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Summary

Summary of Last Lecture

Definition
• let A be closed and rectified

• we define the mapping rsk as follows:

rsk(A) =

{
A no existential quant. in A

rsk(A−∃y ){y 7→ f (x1, . . . , xn)} ∀x1, . . . ,∀xn <A ∃y

1 ∃y is the first existential quantifier in A
2 A−∃y denotes A after omission of ∃y
3 the Skolem function symbol f is fresh

• the formula rsk(A) is the (refutational) structural Skolem form of A
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Summary

Inner and Outer (Refutational) Skolemisation

Definition

• let A be rectified sentence in negation normal form (NNF)

• let ∃xB a subformula of A at position p

• let {y1, . . . , yk} = {y | ∀y <A ∃x} and let
{z1, . . . , zl} = FVar(∃xB)

• A[B{x 7→ f (y1, . . . , yk)}] is obtained by an outer Skolemisation step

• A[B{x 7→ f (z1, . . . , zl)}] is obtained by an inner Skolemisation step

Example

1 structural Skolemisation is a variation of outer Skolemisation

2 Andrew’s Skolemisation is a variation of inner and outer
Skolemisation
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Summary

Outline of the Lecture

Early Approaches in Automated Reasoning

Herbrand’s theorem for dummies, Gilmore’s prover, method of Davis and
Putnam

Starting Points

resolution, tableau provers, Skolemisation, ordered resolution, redundancy
and deletion

Automated Reasoning with Equality

paramodulation, ordered completion and proof orders, superposition

Applications of Automated Reasoning

Neuman-Stubblebinde Key Exchange Protocol, Robbins problem
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Inner Skolemisation

Definition (Optimised Skolemisation)

• let A be a sentence in NNF and B = ∃x1 · · · ∃xk(E ∧ F ) a
subformula of A with FVar(∃~x(E ∧ F )) = {y1, . . . , yn}

• suppose A = C [B]

• suppose A→ ∀y1, . . . ,∀yn∃x1 · · · ∃xkE is valid

• we define an optimised Skolemisation step as follows

opt step(A) = ∀~yE{. . . , xi 7→ fi (~y), . . . }∧C [F{. . . , xi 7→ fi (~y), . . . }]

where f1, . . . , fk are new Skolem function symbols

Example

consider a subformula of a sentence A

∀x∀y∀z(R(x , y) ∧ R(x , z)→ ∃u(R(y , u) ∧ R(z , u)))

we exemplarily assume ∀y∃uR(y , u) is provable from A; we obtain

R(y , f(y , z)) ¬R(x , y) ∨ ¬R(x , z) ∨ R(z , f(y , z))
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Inner Skolemisation

Theorem

optimised Skolemisation preserves satisfiability

Proof Sketch.

1 suppose A is satisfiable with some interpretation I
2 we extent I to the Skolem functions such that we obtain for the

extention I ′

I ′ |= ∀~yE{. . . , xi 7→ fi (~y), . . . } I ′ |= C [F{. . . , xi 7→ fi (~y), . . . }]

3 for this the extra condition is exploited

Remark

note that in optimised Skolemisation some literals are deleted from clauses
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Inner Skolemisation

Definition
• a clause C subsumes clause D, if ∃ σ such that the multiset of

literals of Cσ is contained in the multiset of literals of D (denoted
Cσ ⊆ D)

• C is a condensation of D if C is a proper (multiple) factor of D that
subsumes D

Example

consider the clause P(x) ∨ R(b) ∨ P(a) ∨ R(z); its condensation is
R(b) ∨ P(a)

NB: condensation forms a strong normalisation technique that is
essential to remove redundancy in clauses

Example

note that the clause R(x , x) ∨ R(y , y) does not subsume R(a, a)
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Inner Skolemisation

Definition

• let B = ∃~x(E1 ∧ · · · ∧ E`) be a formula

• let {~z1} = FVar(E1) \ {~x}

• let {~zi} = FVar(Ei ) \
(⋃

j<i FVar(Ej) ∪ {~x}
)

• we call 〈{~z1}, . . . , {~z`}〉 the (free variable) splitting of B

Example
consider ∃u(R(y , u) ∧ R(z , u)); its splitting is 〈{y}, {z}〉

Observation

• let 〈{~z1}, . . . , {~z`}〉 be a splitting of ∃~x(E1 ∧ · · · ∧ E`)

• assume each conjunct Ei contains at least one of the variables from
~x

• 〈{~z1, ~z2}, . . . , {~z`}〉 is a splitting of ∃~v(E2 ∧ · · · ∧ E`){xi 7→ fi (~z1, ~v)}
where ~v are new
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Inner Skolemisation

Definition (Strong Skolemisation)

