
University of Innsbruck WS 2015/2016

Lecture Notes

Functional Programming
(in OCaml)

7th Edition

Christian Sternagel and Harald Zankl

December 17, 2015

(λmnfx.mf (n f x)) (λfx.f (f x)) (λfx.f (f (f x)))

(fun m n f x -> m f (n f x))

(fun f x -> f (f x))

(fun f x -> f (f (f x)))

c© Creative Commons Attribution-ShareAlike 3.0 Unported License

Preface

These course notes accompany the functional programming course 703.024 in winter
term 2015/2016 at the University of Innsbruck. They are based on the course notes of
the functional programming course 703.024 from previous year, some small corrections
have been performed.

Acknowledgments (by Christian Sternagel). Thanks to the strange anonymous referee
character who had the main effort of reading the pre-versions of this document.

I am also grateful to all the other people that hunted down deficiencies in my English
and errors in the presented code (which are—due to the fact that a functional language is
used—rather rare). These are in alphabetical order: Simon Bailey, Christian Bitschnau,
Andreas Grill, Daniel Luttinger, Friedrich Neurauter, Thomas Sternagel, and Sarah
Winkler.

Acknowledgments (by Harald Zankl). I am grateful to Christian Sternagel for pro-
viding his course notes and happy that years after reading pre-versions of this document
I can build on it. The graphic on the cover page is inspired by a visualization of the
lambda calculus and has been generated using a tool by Viktor Massalõgin.

ii

Contents

Preface ii

1. Introduction 1
1.1. Historical Overview . 1

1.1.1. The Origin of OCaml . 1
1.1.2. Underlying Theory . 1

1.2. Typographical Conventions . 2
1.3. Overview . 2

2. Lists 3
2.1. Selectors . 4
2.2. Some Other Polymorphic List Functions 5

2.2.1. Append . 5
2.2.2. Replicate . 6
2.2.3. Take, Drop, and Split At . 6

2.3. Functions on Integer Lists . 7
2.3.1. Range . 7
2.3.2. Sum . 7
2.3.3. Prod . 8

2.4. Higher-Order Functions . 8
2.4.1. Map . 8
2.4.2. Fold . 9
2.4.3. Filter . 9

2.5. Introduction to Modules . 10
2.6. Exercises . 11

3. Strings 14
3.1. The Module Strng . 14
3.2. Example: Printing Strings . 15
3.3. Chapter Notes . 16
3.4. Exercises . 16

4. Trees 20
4.1. Binary Trees . 20

4.1.1. The Module BinTree . 20
4.2. A Little Bit More on Modules . 22
4.3. Example: Huffman Trees . 22

4.3.1. Analyzing the Sample . 23
4.3.2. Building the Huffman Tree . 24
4.3.3. Encoding and Decoding . 25

4.4. Chapter Notes . 26
4.5. Exercises . 26

5. λ-Calculus 30
5.1. Syntax . 30

iii

Contents

5.1.1. Subterms . 31
5.1.2. Free and Bound Variables . 31

5.2. Evaluation of Lambda Expressions . 31
5.2.1. Substitutions . 31
5.2.2. The β-Rule . 32
5.2.3. Normal Forms . 33

5.3. Representing Data Types in the λ-Calculus 33
5.3.1. Booleans and Conditionals . 33
5.3.2. Natural Numbers . 33
5.3.3. Pairs . 35
5.3.4. Lists . 36

5.4. Recursion . 36
5.5. Evaluation Strategy . 37

5.5.1. Outermost Reduction . 37
5.5.2. Innermost Reduction . 37
5.5.3. Call-by-Value vs. Call-by-Name . 37

5.6. Chapter Notes . 39
5.7. Exercises . 39

6. Reasoning About Functional Programs 43
6.1. Structural Induction . 43

6.1.1. Structural Induction Over Lists . 45
6.1.2. General Structures . 48

6.2. Exercises . 50

7. Efficiency 53
7.1. The Fibonacci Numbers . 53
7.2. Tupling . 54
7.3. Tail Recursion . 55
7.4. Parameter Accumulation . 56
7.5. Linear vs. Quadratic Complexity . 56
7.6. Chapter Notes . 57
7.7. Exercises . 57

8. Combinator Parsing 60
8.1. Implementation of Parsers . 60

8.1.1. Applying a Parser . 60
8.1.2. Lexing . 61
8.1.3. Some Simple Parsers . 61
8.1.4. Parser Combinators . 61
8.1.5. Giving Parsers Work . 64

8.2. The Parser Module . 65
8.3. A Parser for Simplified Arithmetic Expressions 67
8.4. Chapter Notes . 68
8.5. Exercises . 69

9. Types 74
9.1. Core ML . 74
9.2. Type Checking . 74
9.3. Type Inference . 76

9.3.1. Unification Problems . 77
9.3.2. Typing Constraints . 78

iv

Contents

9.4. Recursion . 83
9.5. Chapter Notes . 83
9.6. Exercises . 83

10.Lazyness 85
10.1. Motivation . 85
10.2. Custom Lazy Lists . 85

10.2.1. The Fibonacci Numbers . 87
10.3. Lazyness in OCaml . 88

10.3.1. The Sieve of Eratosthenes . 89
10.4. Exercises . 90

11.Divide and Conquer 92
11.1. Divide and Conquer . 92
11.2. Dynamic Programming . 95

11.2.1. Fibonacci Numbers . 96
11.2.2. Beans and Bowls . 96
11.2.3. Optimal Rod Cutting . 98

11.3. Chapter Notes . 99
11.4. Exercises . 100

A. OCaml in a Nutshell 103
A.1. Availability . 103
A.2. The Obligatory “Hello, world!” . 103
A.3. Types . 104

A.3.1. Basic Types . 104
A.3.2. Type Variables . 104
A.3.3. Type Constructors . 104
A.3.4. Examples . 104
A.3.5. User-Defined Types . 105

A.4. Values . 106
A.4.1. Tuples . 106
A.4.2. Functions . 106
A.4.3. Variants . 107

A.5. Values and Types . 107
A.5.1. Declaring Values . 107
A.5.2. Scoping . 108
A.5.3. Infix Operators . 108
A.5.4. Patterns . 109
A.5.5. Control Structures . 109

A.6. The Standard Library . 110
A.7. The Core Library . 110
A.8. Exercises . 110

B. Automatic Compilation of OCaml Projects 113
B.1. Targets . 113

B.1.1. Bytecode Executables . 113

Bibliography 114

Index 115

v

Functional programs are readable
like a book.

Nao Hirokawa

1. Introduction

This introductory chapter consists of the following parts: a short historical overview,
some typographical conventions to make reading easier, and an overview of the remaining
chapters.

1.1. Historical Overview

Unlike most historical overviews this one starts today and continues back into the past. 2015
(As you already noticed, dates are indicated in the margin.)

1.1.1. The Origin of OCaml

The starting point is OCaml—an abbreviation for Objective Caml—which was first
released in 1996. On the Caml homepage it is stated that: 1996

Objective Caml was the first language (and is still the only language) that
combines the full power of object-oriented programming with ML-style static
typing and type inference.

