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Summary

Reconciling Computational Logic and Automated Theorem
Proving

Theorem (Fitting)

if C is first-order consistency property with respect to L and S ∈ C is set
of sentences over L then S is satisfiable in Herbrand model with respect
to Lpar

Theorem

1 if S∗ is a set of formula sets of L+ having the satisfaction
properties, then ∀ formula sets G ∈ S∗ of L, ∃ M, M |= G

2 ∀ elements m of M: m denotes term in L+

Fact

same result!
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Summary

Reconciling (cont’d)

Definition (Optimised Skolemisation)

• let A be a sentence in NNF and B = ∃x1 · · · ∃xk(E ∧ F ) a
subformula of A with FVar(∃~x(E ∧ F )) = {y1, . . . , yn}

• suppose A = C [B]

• suppose A→ ∀y1, . . . ,∀yn∃x1 · · · ∃xkE is valid

• we define an optimised Skolemisation step as follows

opt step(A) = ∀~yE{. . . , xi 7→ fi (~y), . . . }∧C [F{. . . , xi 7→ fi (~y), . . . }]

where f1, . . . , fk are new Skolem function symbols

Theorem (Skolemization)
. . .
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Summary

Summary Last Lecture

Definition

subsumption and resolution can be combined in the following ways

1 forward subsumption
newly derived clauses subsumed by existing clauses are deleted

2 backward subsumption
existing clauses C subsumed by newly derived clauses D become
inactive
inactive clauses are reactivated, if D is no ancestor of current clause

3 replacement
the set of all clauses (derived and intital) are frequently reduced
under subsumption

Theorem

(ordered) resolution is complete under forward subsumption and
tautology elimination
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Summary

Outline of the Lecture

Early Approaches in Automated Reasoning

Herbrand’s theorem for dummies, Gilmore’s prover, method of Davis and
Putnam

Starting Points

resolution, tableau provers, Skolemisation, ordered resolution, redundancy
and deletion

Automated Reasoning with Equality

paramodulation, ordered completion and proof orders, superposition

Applications of Automated Reasoning

Neuman-Stubblebinde Key Exchange Protocol, Robbins problem
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Model Existence with Equality

Definition (Satisfaction Properties)

let L+ be an extension of L with infinitely many individual constants (=
parameters); let S be a set of sets of formulas over L+ such that

1 if G0 ⊆ G, then G0 ∈ S

2 no formula F and ¬F in G
3 if ¬¬F ∈ G, then G ∪ {F} ∈ S

4 if (E ∨ F ) ∈ G, then G ∪ {E} ∈ S or G ∪ {F} ∈ S

5 if ¬(E ∨ F ) ∈ G, then G ∪ {¬E} ∈ S and G ∪ {¬F} ∈ S

6 if ∃xF (x) ∈ G, the constant c doesn’t occur in G, then
G ∪ {F (c)} ∈ S

7 if ¬∃xF (x) ∈ G, then ∀ terms t, G ∪ {¬F (t)} ∈ S

8 for any term t, G ∪ {t = t} ∈ S

9 if {F (s), s = t} ⊆ G, then G ∪ {F (t)} ∈ S

then S has the satisfaction properties (= is first-order consistency
property)
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Model Existence with Equality

First-Order Model Existence with Equality

L base language; L+ ⊇ L infinitely many new individual constants

Theorem (Model Existence Theorem (with Equality))

1 if S∗ is a set of formula sets of L+ having the satisfaction
properties, then ∀ formula sets G ∈ S∗ of L, ∃ M, M |= G

2 ∀ elements m of M: m denotes term in L+

model existenceLemma À Lemma Á

Hintikka’s Lemma
S admits satisfaction properties ⇒
G ∈ S admits Hintikka set
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Model Existence with Equality

Closure Properties (= Hintikka set)

Lemma

the set G of formulas that are true in M admit

1 no formula F and ¬F in G
2 if ¬¬F ∈ G, then F ∈ G
3 if (E ∨ F ) ∈ G, then E ∈ G or F ∈ G
4 if ¬(E ∨ F ) ∈ G, then ¬E ∈ G and ¬F ∈ G
5 if ∃xF (x) ∈ G, then ∃ term t (of L+), F (t) ∈ G
6 if ¬∃xF (x) ∈ G, then ∀ term t (of L+), ¬F (t) ∈ G
7 ∀ term t (of L+), t = t ∈ G
8 if F (s) ∈ G, s = t ∈ G, then F (t) ∈ G

Definition

we call the properties of G closure properties (= Hintikka set)
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Model Existence with Equality

Lemma À

1 let G be a formula set admitting the closure properties

2 then ∃ interpretation M in which every element of the domain is
the denotation of some term

3 M |= G

Lemma Á

1 let L be a language; L+ extension of L with infinitely many
individual constants

2 let S∗ be a set of formula sets (of L+), let S∗ admit the satisfaction
properties

3 ∀ formula set G ∈ S∗ (of L), ∃ G∗ ⊇ G (of L+), such that G∗ fulfils
the closure properties

Proof of Model Existence

by Lemma Á and Lemma À
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Model Existence with Equality