• let A be a sentence in NNF and B = ∃~x(E1 ∧ · · · ∧ E`) a subformula
such that A = C [B]

• let 〈{~z1}, . . . , {~z`}〉 be a free variable splitting of B

• a strong Skolemisation step is defined as str step(A) = C [D] where
D is defined as

∀~w2, . . . , ~w`E1{xi 7→ fi (~z1, ~w2, . . . , ~w`)} ∧ · · ·
· · · ∧ E`{xi 7→ fi (~z1, ~z2, . . . , ~z`)}

Example

consider the formula ∀x∀y∀z(R(x , y) ∧ R(x , z)→ ∃u(R(y , u) ∧ R(z , u)))
strong Skolemisation yields the following clauses

¬R(x , y)∨¬R(x , z)∨R(y , f(y ,w)) ¬R(x , y)∨¬R(x , z)∨R(z , f(y , z))

condensation of the first clause yields: ¬R(x , y) ∨ R(y , f(y ,w))
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Inner Skolemisation

Lemma

if ∃x1 . . . ∃xk(E ∧ F ) is satisfiable, then the following formula is
satisfiable as well

∀w1 . . . ∀wkE{xi 7→ fi (~y , ~w)} ∧ ∃v1 . . . ∀vkF{xi 7→ fi (~y , ~v)}
where {y1, . . . , yn} = FVar(E ) \ {x1, . . . , xk}

Theorem

strong Skolemisation preserves satisfiability

Proof Sketch.
• suppose A is satisfiable

• one shows satisfiability of str step(A) by main induction on A and
side induction on `

• the base case exploits the above lemma
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Inner Skolemisation

Assessment

structural Skolemisation

• structural (outer) Skolemisation can lead to non-elementary
speed-up over prenex Skolemisation

• structural Skolemisation requires non-trivial formula transformations,
in particular quantifier shiftings

• how to implement?

inner Skolemisation
• standard inner Skolemisation techniques are straightforward to

implement

• optimised Skolemisation requires proof of A→ ∀~y∃~xE as
pre-condition

• strong Skolemisation is incomparable to optimised Skolemisation, as
larger, but more general clauses may be produced
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Orders

Definitions
• a proper order is a irreflexive and transitive relation

• a quasi-order is reflexive and transitive

• a partial order is an anti-symmetric quasi-order

• a proper order � on a set A is well-founded (on A) if

¬∃ a1 � a2 � · · · ai ∈ A

• a well-founded order is a well-founded proper order

• a linear (or total) order fulfills:
∀ a, b ∈ A, a 6= b, either a � b or b � a

• a well-order is a linear well-founded order

Example

> on N is a partial order; we often write (N,>) to indicate the domain;
(N,>) is not well-founded, but (N, >) is a well-order
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Orders

Orders on Literals

Definition
• let � be a well-founded and total order on ground atomic formulas

• extend � to a well-founded proper order �L total on ground literals
such that:

1 if A � B, then A �L B and ¬A �L ¬B
2 ¬A �L A

Example

• consider a well-founded proper order � on atoms that is total on
ground atomic formulas

• identify an atom A with the multiset {A} and ¬A with {A,A}
• set �L=�mul

• �L fulfills the above conditions
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Orders

Ordered Resolution Calculus

Definition
• a literal L is maximal if ∃ ground σ such that for no other literal M:
Mσ �L Lσ

• L is strictly maximal if ∃ ground σ such that for no other literal M:
Mσ <L Lσ; here <L denotes the reflexive closure

σ is ground if Eσ is ground

Definition
ordered resolution ordered factoring

C ∨ A D ∨ ¬B
(C ∨ D)σ

C ∨ A ∨ B
(C ∨ A)σ

1 σ is a mgu of the atomic formulas A and B

2 Aσ is strictly maximal with respect to Cσ; ¬Bσ is maximal with
respect to Dσ
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Orders

Example

consider the clause set (constants a, b, predicates P,Q,R,S)

P(x) ∨ Q(x) ∨ R(x , y) ¬P(x) ¬Q(a)

S(a, y) ∨ ¬R(a, y) ∨ S(x , b) ¬S(a, b) ∨ ¬R(a, b)

together with the atom order P(t1) � Q(t2) � S(t3, t4) � R(t5, t6)

Π

P(x) ∨ Q(x) ∨ R(x , y) ¬P(x)

Q(x) ∨ R(x , y) ¬Q(a)

R(a, y)
σ = {x 7→ a}

Π
R(a, y)

S(a, y) ∨ ¬R(a, y) ∨ S(x , b)

S(a, b) ∨ ¬R(a, b)
σ1 ¬S(a, b) ∨ ¬R(a, b)