Nowadays OCaml is the most popular variant of Caml that has been developed since
1985 at INRIA. The first implementation appeared in 1987. Originally Caml arose when 1985

1987the french Formel team became interested in ML (metalanguage) in 1980. Where does
1980the name stem from? CAM was the Categorical Abstract Machine which could be seen

as a ‘compiler’ for ML. Hence the name categorical abstract machine language. The first
ML compiler was built in 1974. ML itself was created in the 1970s by Robin Milner at 1974

1970the University of Edinburgh. Eventually ML developed into several dialects, the most
common of which are now Objective Caml and Standard ML.

1.1.2. Underlying Theory

The main contributions to the underlying theory of functional programming are lambda
calculus, combinatory logic, and term rewriting.

Term rewriting is a model of computation which traces its origins back to combinatory
logic and lambda calculus, but also (in a separate development) to the study of word
problems in universal algebra in a landmark paper by Donald Ervin Knuth and his
student Peter Bendix, published in 1970. 1970

The lambda calculus—also λ-calculus—is a formal system designed to model computa-
tions of any kind, which is Turing complete. This means that in principle any algorithm
could be described by solely using the λ-calculus. It was introduced by Alonzo Church
in the 1930s. 1930

Combinatory logic is an equivalent theoretical foundation, and was further improved
by Haskell Brooks Curry in the late 1920s but already invented by Moses Schönfinkel 1929
in 1924. It was originally developed to achieve a clearer approach to the foundations of 1924
mathematics.

1

http://caml.inria.fr
http://www.inria.fr/index.en.html

1. Introduction

1.2. Typographical Conventions

There are mainly two special formats used in this document: One for shell commands
(like instructions on how to compile a source file) and the other for OCaml source code.
Both are set in typewriter font. OCaml source code is green where keywords are
bold.

OCaml source listings—representing the contents of a file—are separated from the
floating text by leading and trailing horizontal lines.

For convenience everything that is ‘clickable’ (like page numbers in the index, or entries
of the table of contents) is blue (of course you can click anywhere you like, but do not
expect anything special unless you happened to click on some blue text).

1.3. Overview

In Chapter 2 (Lists) one of the most commonly used data structures of functional pro-
gramming languages is introduced. The implementation details of many useful list func-
tions are given and concepts like polymorphism, higher-order functions, and modules
are introduced.

An alternative implementation of strings is discussed in Chapter 3. It is not used in
the OCaml library, but—as it is purely functional—is nevertheless very interesting in its
own right.

Chapter 4 (Trees) introduces another widely used data structure and gives a con-
crete example—namely the Huffman encoding—of its usage. Additionally some more
information on the module system of OCaml is given.

The first theoretical part, Chapter 5 (λ-Calculus) gives an overview of part of the
theory underlying functional programming. After giving a short but concise introduc-
tion, issues like recursion and the usage of λ-calculus in the implementation of functional
languages are briefly discussed.

One of the big advantages of functional programs is that it is much simpler to math-
ematically prove properties of them than it is for imperative languages. In Chapter 6
(Reasoning About Functional Programs) a basic proof technique for proving properties
of functional programs is presented: structural induction.

In Chapter 7 (Efficiency) some methods to improve the time and space complexity of
typical functions are presented.

Divide and conquer techniques and dynamic programming are the topic of Chapter 11.
Then Chapter 8 introduces the concept of parser combinators. It is shown how to

define functional parsers. The advantages are that no new language has to be learned
as it is the case for parser generator tools like Lex and Yacc, and that parsers are just
functions, i.e., normal values for functional programs.

Another theoretical part (Chapter 9) is concerned with types and methods to check
and even compute (infer is more commonly used in this regard) types for given programs,
concepts that are ubiquitous in most modern programming languages.

A way to compute with (potentially) infinite data structures is presented in Chap-
ter 10. The key observation is that expressions should only be evaluated if they are
really needed to compute the result.

Appendix A is intended as a short crash course in OCaml programming. Readers that
do not know (or have to refresh their knowledge about) OCaml, should read this chapter
first.

Appendix B gives some hints how to use ocamlbuild, a relatively new tool for au-
tomating the compilation of most OCaml projects with minimal user input.

2

2. Lists

One of the basic data structures in almost every functional language is the list—
sometimes also referred to as (finite) sequence. A list is a collection containing arbitrary
(but finitely) many elements of the same type. In OCaml the type of lists could be
user-defined by

type ’a list = Nil | Cons of (’a * ’a list)

Then for example the list of all integers from 1 to 4 would be written as

Cons(1,Cons(2,Cons(3,Cons(4,Nil))))

Since the list type is so useful it is already predefined in OCaml and the above list can
be written more succinctly as

[1;2;3;4]

Unlike arrays (in programming languages like C, Java, etc.), lists do not support fast
random access. Rather elements of a list can only be accessed by traversing the list
starting at the first element (also called the head of the list). This means that accessing
the last element of a list is strictly more costly than accessing the head of the same
list (only if the list has at least two elements, of course). Thus, lists are predestined
for all kinds of computation that are done sequentially. Following the ‘head is trump’
convention of lists, new elements can only be added at the front of a list (‘added’ is not
quite the correct term since functional data types are never modified, indeed a new list
is built containing all elements of the old one plus a new head in addition). The used
constructor is ‘::’—pronounced “cons”1—where e :: l is equivalent to Cons(e,l). A
value of the form e :: l is also referred to as a cons-cell . E.g., to add 0 to the above list
one would have to write

0::[1;2;3;4]

resulting in the new list

[0;1;2;3;4]

The empty list is denoted by ‘[]’—pronounced “nil”2 (as you will have guessed the coun-
terpart of the constructor ‘Nil’ from above). Consequently every list can be constructed
by combining its elements just using ‘[]’ and ‘::’. The list [0;1;2;3;4] for instance
can be written as

0::(1::(2::(3::(4::[]))))

which is equivalent to 0::1::2::3::4::[] since ‘::’ associates to the right. Indeed,
internally every list is constructed in this way and the notation using ‘[’ and ‘]’ together
with ‘;’ is just syntactic sugar.3 The structure of lists facilitates the use of recursive
functions. In the examples so far, only integers (type int in OCaml) have been used as

1Because lists are constructed using this operator. The name cons derives from LISP, one of the first
programming languages with functional spirit.

2A contraction of the Latin nihil, meaning nothing. If used as an adjective, one speaks about null lists,
i.e., a list containing no (Latin nullus) elements.

3Landin invented this term to refer to abbreviations and conventions adopted by languages to make
programming in the λ-calculus (see Chapter 5) more convenient. “A little bit of syntactic sugar helps
you swallow the lambda calculus.”

3

2. Lists

elements of lists. However, the type variable ’a (usually pronounced “alpha” since very
often Greek letters are used to denote type variables) indicates that there is some choice
in the type of list elements (with the restriction that all elements of a given list are of
the same type). Indeed the abstract type declaration from the beginning of the chapter
gives rise to many concrete types, e.g., lists of characters, lists of integers, lists of lists of
floats, etc. Such types are called polymorphic.4 When fixing ’a to some concrete type
(like int above) an instance of the polymorphic type ’a list is created. Attached to
polymorphic types are polymorphic functions, i.e., functions that work on any instance
of some polymorphic type (which, in the case of lists, is only possible if the function
does not need any knowledge of the concrete type of a list element). Until now it has
only been shown how to construct lists. This alone is not very useful. Hence it will be
shown how to access elements of a list. Since accessing elements has to work on every
type instance of ’a list the so called selectors are examples of polymorphic functions.