Proof of Lemma À
(no identity, no function symbols)

• let G be a formula set admitting the closure properties

• then ∃ interpretation M in which every element of the domain is
the denotation of some term

• M |= G

Proof

1 the domain of M is the set of terms (of L+)

2 ∀ constants c

cM := c

3 ∀ predicate constant P, ∀ terms t1, . . . , tn:

(t1, . . . , tn) ∈ PM ⇐⇒ P(t1, . . . , tn) ∈ G

4 ∀ variables x : `(x) := x
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Model Existence with Equality

Proof (cont’d)

5 definition of M takes care of the demand that every element of its
domain is the denotation of a term

6 we claim ∀ formulas F : F ∈ G ⇒M |= F

Claim: F ∈ G ⇒M |= F
we show the claim by induction on F :

• for the base case, let F = P(t1, . . . , tn), if F ∈ G, then by definition
(t1, . . . , tn) ∈ PM; hence M |= F

• for the step case, we assume F = ∃xG (x) and F ∈ G; the other
cases are similar

by assumption G fulfils the closure properties, hence there exists a
term t such that G (t) ∈ G

by induction hypothesis: M |= G (t) and thus M |= ∃xG (x)
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Model Existence with Equality

Model Construction in a Picture

set of terms over L+

...
k5
k4
k3
k2
k1
k0

...
x7
x6
x5
x4
x3
x2
x1
x0

domain of M

...
k5
k4
k3
k2
k1
k0

...
x7
x6
x5
x4
x3
x2
x1
x0

M

`

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 137/1



Model Existence with Equality

Proof of Lemma Á
(no identity, no function symbols)

• let L be a language; L+ extension of L with infinitely many
individual constants

• let S∗ be a set of formula sets (of L+), let S∗ admit the satisfaction
properties

• ∀ formula set G ∈ S∗ (of L), ∃ G∗ ⊇ G (of L+), such that G∗ fulfils
the closure properties

Proof

• construct sequence of sets belonging to S∗

G = G0,G1,G2, . . . Gn ⊆ Gn+1

• Gn is constructed in step n

• set G∗ =
⋃

n>0 Gn
• closure properties induce (infinitely many) demands
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Model Existence with Equality

Proof (cont’d)

Demands

1 no formula F and ¬F in Gn for all n > 0

2 if ¬¬F ∈ Gn, then ∃k > n, Gk+1 = Gk ∪ {F}
3 if (E ∨ F ) ∈ Gn, then ∃k > n, Gk+1 = Gk ∪ {E} or Gk+1 = Gk ∪ {F}
4 if ¬(E ∨ F ) ∈ Gn, then ∃k1, k2 > n, Gk1+1 = Gk1 ∪ {¬E} and
Gk2+1 = Gk2 ∪ {¬F}

5 if ∃xF (x) ∈ Gn, then ∃ term t, ∃k > n, Gk+1 = Gk ∪ {F (t)}
6 if ¬∃xF (x) ∈ Gn, then ∀ term t, ∃k > n, Gk+1 = Gk ∪ {¬F (t)}
7 ∀ terms t, ∃k > n such that t = t ∈ Gk
8 if F (s) ∈ Gn, and s = t ∈ Gn, ∃k > n F (t) ∈ Gk

Claim

all demands can be granted, in particular the satisfaction properties guar-
antee that any demand can be met
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Model Existence with Equality

Proof (cont’d)

• consider Demand 5:
if ∃xF (x) ∈ Gn, then ∃ term t, ∃k > n, Gk+1 = Gk ∪ {F (t)}

• we use that S∗ fulfils the satisfaction properties (c is fresh):

∃xF (x) ∈ Gn ∈ S∗ ⇒ ∀k > n Gk ∪ {F (c)} ∈ S∗

• we fulfil demand by setting (at step k)

Gk+1 := Gk ∪ {F (c)} for fresh c

• similar for the Demands 2–8

Claim: ∃ fair strategy

• assign a pair (i , n) to each demand except Demand 6
assign triple (i , n, ptq) to Demand 6, i is the number of the demand
raised at step n, ptq Gödel number of t

• enumerate all pairs or triples and encode them as number k

• in step k we grant the demand raised at step n
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Model Existence with Equality

Saturation of G in a Picture

formula set G = G0

...

¬¬T (k0, k1)

∃xR(x)

P(x3) ∨ Q(k0)

formula set Gk+1, k > 0

∃xF (x) ∈ Gn, then ∃k > n, ∃ term t, Gk+1 = Gk ∪ {F (t)}

...

R(k2)

¬¬T (k0, k1)

∃xR(x)

P(x3) ∨ Q(k0)
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Model Existence with Equality

Generalisation I: Function Constants
Lemma À (revisited)

1 let G be a formula set admitting the closure properties

2 suppose that L is free of the equality symbol

3 then ∃ interpretation M in which every element of the domain is
the denotation of some term

4 M |= G

Proof.