¬R(a, b) ∨ ¬R(a, b)

¬R(a, b)
2 σ2
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Orders

Intermission
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Orders

Summary Last Lecture

Definition
• a literal L is maximal if ∃ ground σ such that for no other literal M:
Mσ �L Lσ

• L is strictly maximal if ∃ ground σ such that for no other literal M:
Mσ <L Lσ; here <L denotes the reflexive closure

Definition
ordered resolution ordered factoring

C ∨ A D ∨ ¬B
(C ∨ D)σ

C ∨ A ∨ B
(C ∨ A)σ

1 σ is a mgu of the atomic formulas A and B

2 Aσ is strictly maximal with respect to Cσ; ¬Bσ is maximal with
respect to Dσ
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Orders

Outline of the Lecture

Early Approaches in Automated Reasoning

Herbrand’s theorem for dummies, Gilmore’s prover, method of Davis and
Putnam

Starting Points

resolution, tableau provers, Skolemisation, ordered resolution, redundancy
and deletion

Automated Reasoning with Equality

paramodulation, ordered completion and proof orders, superposition

Applications of Automated Reasoning

Neuman-Stubblebinde Key Exchange Protocol, Robbins problem
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Soundness and Completeness of Ordered Resolution

Definition

• define the ordered resolution operator ResOR(C) as follows:

ResOR(C) = {D | D is ordered res./factor with premises in C}

• nth (unrestricted) iteration ResnOR (Res∗OR) of the operator ResOR is
defined as for unrestricted resolution

Theorem

ordered resolution is sound and complete; let F be a sentence and C its
clause form; then F is unsatisfiable iff 2 ∈ Res∗OR(C)

Proof Plan.

completeness of
ordered resolution

model existencelemmas

C set of consistent ground clauses
⇒ C first-order consistency prop-
erty + lifting lemmas
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Soundness and Completeness of Ordered Resolution

Recall
• let G be a set of universal sentences (of L) without =

• G has a Herbrand model or G is unsatisfiable; in the latter case the
following statements hold (and are equivalent):

1 ∃ finite subset S ⊆ Gr(G); conjunction
∧
S is unsatisfiable

2 ∃ finite subset S ⊆ Gr(G); disjunction
∨
{¬A | A ∈ S} is valid

Proof of Completeness.
1 extend �L to an order on clauses �C

2 a clause set C is maximal if

¬∃D = D′ ∪ {D}
(
C = D′ ∪ {D1, . . . ,Dn}, ∀i D �C Di

and there is no E ∈ D′, E �C D
)

3 choose a maximal unsatisfiable clause set C
continue according to proof plan

this proves ground completeness; completeness follows by reformulation
of the lifting lemmas
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Lock Resolution

Lock Resolution

Definition

a pair (L, i), L a literal, i ∈ N is an indexed literal; different literals are
indexed with different numbers

Definition
lock resolution lock factoring

C ∨ (A, i) D ∨ (¬B, j)
(C ∨ D)σ

C ∨ (A, i) ∨ (B, k)

(C ∨ (A, i))σ

1 σ is a mgu of the atomic formulas A and B

2 i is minimal with respect to C ; j is minimal with respect to D

3 i is minimal with respect to C ∨ (B, k), i 6 k

Remark

indexing represents an a priori literal order, blind on substitutions
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Lock Resolution

Example

consider the indexed clause set C = {
1

¬P(x),
3

¬Q(a),
5

¬S(a, b) ∨
8

¬R(a, b),
2

P(x) ∨
4

Q(x) ∨
10

R(x , y),
6

S(a, y) ∨
9

¬R(a, y) ∨
7

S(x , b)}

Π

2

P(x) ∨
4

Q(x) ∨
10

R(x , y)
1

¬P(x)
4

Q(x) ∨
10

R(x , y)
3

¬Q(a)
10

R(a, y)

σ = {x 7→ a}

Π
10

R(a, y)

6

S(a, y) ∨
9

¬R(a, y) ∨
7

S(x , b)
6

S(a, b) ∨
9

¬R(a, b)

σ1
5

¬S(a, b) ∨
8

¬R(a, b)
8

¬R(a, b) ∨
9

¬R(a, b)
8

¬R(a, b)
2 σ2
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Lock Resolution

Definition

• define the lock resolution operator ResL(C) as follows:

ResL(C) = {D | D is lock res./factor with premises in C}
• nth (unrestricted) iteration ResnL (Res∗L) of the operator ResL is

defined as for unrestricted resolution

Theorem

lock resolution is sound and complete; let F be a sentence and C its
clause form; then F is unsatisfiable iff 2 ∈ Res∗L(C)

Proof.