2.1. Selectors

The two selectors for lists are hd (“head”) and tl (“tail”). The head of a list is the
first of its elements whereas its tail is the remaining list (i.e., everything except the first
element). E.g., for the list [0;1;2;3;4] the head is 0 and the tail is [1;2;3;4]. For an
empty list the head and the tail are both undefined.

These functions could be implemented as

let hd (x::_) = x

(i.e., if the given list consists of a cons-cell then return its first argument, in any other
case the result is undefined) and

let tl (_::xs) = xs

(i.e., if the given list consists of a cons-cell then return its second argument, in any other
case the result is undefined). The special variable ‘_’ can be used whenever one does not
need a name for the matching expression. These definitions meet the condition stated
above that hd and tl are undefined on empty lists (since the patterns in the definitions
of the selectors do not match an empty list).

A longer—but nevertheless preferable—implementation of the selectors would explic-
itly issue an error on empty lists. This can be done via the standard library function
failwith : string -> ’a as follows:

let hd = function x::_ -> x

| _ -> failwith "empty list"

let tl = function _::xs -> xs

| _ -> failwith "empty list"

Using these definitions, compiler warnings like

Warning P: this pattern-matching is not exhaustive.

can be avoided.
In the rest of the lecture, computations of functional programs will be modeled

by rewriting of expressions. Consider for instance the calculation of the result of
hd [1;2;3;4], which is handled as an atomic step:

hd [1;2;3;4] = 1

4The type has many (from the Greek poly) forms (from the Greek morphe).

4

2. Lists

Since there is a certain direction in this simplification step (namely replacing a func-
tion call by the body of its definition), the equality sign (‘=’) is replaced by an arrow
(‘→’) in the sequel. Then the above is written as

hd [1;2;3;4]→ 1

2.2. Some Other Polymorphic List Functions

Here are some examples of polymorphic list functions that will be used in the rest of the
document.

2.2.1. Append

A useful function on lists is append : ’a list -> ’a list -> ’a list which takes
two lists (of same type) and returns a list consisting of the elements of the first followed
by the elements of the second list. A possible implementation is

let rec append xs ys = if xs = [] then ys

else hd xs::append (tl xs) ys

The function works as follows: if the list xs is empty then just return the list ys,
otherwise take the head of xs and put it in front of the list resulting from calling append

(recursively) on the tail of xs and the list ys. Consider for example the computation
steps necessary to append [3;4] to [1;2]:

append [1;2] [3;4]

→ if [1;2] = [] then [3;4]

else hd [1;2]::append (tl [1;2]) [3;4]

→ if false then [3;4]

else hd [1;2]::append (tl [1;2]) [3;4]

→ hd [1;2]::append (tl [1;2]) [3;4]

→ 1::append (tl [1;2]) [3;4]

→ 1::append [2] [3;4]

→ 1::if [2] = [] then [3;4]

else hd [2]::append (tl [2]) [3;4]

→ 1::if false then [3;4]

else hd [2]::append (tl [2]) [3;4]

→ 1::hd [2]::append (tl [2]) [3;4]

→ 1::2::append (tl [2]) [3;4]

→ 1::2::append [] [3;4]

→ 1::2::if [] = [] then [3;4]

else hd []::append (tl []) [3;4]

→ 1::2::if true then [3;4]

else hd []::append (tl []) [3;4]

→ 1::2::[3;4] = [1;2;3;4]

Notice that the green equality sign (‘=’) is part of OCaml whereas ‘=’ denotes mathe-
matical equivalence. (We are sorry for those who read this in black on white, however,
the two ‘equalities’ should be distinguishable by context.)

In the above reduction sequence it is assumed that in addition to the rewrite rules
obtained from the function definitions of hd, tl, and append, there are the rules:

[] = []→ true

x :: xs = []→ false

if false then t else e→ e

if true then t else e→ t

5

2. Lists

Those are examples of built-in rewrite rules that stem from OCaml’s implementation of
equality and conditional branching.

In future examples reduction sequences as the one above will not be given in full
detail, however, if more than one step is done at once, this will be indicated by using
‘→+’ instead of ‘→’ (where ‘→+’ denotes the transitive closure of the relation → and
can be read as “one or more steps of ‘→’ ”).

Notice that an equivalent definition of append would have been ’@’, which is defined
as

let rec (@) xs ys = match xs with [] -> ys

| x::xs -> x::(xs @ ys)

As you can see the usage of pattern matching obsoletes calls to the selectors hd and tl.
It is mostly a matter of taste whether to use the selectors or pattern matching—notice
however that hd and tl should only be used with special care, to avoid exceptions.
Since appending lists is commonly used, we introduced the infix operator ‘@’. (Note:
infix notation means that the operator is written between its arguments, as opposed to
prefix notation, where the function is written first.)

2.2.2. Replicate

The function computing a list consisting of n copies of the given value x is called
replicate and of type int -> ’a -> ’a list. The implementation can be done as
follows:

let rec replicate n x =

if n < 1 then [] else x::replicate (n-1) x

If n (the desired length of the resulting list) is 0 then the only list of length 0 is returned,
the empty list. Otherwise x is put in front of a list of n-1 x’s, in order to obtain a total
length of n. As an example consider the evaluation of replicate 2 0:

replicate 2 0

→+ if 2 < 1 then [] else 0::replicate 1 0

→+ 0::replicate 1 0

→+ 0::if 1 < 1 then [] else 0::replicate 0 0

→+ 0::0::replicate 0 0

→+ 0::0::if 0 < 1 then [] else 0::replicate (-1) 0

→+ 0::0::[] = [0;0]

2.2.3. Take, Drop, and Split At

Sometimes you need to split a list at a certain position obtaining the two resulting
lists. This operation can be achieved by combining two functions. The first func-
tion is used to get an initial segment of a list up to a certain number of elements
(take : int -> ’a list -> ’a list) and the second to get the rest of a list af-
ter dropping a certain number of elements (drop) resulting in the desired function
split_at : int -> ’a list -> (’a list * ’a list). The function take is imple-
mented as follows

let rec take n xs = if n < 1 then [] else match xs with

| [] -> []

| x::xs -> x::take (n-1) xs

i.e., nothing is taken from nil, hence nil is returned. Similarly, if 0 elements have to be
taken nil is returned. Otherwise the head of the list is added to the list resulting from
taking n-1 elements from its tail. The function drop : int -> ’a list -> ’a list

can be defined similarly

6

2. Lists

let rec drop n xs = if n < 1 then xs else match xs with

| [] -> []

| _::xs -> drop (n-1) xs

i.e., it does not drop anything from nil, hence returning nil. If no element has to be
dropped the whole list is returned. If there remain n elements to be dropped, n-1

elements from the tail of the list are dropped (which is exactly one element shorter than
the full list). Combining the above two functions results in

let split_at n xs = (take n xs,drop n xs)

where the resulting pair contains the first n elements of the given list in its first compo-
nent and the rest of the list in its second component. In Chapter 7 we will study methods
that allow to implement split_at slightly more efficient (the current implementation
iterates twice over the list xs, for sufficiently large n).

2.3. Functions on Integer Lists

There are also functions that do only make sense if the elements of a list have a certain
type. What follows are examples of such functions for lists of integers.

