Automated Theorem Proving

Georg Moser

Institute of Computer Science @ UIBK

Winter 2015

summary

Outline of the Lecture

Early Approaches in Automated Reasoning
Herbrand's theorem for dummies, Gilmore's prover, method of Davis and Putnam

Starting Points

resolution, tableau provers, Skolemisation, redundancy and deletion
Automated Reasoning with Equality
ordered resolution, paramodulation, ordered completion and proof orders, superposition

Applications of Automated Reasoning
Neuman-Stubblebinde Key Exchange Protocol, Robbins problem

Definition

$$
\begin{array}{lc}
\frac{C \vee A ~ D \vee \neg B}{(C \vee D) \sigma_{1}} & \frac{C \vee A \vee B}{(C \vee A) \sigma_{1}} \\
\frac{C \vee s \neq s^{\prime}}{C \sigma_{2}} & \frac{\left.C \vee s=t \vee D \vee L s^{\prime}\right]}{(C \vee D \vee L[t]) \sigma_{2}}
\end{array}
$$

- σ_{1} is a mgu of A and B (A, B atomic)
- σ_{2} is a mgu of s and s^{\prime}

Theorem
paramodulation is sound and complete: if F is a sentence and \mathcal{C} its clause form, then F is unsatisfiable iff $\square \in \operatorname{Res}_{\mathrm{p}}^{*}(\mathcal{C})$

Ordered Paramodulation Calculus

Definition

$$
\begin{array}{lc}
\frac{C \vee A D \vee \neg B}{(C \vee D) \sigma_{1}} & \frac{C \vee A \vee B}{(C \vee A) \sigma_{1}} \\
\frac{C \vee s \neq s^{\prime}}{C \sigma_{2}} & \frac{C \vee s=t \quad D \vee L\left[s^{\prime}\right]}{(C \vee D \vee L[t]) \sigma_{2}}
\end{array}
$$

- same conditions on σ_{1}, σ_{2} as before
- $A \sigma_{1}$ is strictly maximal with respect to $C \sigma_{1} ; \neg B \sigma_{1}$ is maximal with respect to $D \sigma_{1}$
- the equation $(s=t) \sigma_{2}$ and the literal $L\left[s^{\prime}\right] \sigma_{2}$ are maximal with respect to $D \sigma_{2}$

Theorem ordered paramodulation is sound and complete

Example (cont'd)

$$
\begin{gathered}
\mathrm{a} \neq \mathrm{b} \succ_{\mathrm{L}} \mathrm{a}=\mathrm{b} \succ_{\mathrm{L}} \mathrm{a} \neq \mathrm{c} \succ_{\mathrm{L}} \mathrm{a}=\mathrm{c} \succ_{\mathrm{L}} \mathrm{a} \neq \mathrm{d} \succ_{\mathrm{L}} \mathrm{a}=\mathrm{d} \\
\succ_{\mathrm{L}} \mathrm{~b} \neq \mathrm{d} \succ_{\mathrm{L}} \mathrm{~b}=\mathrm{d} \succ_{\mathrm{L}} \mathrm{c} \neq \mathrm{d} \succ_{\mathrm{L}} \mathrm{c}=\mathrm{d}
\end{gathered}
$$

the following derivation is admissible

$$
\begin{gathered}
\frac{b=d \quad a=b \vee a=d}{\frac{a=d \vee a=d}{a=d}} \quad \frac{\square=d \quad a \neq d \vee a=c}{a \neq d \vee c=d} \\
\frac{d \neq d \vee c=d}{c=d} \\
\square
\end{gathered}
$$

Discussion

- ordered paramodulation is still too ineffienct
- various refinements have been introduced, one is the superposition calculus

Completion

Completion

Definition (superposition of rewrite rules)

$$
\frac{s \rightarrow t \quad w[u] \rightarrow v}{(w[t]=v) \sigma}
$$

σ mgu of s and u and u not a variable; then $(w[t]=v) \sigma$ is a critical pair

Theorem
a terminating $\operatorname{TRS} \mathcal{R}$ is confluent iff all critical pairs between rules in \mathcal{R} are joinable

Example
LPO is not total; x, y, u, v variables:

$$
\mathrm{f}(x, y) \nsucc_{\operatorname{lpo}} \mathrm{f}(u, w) \quad \mathrm{f}(u, w) \nsucc_{\operatorname{lpo}} \mathrm{f}(x, y)
$$

Ordered Completion

Ordered Rewriting

Definitions

- reduction orders that are total on ground terms are called complete
- \succ a reduction order; \mathcal{E} a set of equations; consider

$$
\mathcal{E}^{\succ}=\{s \sigma \rightarrow t \sigma \mid s=t \in \mathcal{E}, s \sigma \succ t \sigma\}
$$

- rules in \mathcal{E}^{\succ} are called reductive instances of equations in \mathcal{E}
- rewrite relation $\rightarrow_{\mathcal{E} \succ}$ represents ordered rewriting

Example

- let $\succ_{\text {lpo }}$ be a LPO induced by the precedence $+\succ \mathrm{a} \succ \mathrm{b} \succ \mathrm{c}$
- $\mathrm{b}+\mathrm{c} \succ_{\text {lpo }} \mathrm{c}+\mathrm{b} \succ_{\text {lpo }} \mathrm{c}$
- commutativity $x+y=y+x$ yields the ordered rewrite derivation:

$$
(\mathrm{b}+\mathrm{c})+\mathrm{c} \rightarrow(\mathrm{c}+\mathrm{b})+\mathrm{c} \rightarrow \mathrm{c}+(\mathrm{c}+\mathrm{b})
$$

Definition
equations \mathcal{E} are ground complete wrt \succ if \mathcal{E}^{\succ} is complete on ground terms

Definition (superposition with equations)

$$
\frac{s=t \quad w[u]=v}{(w[t]=v) \sigma}
$$

- σ is mgu of s and u; $t \sigma \nsucceq s \sigma, v \sigma \nsucceq w[u] \sigma$ and u is not a variable
- $(w[t]=v) \sigma$ is an ordered critical pair

Theorem
\succ a complete reduction order; a set of equations E is ground complete wrt \succ iff \forall ordered critical pairs $(w[t]=v) \sigma$ (with overlapping term $w[u] \sigma)$ and \forall ground substitutions τ : if $w[u] \sigma \tau \succ w[t] \sigma \tau$ and $w[u] \sigma \tau \succ v \sigma \tau$ then $w[t] \sigma \tau \downarrow v \sigma \tau$