lock resolution is a refinement, thus soundness is trivial; completeness
follows as for ordered resolution
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Redundancy and Deletion

Redundancy and Deletion

Definition

define resolution operator Res(C)

• Res(C) = {D | D is resolvent or factor with premises in C}
• Res0(C) = C; Resn+1(C) := Resn(C) ∪ Res(Resn(C))

• Res∗(C) :=
⋃

n>0 Resn(C)

Definition

• let d(C) = min{n | 2 ∈ Resn(C)}
• the search complexity of Res wrt clause set C is

scomp(C) = |Resd(C)(C)|

Question

howto reduce the search complexity (of resolution refinements)?
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Redundancy and Deletion

Answer

three answers:

1 refinements
consider refutational complete restrictions of resolution

2 redundancy tests
redundancy can appear in the form of circular derivations or in that
of tautology clauses

3 heuristics
. . .

Remarks
• refinements reduce the search space as fewer derivations are

possible, however the minimal proof length may be increased

• redundancy tests cannot increase the proof length, but may be costly
call a clause D redundant in C if ∃C1, . . . ,Ck with C1, . . . ,Ck |= D
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Subsumption and Tautology Elimination

Lemma

application of subsumption and tautology elimination as pre-procession
steps preserves completeness

Definition

subsumption and resolution can be combined in the following ways

1 forward subsumption
newly derived clauses subsumed by existing clauses are deleted

2 backward subsumption
existing clauses C subsumed by newly derived clauses D become
inactive; inactive clauses have to be reactivated, if D is no longer an
ancestor of current clause (e.g. D has been deleted)

3 replacement
the set of all clauses (derived and initial) are frequently reduced
under subsumption
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Subsumption and Tautology Elimination

Tautology Elimination

Definition
• a clause C containing complementary literals is a tautology

• tautology elimination is the process of removing newly derived
tautological clauses (that is, we assume the initial clause set is
taut-reduced)

Example

consider the clause

P(f(a, b)) ∨ ¬P(f(x , b)) ∨ ¬P(f(a, y))

factoring yields the tautology P(f(a, b)) ∨ ¬P(f(a, b))
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Subsumption and Tautology Elimination

Example

consider the following (tautology free) clause set C

P(x) ∨ R(x) R(x) ∨ ¬P(x) P(x) ∨ ¬R(x) ¬P(x) ∨ ¬R(x)

we have scomp(C) = 15 for unrestricted resolution; however the following
resolution steps derive tautologies

P(x) ∨ R(x) ¬P(x) ∨ ¬R(x)

P(x) ∨ ¬P(x)

P(x) ∨ R(x) ¬P(x) ∨ ¬R(x)

R(x) ∨ ¬R(x)

Lemma

1 tautology elimination is not complete for lock resolution

2 tautology elimination is complete for unrestricted and ordered
resolution
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Subsumption and Tautology Elimination

Theorem

1 (ordered) resolution (for any well order � on ground atoms) is
complete under forward subsumption

2 forward subsumption does not increase the search complexity of
(ordered) resolution

Proof Sketch.

1 let C ′, C , D ′, D be clauses such that C ′ subsumes C and D ′

subsumes D

2 one shows that if E is a resolvent of C and D, then one of the
following cases happens:

• C ′ subsumes E
• D ′ subsumes E
• ∃ resolvent E ′ of C ′ and D ′ such that E ′ subsumes E

3 using this observation in an inductive argument, completeness
follows

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 124/1

Subsumption and Tautology Elimination

Lemma

lock resolution is not complete under forward subsumption

Proof.

1 let C , D be indexed clauses; we say an C subsumes D if the clause
part of C subsumes the clause part of D

2 consider the following clause set C
5

P(x) ∨
1

R(x)
6

R(x) ∨
3

¬P(x)
4

P(x) ∨
7

¬R(x)
8

¬P(x) ∨
2

¬R(x)

3 the following clauses are derivable by lock resolution and essential to
derive 2

6

R(x) ∨
8

¬P(x)
8

¬P(x) ∨
7

¬R(x)

4 however these are subsumed by
6

R(x) ∨
3

¬P(x) and
8

¬P(x) ∨
2

¬R(x)
respectively
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Subsumption and Tautology Elimination

Example

consider the following set of clauses

C1 : P(f(x)) ∨ R(x) ∨ ¬P(f(x)) C2 : P(x) ∨ Q(x)

C3 : R(f(x)) C4 : Q(x) ∨ ¬R(x)

C5 : ¬Q(f(x))

C1 can be resolved with C2, C4 and itself

Lemma

let C and D be clauses and C a tautology; any resolvent of C and D is
either a tautology or subsumed by D

Theorem

(ordered) resolution is complete under forward subsumption and
tautology elimination
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