2.3.1. Range

The function range : int -> int -> int list computes—given integers m and n—
the list starting at m and consisting of all consecutive integers until (not including) n. It
can be defined by

let rec range m n = if m >= n then []

else m::range (m+1) n

If m is greater than or equal to n then there is no list containing elements inbetween and
hence nil is returned. Otherwise m is put in front of the list resulting from constructing
the list of integers between (including) m + 1 and (not including) n.

You may want to verify that

range 3 6 → [3;4;5]

2.3.2. Sum

The function sum : int list -> int, summing up all elements in a list of integers,
can be defined by

let rec sum = function [] -> 0

| x::xs -> x + sum xs

This can be read as: if the list is empty then the sum of its elements is zero, otherwise it
consists of a head and a tail and the sum can be computed by adding the head-element
to the sum of the tail-elements. The constituent steps of the computation for calculating
sum [1;2;3;4] are as follows

sum [1;2;3;4]

→ 1 + sum [2;3;4]

→ 1 + (2 + sum [3;4])

→ 1 + (2 + (3 + sum [4]))

→ 1 + (2 + (3 + (4 + sum [])))

→ 1 + (2 + (3 + (4 + 0)))

→+ 10

7

2. Lists

2.3.3. Prod

The function prod : int list -> int, multiplying all elements in a list of integers,
can be defined by:

let rec prod = function [] -> 1

| x::xs -> x * prod xs

As can be seen prod is very similar to sum, the only differences being that ‘*’ is used
instead of ‘+’ and ‘1’ instead of ‘0’.

Remarks. The function call sum(range 1 n) corresponds to the mathematical notation

n−1∑
i=1

i (2.1)

and prod(range 1 n) to
n−1∏
i=1

i

2.4. Higher-Order Functions

Much of the power of functional programming stems from the fact that functions are
first class citizens, meaning that a function is just a value that can be returned from or
given to another function. Consider for example the formula

n−1∑
i=0

2i (2.2)

computing the greatest number that can be encoded in binary using n bits, i.e., n ones.
This formula looks very similar to (2.1) just that before adding, another function is
applied to i (namely f(x) = 2x). The function f can be defined as below:

let pow2 n = prod(replicate n 2)

Another function is needed that takes pow2 as argument and applies it to a list.

2.4.1. Map

There is indeed a more general function commonly called map, which takes a function
and a list and applies the function to every element of the given list, returning a new
list containing the corresponding results. Its implementation is

let rec map f = function [] -> []

| x::xs -> f x::map f xs

and it has the type (’a -> ’b) -> ’a list -> ’b list.
Calling map f [x1; . . . ;xn] results in the new list [f x1; . . . ;f xn]. Now (2.2) can

be defined by

sum(map pow2 (range 0 n))

8

2. Lists

2.4.2. Fold

As already mentioned above, the two functions sum and prod are almost identical. Intu-
itively the first inserts a ‘+’ whereas the second inserts a ‘*’ between every two elements
of a list, i.e.,

sum [x1; . . . ;xn]
def
= x1 + (x2 + (· · · + (xn−1 + (xn + 0)) · · ·))

and

prod [x1; . . . ;xn]
def
= x1 * (x2 * (· · · * (xn−1 * (xn * 1)) · · ·))

There is a corresponding higher-order function commonly known as foldr (denoting fold
right for reasons that are immediate from its definition), defined by

foldr ⊕ b [x1; . . . ;xn]
def
= x1 ⊕ (x2 ⊕ (· · · ⊕ (xn−1 ⊕ (xn ⊕ b)) · · ·))

where ⊕ is a binary function (i.e., taking two arguments) and b the base value (since it
would be the result of foldr ⊕ b []). In OCaml foldr can be implemented as

let rec foldr f b = function [] -> b

| x::xs -> f x (foldr f b xs)

Indeed this one is a hard nut to crack but it is not necessary to understand it fully on
first sight. To convince yourself that the above definition has the intended behavior,
have a close look at the following reduction sequence:

foldr (+) 0 [1;2;3]

→ (+) 1 (foldr (+) 0 [2;3]) = 1 + (foldr (+) 0 [2;3])

→ 1 + (2 + (foldr (+) 0 [3]))

→ 1 + (2 + (3 + (foldr (+) 0 [])))

→ 1 + (2 + (3 + 0))

→+ 6

Notice the usage of ‘(+)’ to be able to use ‘+’ with prefix notation (see Appendix A).
Using foldr there are shorter implementations of sum and prod, namely:

let sum xs = Lst.foldr (+) 0 xs

let prod xs = Lst.foldr (*) 1 xs

Symmetrically to foldr (which starts to insert a binary function at the end of a list)
there is a function foldl which does almost the same (only starting from the beginning
of the list):

foldl ⊕ b [x1; . . . ;xn] = ((· · · ((b⊕ x1)⊕ x2)⊕ · · ·)⊕ xn−1)⊕ xn

It can be implemented as follows:

let rec foldl f b = function [] -> b

| x::xs -> foldl f (f b x) xs

2.4.3. Filter

Sometimes it is useful to remove all elements from a list that do not satisfy a certain
property. Therefore the function

let rec filter p = function

| [] -> []

| x::xs -> if p x then x::filter p xs else filter p xs

9

2. Lists

1 (* main : unit -> unit *)

2 let main() =

3 let n = read_int() in

4 let r =

5 IntLst.sum (Lst.map Int.pow2 (IntLst.range 0 n)) in

6 Printf.printf "%i\n" r

7 in main()

8 (* *)

Listing 2.1: Maxbin.ml

can be used. For instance, to remove all odd numbers from the four element list [1;2;3;4]
one could use

let even x = x mod 2 = 0 in

filter even [1;2;3;4]

resulting in the computation steps:

filter even [1;2;3;4]

→ if even 1 then 1::filter even [2;3;4]

else filter even [2;3;4]

→+ filter even [2;3;4]

→ if even 2 then 2::filter even [3;4]

else filter even [3;4]

→+ 2::filter even [3;4]

→ 2::if even 3 then 3::filter even [4]

else filter even [4]

→+ 2::filter even [4]

→ 2::if even 4 then 4::filter even []

else filter even []

→+ 2::4::filter even []

→ 2::4::[] = [2;4]

2.5. Introduction to Modules

In most functional languages it is courteous to structure program code using modules.
A module can be understood as a collection of functions accessible via a common prefix
(the module name). Since structuring programs into modules is a good idea we will
outright start to do so. At the same time consider the following as an example of how
to build your own modules.

So far some functions on lists have been defined (where one can separate functions on
arbitrary lists and functions on integer lists) as well as one function (pow2) that works
directly on integers. For the former the modules called Lst (since the name List is
already occupied by the standard library) and IntLst are built, and for the latter a
module called Int. Therefore all definitions are copied into the respective files Lst.ml,
IntLst.ml, and Int.ml.

These modules can be used to write a program computing (2.2). The program can
be seen in Listing 2.1. Here readint : unit -> int is a function from the module
Pervasives and reads an integer value from standard input. In lines 4−−5, r is bound
to the result of the computation. Finally the printf function of the Printf module is
used to write an integer (r) followed by a newline onto the standard output channel.

