ denotes A after omission of $\exists y$
- **3** the Skolem function symbol f is fresh

the formula rsk(A) is the (refutational) structural Skolem form of A

Inner and Outer (Refutational) Skolemisation

Definition

- let A be a rectified formula and $Q \times G$ a subformula of A
- for any subformula Q'y H of G we say Q'y is in scope of Qx; denoted as Qx <_A Q'y

Definition

- let A be rectified sentence in NNF
- let $\exists xB$ a subformula of A at position p
- let $\{y_1, \ldots, y_k\} = \{y \mid \forall y <_A \exists x\}$ and let $\{z_1, \ldots, z_l\} = \mathcal{FV}ar(\exists xB)$
- $A[B\{x \mapsto f(y_1, \ldots, y_k)\}]$ is obtained by an outer Skolemisation step
- $A[B\{x \mapsto f(z_1, ..., z_l)\}]$ is obtained by an inner Skolemisation step

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving

Prenex and Antiprenex Skolem Form

Definitions

- let A be a sentence and A' a prenex normal form of A; then rsk(A') is the prenex Skolem form of A
- the antiprenex form of A is obtained my minimising the quantifier range by quantifier shifting rules
- if A' is the antiprenex form of A, then rsk(A') is the antiprenex Skolem form

Theorem

let A be a closed formula in NNF, then $A \approx rsk(A)$

Example

consider $F = \forall x (\exists y \mathsf{P}(x, y) \land \exists z \mathsf{Q}(z)) \land \forall u (\neg \mathsf{P}(\mathsf{a}, u) \lor \neg \mathsf{Q}(u))$ $G_1 = \forall x (\mathsf{P}(x, \mathsf{f}(x)) \land \mathsf{Q}(\mathsf{g}(x))) \land \forall u (\neg \mathsf{P}(\mathsf{a}, u) \lor \neg \mathsf{Q}(u))$ $G_2 = \forall x \mathsf{P}(x, \mathsf{f}(x)) \land \mathsf{Q}(\mathsf{c}) \land \forall u (\neg \mathsf{P}(\mathsf{a}, u) \lor \neg \mathsf{Q}(u))$ $G_3 = \forall x \forall u (\mathsf{P}(x, \mathsf{h}(x, u)) \land \mathsf{Q}(\mathsf{i}(x, u)) \land \neg \mathsf{P}(\mathsf{a}, u) \lor \neg \mathsf{Q}(u))$

 G_1 denotes the refutational structural Skolemisation, G_2 the antiprenex refutational Skolemisation, and G_3 is the prenex refutational Skolemisation

Theorem

■ ∃ a set of sentences \mathcal{D}_n with $HC(\mathcal{D}'_n) = 2^{2^{2^{O(n)}}}$ for the structural Skolem form \mathcal{D}'_n

Automated Theorem Proving

2 HC(\mathcal{D}''_n) $\geq \frac{1}{2}2_n$ for the prenex Skolem form

GM (Institute of Computer Science @ UIBK

Structural Skolemisation

Example

consider $\forall z \forall y \ (\exists x \ \mathsf{P}(y, x) \lor \mathsf{Q}(y, z))$; Andrew's Skolem form is given as follows:

 $\forall z \forall y \ (\mathsf{P}(y,\mathsf{f}(y)) \lor \mathsf{Q}(y,z))$

on the other hand the antiprenex Skolem form is less succinct:

 $\forall z \forall y \ (\mathsf{P}(y,\mathsf{g}(z,y)) \lor \mathsf{Q}(y,z))$

Example

consider $\forall y \forall z \exists x (P(y, x) \lor Q(y, z))$, then Andrew's Skolem form is:

 $\forall y \forall z \ (\mathsf{P}(y,\mathsf{h}(y,z)) \lor \mathsf{Q}(y,z))$

Definition (Andrew's Skolem form)

let *A* be a rectified sentence in NNF; (refutational) Andrew's Skolem form is defined as follows:

$$\mathsf{sk}_{\mathcal{A}}(\mathcal{A}) = \begin{cases} \mathcal{A} & \text{no existential quantifiers} \\ \mathsf{rsk}_{\mathcal{A}}(\mathcal{A}_{-\exists y})\{y \mapsto f(\vec{x})\} & \forall x_1, \dots, \forall x_n <_{\mathcal{A}} \exists y \end{cases}$$

- $\exists y \ B$ is a subformula of A and $\exists y$ is the first existential quantifier in A
- **2** all x_1, \ldots, x_n occur free in $\exists y B$

Theorem

let A be a closed formula in NNF, then $A \approx \operatorname{rsk}_A(A)$

GM (Institute of Computer Science @ UIBK) Automated Theorem Provin

95/