1 t1, . . . , tn elements of M and f an n-ary function symbol in L
2 define: fM(t1, . . . , tn) := f (t1, . . . , tn)

3 following the earlier proof, we verify M |= G

this extends model existence to first-order logic (without =)
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Model Existence with Equality

Generalisation II: Equality

Lemma À (revisited again)

1 let G be a formula set admitting the closure properties

2 then ∃ interpretation M in which every element of the domain is
the denotation of some term

3 M |= G

Proof.

1 suppose (s = t) ∈ G, where s and t are syntactically different

2 for M according to the original construction, we have M 6|= s = t

3 define a variant of the model M, denoted as M′

4 consider the set E of all equations induced by G:

E = {s = t | G |= s = t}
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Model Existence with Equality

Proof (cont’d).

5 E gives rise to an equivalence relation ∼
6 domain of M′ is set of equivalent classes of terms of L+

7 [t]∼ denotes the equivalence class of t

8 definition of the structure underlying M′:

fM([t1]∼, . . . , [tn]∼) = [f (t1, . . . , tn)]∼ f is n-ary function
PM([t1]∼, . . . , [tn]∼)⇐⇒ P(t1, . . . , tn) ∈ G P is n-ary predicate

9 from this M′ |= G

this extends model existence to full first-order logic
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Paramodulation

Paramodulation Calculus

Definition
• let 2 be a fresh constant; let L be our basic language

• terms of L ∪ {2} such that 2 occurs exactly once, are called
contexts

• empty context is denoted as 2

• for context C [2] and a term t
we write C [t] for the replacement of 2 by t

Example

• let L = {c, f,P}
• P(f(2)) =: C [2] is a context

• C [f(c)] = P(f(f(c)))

GM (Institute of Computer Science @ UIBK) Automated Theorem Proving 145/1



Paramodulation

Definition

C ∨ A D ∨ ¬B
(C ∨ D)σ1

C ∨ A ∨ B
(C ∨ A)σ1

C ∨ s 6= s ′

Cσ2

C ∨ s = t D ∨ L[s ′]

(C ∨ D ∨ L[t])σ2

• σ1 is a mgu of A and B (A, B atomic)

• σ2 is a mgu of s and s ′

Example

consider C = {c 6= d, b = d, a 6= d ∨ a = c, a = b ∨ a = d}
b = d a = b ∨ a = d

a = d ∨ a = d
a = d c 6= d

a 6= c

a = d a 6= d ∨ a = c

d 6= d ∨ a = c
a = c

2
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Paramodulation

Definition

• define the paramodulation operator ResP(C) as follows:

ResP(C) = {D | D is paramodulant, etc. with premises in C}

• nth (unrestricted) iteration ResnP (Res∗P) of the operator ResP is
defined as before

Theorem

paramodulation is sound and complete: if F is a sentence and C its
clause form, then F is unsatisfiable iff 2 ∈ Res∗P(C)

Proof Plan.

completeness of
paramodulation

model existencelemmas

C set of consistent ground clauses
⇒ C admits satisfaction properties
+ lifting lemmas
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Paramodulation

A Problem with Lifting

Claim
• let τ1 and τ2 be a ground and consider

Cτ1 ∨ (s = t)τ1 Dτ2 ∨ Lτ2[s ′τ2]

Cτ1 ∨ Dτ2 ∨ Lτ2[tτ2]

where sτ1 = s ′τ2

• ∃ mgu σ of s and s ′, such that σ is more general then τ1 and τ2 and
the following paramodulation step is valid

C ∨ s = t D ∨ L[s ′]

(C ∨ D ∨ L[t])σ

Fact

observe that paramodulation into variables is allowed
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Paramodulation

Example

• consider the following unit clauses

a = b f(x) = c

consider the paramodulation inference is f(b) = c

• consider the following ground step:

a = b f(f(a)) = c

f(f(b)) = c

then no lifting is possible: oops /. . .

• we add the functional reflexivity equation f(x) = f(x) from which we
get f(a) = f(b) by paramodulation into a variable

• then lifting becomes possible (using two steps)

a = b f(x) = f(x)

f(a) = f(b) f(x) = c

f(f(b)) = c
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Paramodulation

Definition

f (x1, . . . , xn) = f (x1, . . . , xn) is called functional reflexivity equation

Lemma
• let τ1 and τ2 be a ground and consider

Cτ1 ∨ (s = t)τ1 Dτ2 ∨ Lτ2[xτ2]

Cτ1 ∨ Dτ2 ∨ Lτ2[f (tτ1)]

where xτ2 = f (s ′τ3) and sτ1 = s ′τ3

• then the following paramodulation step is valid, trivially more
general than the ground step

C ∨ s = t f (x) = f (x)

C ∨ f (s) = f (t) D ∨ L[x ]

C ∨ D ∨ L[f (t)]
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Paramodulation

Theorem

paramodulation is sound and complete: if F is a sentence and C its
clause form (containing all functional reflexive equations), then F is
unsatisfiable iff 2 ∈ Res∗P(C)

Proof.

in proof, we follow the standard procedure of combining model existence
+ (updated) lifting lemma

Discussion
• alternative completenesss proof employs an adaption of the semantic

tree argument

• paramodulation is inefficient

• one idea to reduce the search space is to combine ordered resolution
with paramodulation: ordered paramodulation
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