It can be seen that there are dependencies between the different files. For instance
Int.ml and IntLst.ml contain calls to functions from Lst.ml and of course maxbin.ml

10

2. Lists

depends on all other modules. To accommodate these dependencies one either links the
files in the correct order, resulting in something similar to

> ocamlc -o maxbin Lst.ml IntLst.ml Int.ml maxbin.ml

or uses ocamlbuild described in Appendix B. (The tool ocamlbuild is used for auto-
matic compilation of OCaml projects and is included in the OCaml distribution since
version 3.10.)

2.6. Exercises

Exercise 2.1. Evaluate the function calls take 2 [1;2;3] and take 3 [1;3] by giving
all computation steps on paper.

Hint: Evaluate the match statement immediately.

Exercise 2.2. Evaluate the function calls range 0 3 and range 3 0 by giving all com-
putation steps on paper.

Exercise 2.3. Evaluate the following function calls by giving all computation steps on
paper.

• foldl (-) 0 [1;2;3]

• foldr (-) 0 [1;2;3]

Hint: Evaluate the function statement immediately.

Exercise 2.4. Write a function mem: ’a -> ’a list -> bool, which tests if an element
is contained in a list.

Exercise 2.5. Write a function length : ’a list -> int, which computes the number
of elements in a list.

Exercise 2.6. Write a function last : ’a list -> ’a to return the last element of a
list.

Exercise 2.7. Write a function nth : ’a list -> int -> ’a to get the n-th element
of a list (where the head is indexed with 0).

Exercise 2.8. Write a function reverse : ’a list -> ’a list that reverses a list by
(recursively) appending the head element at the tail. Then reverse [x1; . . . ;xn] eval-
uates to [xn; . . . ;x1].

Exercise 2.9. Write a function concat : ’a list list -> ’a list that takes a list
of lists as input and computes the list resulting from appending those lists one after the
other, e.g.,

concat [[1;2];[3;4];[5;6]] = [1;2;3;4;5;6]

Exercise 2.10. Write foldl1 : (’a -> ’a -> ’a) -> ’a list -> ’a as a variant of
foldl that takes no base value and thus only works on nonempty lists (the function
should fail if applied to an empty list).

foldl1 ⊕ [x1; . . . ;xn] = ((· · · (x1 ⊕ x2) · · ·) ⊕ xn−1) ⊕ xn

Exercise 2.11. Write foldr1 : (’a -> ’a -> ’a) -> ’a list -> ’a as a variant of
foldr that takes no base value and thus only works on nonempty lists (the function
should fail if applied to an empty list).

foldr1 ⊕ [x1; . . . ;xn] = x1 ⊕ (x2 ⊕ · · · (xn−1 ⊕ xn) · · ·)

11

2. Lists

Exercise 2.12. Write a function zip which takes two lists and returns a list of pairs with
the same length as the shorter of both as in the following example:

zip [1;2;3] [4;5;6;7;8] = [(1,4);(2,5);(3,6)]

Exercise 2.13. Write a function zip_with that, given a binary function and two lists,
constructs a new list as in:

zip_with f [x1; . . . ;xk] [y1; . . . ;y`] = [f x1 y1; . . . ;f xm ym]

where m is the smaller of k and `.

Exercise 2.14. Write a function unzip on lists (i.e., a list of pairs is ‘unzipped’ into a
pair of lists) using one of the fold functions you already know. E.g.,

unzip [(’a’,1);(’b’,2)] = ([’a’;’b’],[1;2])

Further give the computation steps to compute unzip [(’a’,1);(’b’,2)].

Exercise 2.15. Implement a function

sublists : int -> ’a list -> ’a list list

such that sublists k xs returns all k-element sublists of the list xs, ignoring the order
of list elements. For example,

sublists 3 [1;2] = []

sublists 3 [1;2;3] = [[1;2;3]]

sublists 2 [1;2;3;4] = [[1;2];[1;3];[1;4];[2;3];[2;4];[3;4]]

Exercise 2.16. Given a list [x1; . . . ;xn], define a function that computes all its permu-
tations.

perm [1;2;3] = [[1;2;3];[1;3;2];[2;1;3];[2;3;1];[3;1;2];[3;2;1]]

Hint: Suppose you already computed perm [x1; . . . ;xn−1]. How can you use this in
order to compute perm [x1; . . . ;xn]?

Exercise 2.17. Given a list [x1; . . . ;xn], define a function that computes its ‘powerset’,
i.e.,

powerset [1;2;3] = [[];[1];[2];[3];[1;2];[1;3];[2;3];[1;2;3]]

Hint: The order of the subsets can be arbitrary; duplicates allowed.

Exercise 2.18. Define functions that compute the maximum/minimum of an arbitrary
list.

Hint: Use the functions max : ’a -> ’a -> ’a and min : ’a -> ’a -> ’a from
the module Pervasives.

Exercise 2.19. Define functions that compute the arithmetic/geometric mean of a list of
ints.

Exercise 2.20. Write a recursive function gsum : int -> float that computes the fol-
lowing sum:

gsum(n) = 1 +
1

2
+

1

4
+ · · ·+ 1

2n−1

12

2. Lists

Exercise 2.21. Write a recursive function euler : int -> float that computes an ap-
proximation of Euler’s number:

euler(n) = 1 +
1

1!
+

1

2!
+ · · ·+ 1

(n− 1)!

Exercise 2.22. Define map in terms of foldr as follows

let map f xs = foldr (fun . . . -> . . .) [] xs

where you only have to provide the missing definition of the anonymous function.

Exercise 2.23. Write a console application that does the following:

a) Read a decimal integer from the console (use read_int).

b) Compute the binary representation of that integer as a list of binary digits, e.g.,
[1;0;1;1] for 11.

c) Output the binary representation on the console.

Exercise 2.24. Consider Leibniz’ formula

4 ·
∞∑
i=0

(−1)i

2 · i+ 1
= π (2.3)

for computing π. Restrict to a finite case (i.e., changing ∞ to n). Write a program
leibniz.ml (having the same structure as the program from Listing 2.1) approximat-
ing the number π given n—the number of steps to use. Instead of "%i\n" (for print-
ing an integer) you will have to use "%.10f\n" (for printing a floating point num-
ber with 10 digits after the decimal point). You will also have to use the function
Pervasives.float_of_int and have to define a function fsum computing the sum of
all elements contained in a list of floats. Further notice that addition, division, expo-
nentiation, and multiplication of floats are done via the functions

(+.) : float -> float -> float

(/.) : float -> float -> float

(**) : float -> float -> float

(*.) : float -> float -> float

in OCaml.

Exercise 2.25. You have 100 doors (#1 to #100) in a row that are all initially closed.
You make 100 passes by the doors. The first time through, you visit every door and
toggle the door (if the door is closed, you open it; if it is open, you close it). The second
time you only visit every 2nd door (door #2, #4, #6, ...). The third time, every 3rd
door (door #3, #6, #9, ...), etc, until you only visit the 100th door.

a) Define a type t for doors (open/closed).

b) Write a function toggle : t -> t that toggles the door.

c) Generate a list of 100 closed doors.

d) Write a function pass : int -> t Lst.t -> t Lst.t that executes the i-th pass
over the doors.

e) Write a function passes : int -> t Lst.t -> t Lst.t that executes n passes
over the doors.

13

3. Strings

Strings are commonly understood as sequences of characters. The implementation of
strings differs between functional languages. OCaml (dedicated to efficiency) implements
strings as arrays of characters whereas Haskell for instance implements them as lists of
characters. From an educational point of view (especially if the topic is functional
programming) lists of characters are preferable.

Since OCaml strings are arrays (which are no functional data type at all) the module
Strng (omitting vowels seems to come into vogue) will be implemented using character
lists as representation of strings.

3.1. The Module Strng

The basic thing to state is the type of our new string implementation.

type t = char list

Instances of that type (i.e., Strng.t) will be called l-strings (where ‘l’ stands for list) in
the following, whereas the term “string” will refer to the standard type string of OCaml
(sometimes also “OCaml string”). Further, four functions on l-strings are provided:

(of_string : string -> t) builds l-strings from strings

(of_int : int -> t) transforms integers into l-strings

(to_string : t -> string) transforms l-strings into OCaml strings

(print : t -> unit) prints l-strings

The implementations of those functions are given for completeness, however, since they
deal with non-functional data types, they will not be explained in detail.

let of_string s =

let rec of_string i acc =

if i < 0 then acc else of_string (i-1) (s.[i]::acc)

in

of_string (String.length s - 1) []

let of_int i = of_string(string_of_int i)

let to_string xs =

let buffer = Buffer.create 128 in

List.iter (Buffer.add_char buffer) xs;

Buffer.contents buffer

let print s = Printf.printf "%s" (to_string s)

Whenever necessary, new functions will be added to the Lst module.

14

3. Strings

3.2. Example: Printing Strings

Strings in general are often used to print information on a terminal. Printing is done line
by line. In order to provide nicely formatted output, vertical and horizontal alignment
is important. To facilitate viewing terminal output as a picture, consider a module
Picture with the following data type specifications

type width = int

type height = int

type t = (width * height * Strng.t list)

stating that a picture has a width (given as an integer), a height (also given as an
integer), and some content (given as a list of l-strings representing the rows of the
picture). Two basic operations on pictures are putting two pictures above each other
(above: t -> t -> t) and putting them next to each other (beside: t -> t -> t).
This can be implemented as

let above (w1,h1,p1) (w2,h2,p2) =

if w1 = w2 then (w1,h1+h2,p1@p2)

else failwith "different widths"

let beside (w1,h1,p1) (w2,h2,p2) =

if h1 = h2 then (w1+w2,h1,Lst.zip_with (@) p1 p2)

else failwith "different heights"

where the definition of Lst.zip_with is left as an exercise (cf. Exercise 2.13). It might
be handy to recall the definition of ‘@’ from page 5.

Before a picture can be printed on the terminal, it has to be transformed into an
l-string. This is done via the function

let to_strng (_,_,p) = Lst.join [’\n’] p

where Lst.join : ’a list -> ’a list list -> ’a list takes a separating list d
and a list of lists [s1; . . . ;sn] and returns the list

join d [s1; . . . ;sn] = s1 @ d @ (s2 @ d @ · · · (sn−1 @ d @ sn) · · ·)

One possible implementation is

let join delim = foldr1(fun xs ys -> xs@delim@ys)

where Lst.foldr1 is a specialized variant of Lst.foldr that only works on nonempty
lists whose implementation is left as an exercise (cf. Exercise 2.11).

Given above and beside, a nonempty list of pictures can be stacked above each other,
or spread beside one another. The implementations of those two functions are almost
trivial:

let stack ps = Lst.foldr1 above ps

let spread ps = Lst.foldr1 beside ps

There are already some means to manipulate pictures but how to construct them? The
simplest picture consists of just one pixel (i.e., character). The corresponding function
is:

let pixel c = (1,1,[[c]])

Also (nonempty) l-strings should be representable as pictures. This is done via the
function row : Strng.t -> t

let row s = spread(Lst.map pixel s)

15

3. Strings

i.e., first every character of the l-string is transformed into a pixel using the pixel

function and then the resulting pictures are spread next one another via spread (where
the resulting picture will have height 1 and the same width as the length of the given
l-string). Using row, empty pictures (i.e., all pixels are ‘’ ’’) can be specified by:

let empty w h =

let line = Lst.replicate w ’ ’ in

let rows = Lst.replicate h line in

stack(Lst.map row rows)

Two useful variants of stack and spread insert empty pictures—of given width and
height, respectively—between two pictures before combining them:

let stack_with h ps = Lst.foldr1 (fun p q ->

above (above p (empty (width q) h)) q) ps

let spread_with w ps = Lst.foldr1 (fun p q ->

beside (beside p (empty w (height q))) q) ps

So these functions stack (spread) a list of pictures vertically (horizontally) with an inter-
picture gap of height h (width w). Here the implementation of width and height—
extracting the width and height of a given picture, respectively—is left as an exercise
(cf. Exercise 3.1).

Given a list of lists of pictures, a large picture can be constructed by tiling them.
There are again two variants: one that just tiles the given pictures and the other that
additionally inserts empty pictures in between.

let tile pss = stack(Lst.map spread pss)

let tile_with w h pss =

stack_with h (Lst.map (spread_with w) pss)

3.3. Chapter Notes

The examples of this chapter are a very slightly modified version of the examples from
Chapter 5 in [3].

3.4. Exercises

Exercise 3.1. Write the function width : Picture.t -> int as well as the function
height : Picture.t -> int returning the width and height of a given picture, respec-
tively.

Exercise 3.2. Write functions for Strng to align l-strings within a box of given width.
Three functions are needed:

left_justify : int -> t -> t

right_justify : int -> t -> t

center : int -> t -> t

In each case the integer argument denotes the width of the box. To illustrate the
requirements consider the examples:

left_justify 5 [’H’; ’A’; ’L’] = [’H’; ’A’; ’L’; ’ ’; ’ ’]

right_justify 5 [’H’; ’A’; ’L’] = [’ ’; ’ ’; ’H’; ’A’; ’L’]

center 5 [’H’; ’A’; ’L’] = [’ ’; ’H’; ’A’; ’L’; ’ ’]

Hint: You can ignore the case if a string is too long.

16

3. Strings

Exercise 3.3. Write a function paragraph : int -> string -> Picture.t that—given
the desired text width w and some text t—constructs a picture of width w such that
the content of t is split into as many lines of text as needed to fit into a paragraph of w
columns.

Hint: You may break lines at any character.

Exercise 3.4. Modify paragraph from Exercise 3.3 in a way that it is possible to left-
justify, right-justify, or center each line of text. Break lines at white space only (you
may assume that no word is longer than the width of the paragraph. E.g., the function
should output (approximately):

Picture.paragraph2 12 Strng.right_justify "Functional programs \

are readable like a book.";;

- : Picture.t =

 Functional

programs are

 readable

like a book.

Hint: Split the task into the following parts:

a) Separate words by white space

b) Combine words (such that they fit into a single line)

c) Align words (using Exercise 3.2)

d) Make the picture

Exercise 3.5. Implement a function upper : t -> t for the Strng module that converts
all lowercase letters in the given l-string to uppercase ones, e.g.,

upper [’a’; ’1’; ’b’; ’_’] = [’A’; ’1’; ’B’; ’_’].

Hint: The functions char_of_int and int_of_char from the Ocaml standard library
(module Pervasives) might be useful.

Exercise 3.6. Implement a function substring: t -> t -> bool for Strng that checks
whether the first argument is a substring of the second one.

Exercise 3.7. Implement a function to_strng : int -> int -> Strng.t taking a num-
ber and a base as arguments and returning the l-string representation of the given number
to the given base, e.g.,

to_strng 4 10 = [’4’]

to_strng 4 2 = [’1’; ’0’; ’0’].

The function is only supposed to work for bases between 2 and 10.
Hint: Use the predefined functions int_of_char and char_of_int from the OCaml

standard library (module Pervasives).

Exercise 3.8. Given the module Calendar containing the functions from Listing 3.1,
write a calendar program. The function first_days—given a year—returns a list of day
names as integers (0 = Sunday, 1 = Monday, . . .), the result list does contain an integer
for each month of the year, denoting with which day of the week the corresponding month
starts (in the given year). E.g., [0; 1; 2; 3; 4; 5; 6; 0; 1; 2; 3; 4] would be a
year, where January starts with a Monday, February with a Tuesday, and so on, and

17

3. Strings

type day = int

type month = int

type year = int

type date = (day * month * year)

type dayname = int

val first_days : year -> dayname list

val month_lengths : year -> day list

Listing 3.1: Calendar.mli

finally December starts with a Friday. The function month_lengths—given a year—
returns a list containing the number of days each month has in that year. Use the
Picture module to write a program that prints a calendar for a year (provided as
argument) where each month is in the format:

January 2007

Su Mo Tu We Th Fr Sa

1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31

Therefore consider each month as consisting of three pictures: the title which should be
centered (January 2007 in the example), the heading (corresponding to the weekdays,
i.e., Su Mo Tu We Th Fr Sa in the example), and the entries; which can be put above
each other using the Picture functions. The output for one month thus is a picture of
size 21× 8 (since if the first of a month is a Friday or a Saturday 6 lines are needed for
the entries).

Exercise 3.9. Caesar’s cipher encodes a text by replacing each letter by another letter
some fixed number (the key) of positions down the alphabet. E.g., encoding HELLO with
a key of 2 yields JGNNQ.

a) Write a function pos_of_char : char -> int that returns the position in the
alphabet associated with an (uppercase) letter, as well as an inverse function
char_of_pos : int -> char. E.g., pos_of_char ’A’ yields 0 and the expres-
sion char_of_pos 25 evaluates to ’Z’.

Hint: The predefined functions char_of_int and int_of_char may be useful.

b) Implement the function encode : int -> Strng.t -> Strng.t and the function
decode : int -> Strng.t -> Strng.t which encode and decode an l-string us-
ing a given key.

c) Write a function crack : Strng.t -> Strng.t list that returns the list of all
possible decodings for a given ciphertext. Use this function to decipher the text
RHNVKTVDXWMAXVHWX.

Exercise 3.10. Consider the module AsciiArt. It contains only a single function. The
function char : char -> Picture.t. For a given character c, char c yields an ASCII
art letter representing c (this only works for the so-called visible characters, i.e., the
characters 32 ’ ’ up to 126 ’~’). Use this module together with the Picture module to
implement the very useful function welcome : string -> unit. That prints a welcome
banner for a given user name. E.g., welcome "griff" results in

18

3. Strings

**

**

** __ __ _ _ __ __ **

** \ \ / / | | (_| / _| / _| **

** \ \ /\ / / ___ | | ___ ___ _ __ ___ ___ __ _ _ __ _ | |_ | |_ **

** \ \/ \/ / / _ \| | / __| / _ \ | ’_ ‘ _ \ / _ \ / _‘ || ’__/| || _/| _/ **

** \ /\ / | __/| || (__ | (_) || | | | | || __/ | (_| || | | || | | | **

** \/ \/ ___||_| ___| ___/ |_| |_| |_| ___| __, ||_| |_||_| |_| **

** __/ | **

** |___/ **

**

**

Exercise 3.11. Write a function

a) mirror_v: Picture.t -> Picture.t which mirrors a picture vertically, e.g.,

*********** ***********

Hello World -> dlroW olleH

*********** ***********

b) mirror_h: Picture.t -> Picture.t which mirrors a picture horizontally,

c) mirror: Picture.t -> Picture.t which mirrors a picture horizontally and ver-
tically.

Hint: The function Lst.reverse from Exercise 2.8 might be handy.

Exercise 3.12. Write a function rotate: Picture.t -> Picturet which rotates a pic-
ture 90◦ clockwise, e.g.,

*** %h*

hi -> %i*

%%% % *

Exercise 3.13. Write a function frame: char -> Picture.t -> Picture.t such that
frame c p adds a frame (consisting of characters c) around picture p.

19

4. Trees

Another famous data structure in functional programming is the tree. A tree consists
of some set of nodes plus a relation between those nodes. If a tree is not empty, there
is exactly one node (the root of the tree) without an ancestor—also called parent—
and every other node has exactly one ancestor. That implies that all nodes have some
(meaning none or one or two or etc.) successors—also called children. A node without
successors is called a leaf . A tree could consist of the following data type declaration

type ’a tree = Empty | Node of (’a * ’a tree list)

in OCaml. Hence a tree is either empty or consists of at least one node containing a
value (’a) and a list of children (’a tree list) that could of course be empty as well.
Examples of trees are Empty, Node(1,[]), Node(1,[Empty]), Node(1,[Empty;Empty]),
Node(1,[Node(2,[]);Node(3,[])]), which show that trees do not have a unique rep-
resentation. Instead of improving the type ’a tree above we focus on a special kind of
trees in the sequel.

4.1. Binary Trees

A common restriction on trees is that the number of child nodes is set to a certain
maximum, say n. In case n = 2, the resulting trees are called binary trees (note that
setting n = 1 would result in a list). In OCaml a type for binary trees can be defined by

type ’a btree = Empty | Node of (’a btree * ’a * ’a btree)

stating that a binary tree is either empty or it consists of at least one node having a left
child (again a binary tree), containing some value (of type ’a), and having a right child
(also a binary tree). Then the empty tree is represented by Empty, the tree consisting of
exactly one node having value 0 is represented by Node(Empty,0,Empty), and so on.

4.1.1. The Module BinTree

In the following a module for binary trees is developed. Its name is BinTree. For
convenience the type from above is given a shorter name (since from outside of the
module it is prefixed by the module name anyway).

type ’a t = Empty | Node of (’a t * ’a * ’a t)

The size of a binary tree is the number of its nodes and can be defined by

let rec size = function

| Empty -> 0

| Node(l,_,r) -> size l + size r + 1

stating that an empty tree has size 0 and the size of any other tree is the size of its left
subtree plus the size of its right subtree plus 1.

The height of a binary tree is the length of the longest path from its root to some
leaf. The implementation uses the max : ’a -> ’a -> ’a function of the module
Pervasives that returns the greater of two given values.

let rec height = function

| Empty -> 0

| Node(l,_,r) -> max (height l) (height r) + 1

20

4. Trees

You may already have noticed that writing down an instance of a binary tree is very
annoying. Therefor a function to construct a binary tree from a given list would be
convenient. A straightforward implementation would be

let rec of_list = function [] -> Empty

| x::xs -> Node(Empty,x,of_list xs)

which will result in binary trees where the left child is always Empty and hence having
exactly the same structure as the given list but just wasting more memory. This is of
course not desirable. It can be seen that when processing a list to build a tree, there
is always a choice in which subtree to put an element of the list. An idea of a fair
construction is to put the first half of the list into the left subtree and the second half
into the right subtree. This can be realized as follows:

let rec make = function

| [] -> Empty

| xs ->

let m = Lst.length xs / 2 in

let (ys,zs) = Lst.split_at m xs in

Node (make ys,Lst.hd zs,make(Lst.tl zs))

For an empty list an empty tree is returned. If the list has at least one element then m

is set to the half of the number of elements of the list, the list is split at index m into
two parts (you should be able to convince yourself that the second part has at least one
element). The first part is used to build the left subtree whereas the tail of the second
part is used to build the right subtree. The head of the second part is set as the value
of the current node.

Another possibility is to insert each element of a list in a tree depending on whether
it is smaller than or equal to the value of the root node or greater than the same value.
Therefor consider the function insert:

let rec insert c v = function

| Empty -> Node(Empty,v,Empty)

| Node(l,w,r) -> if c v w < 1 then Node(insert c v l,w,r)

else Node(l,w,insert c v r)

which can be used to build an ordered binary tree (also known as binary search tree,
since searching elements is very fast in such trees). The argument c is a comparison
function where the OCaml convention is that such functions have a type that is an
instance of ’a -> ’a -> int and the result of c x y denotes that x < y if it is smaller
than 0, x = y if it is equal to 0, and x > y if it is greater than 0.

To build a binary search tree the function search_tree is used

let search_tree c = Lst.foldl (fun t v -> insert c v t) Empty

The opposite of building a tree out of a list is to transform a tree into a list. One way
to do that is the function flatten:

let rec flatten = function

| Empty -> []

| Node(l,v,r) -> (flatten l)@(v::flatten r)

which processes the nodes of the given tree in a leftmost bottommost fashion. By
combining the functions search_tree and flatten an (admittedly suboptimal) sorting
algorithm for lists can be obtained.

let sort c xs = BinTree.flatten(BinTree.search_tree c xs)

21

4. Trees

4.2. A Little Bit More on Modules

In OCaml for every implementation file (i.e., ending in .ml) you may specify an interface
file (ending in .mli) by the same name. This file just contains the signature of the module
defined. This signature consists of the names of all types and all functions that should
be visible outside of the corresponding .ml file. Furthermore for each function listed in
the signature also the type must be specified. Refer to Listing 4.1 to see the interface
file for the module Lst. (Note that some of the functions have not been implemented
yet.)

(* W01 *)

(* W02 *)

type ’a t = ’a list

val hd : ’a t -> ’a

val tl : ’a t -> ’a t

val (@): ’a t -> ’a t -> ’a t

val replicate : int -> ’a -> ’a t

val take : int -> ’a t -> ’a t

val drop : int -> ’a t -> ’a t

val split_at : int -> ’a t -> ’a t * ’a t

val map : (’a -> ’b) -> ’a t -> ’b t

val foldr : (’a -> ’b -> ’b) -> ’b -> ’a t -> ’b

val foldl : (’a -> ’b -> ’a) -> ’a -> ’b t -> ’a

val filter : (’a -> bool) -> ’a t -> ’a t

(* E02 *)

val mem : ’a -> ’a t -> bool

val length : ’a t -> int

val last : ’a t -> ’a

val nth : ’a t -> int -> ’a

val rev_append : ’a t -> ’a t -> ’a t

val concat : ’a t t -> ’a t

val foldl1 : (’a -> ’a -> ’a) -> ’a t -> ’a

val foldr1 : (’a -> ’a -> ’a) -> ’a t -> ’a

val zip : ’a t -> ’b t -> (’a * ’b) t

val zip_with : (’a -> ’b -> ’c) -> ’a t -> ’b t -> ’c t

(* W03 *)

val join : ’a t -> ’a t t -> ’a t

Listing 4.1: Lst.mli

4.3. Example: Huffman Trees

An example where binary trees are useful is the Huffman coding (named after its in-
ventor, David Huffman) which is used to compress files. When using ASCII encoding,
every single letter in a text file needs exactly 8 bits. Hence for example the text “text”
needs (4 · 8 =) 32 bits in ASCII. The idea to compress the needed number of bits is
now to assign shorter bit sequences to symbols that occur very often in some given data.
Consider for example the assignment

t 7→ 0
e 7→ 10
x 7→ 11

22

4. Trees

with which the text “text” would only need 6 bits to store. There are two important
things to consider. Firstly the frequency of symbols in the given text has to be analyzed in
order to be able to assign the shortest codewords to the most frequent symbols. Secondly
every assigned codeword has to be unique, i.e., it has to be possible to reconstruct the
original text given a compressed bit sequence and a code table (assigning codewords to
characters). For instance when scanning the codeword 010110 from left to right (given
the above code table) then there is no other possibility than “text” for the original data.
The nice property used here is that no codeword is a prefix of another codeword (i.e.,
there are no two codes c1 and c2 such that c1 = c2b for some nonempty bit sequence b)
which would for example be the case for the code table:

t 7→ 0
e 7→ 10
x 7→ 1

The result of compressing “text” would be 01010. But this bit sequence cannot be
uniquely decoded since also “txtxt” or “tee” have the same encoding.

In order to use the Huffman coding the first thing to do is to analyze the frequency
of all symbols in the input (also called the sample).

4.3.1. Analyzing the Sample

Counting Occurrences of Symbols

The idea for counting the number of occurrences of symbols in the sample is to first
sort the input (hence equal symbols are one after another), then count the lengths of
segments of equal symbols, and finally return a list of symbol-weight pairs (sorted by
weights) where the weight of a symbol is the number of its occurrences in the sample.

Additional Functions for Lst
To count the number of occurrences of every symbol in the sample, some additional list
functions are convenient. Namely

let concat xs = foldr (@) [] xs

let rec take_while p = function

| [] -> []

| x::xs -> if p x then x :: take_while p xs else []

let rec drop_while p = function

| [] -> []

| x::xs as list -> if p x then drop_while p xs else list

let span p xs = (take_while p xs, drop_while p xs)

let rec until p f x = if p x then x else until p f (f x)

where take_while p xs results in the longest prefix of xs such that all elements satisfy
p, drop_while p xs results in the list obtained from xs by removing elements at the
front until p is no longer satisfied, and span is a combination of both. The function rev

returns the given list in reversed order, until repeatedly applies a given function until
some condition becomes true, and concat takes a list of lists and appends them one
after the other.

Counting the lengths of segments consisting of equal symbols is done via the function
collate:

23

4. Trees

let rec collate = function

| [] -> []

| w::ws as xs ->

let (ys,zs) = Lst.span ((=)w) xs in

(Lst.length ys,w) :: collate zs

resulting in a list of pairs where the second component is a symbol and the first one
the number of occurrences of this symbol in the sample. The last part for the sample
analysis is the function sample

let sample xs = sort compare (collate(sort compare xs))

that uses the function Pervasives.compare : ’a -> ’a -> int (which is the default
compare function of OCaml) to return a symbol-frequency list (ordered by increasing
frequency) of the sample.

4.3.2. Building the Huffman Tree

In a Huffman tree leaves and all other nodes carry different kinds of information. The
value of a leaf is a certain character plus the weight for this character whereas each
non-leaf node only needs to store the sum of the weights of its two subtrees. To model
that, the type

type node = (int * char option)

is used where option is a standard type constructor of OCaml and is defined by

type ’a option = None | Some of ’a

Thus leaf nodes will have values of the form (w, Some c) and non-leaf nodes values of the
form (w, None). The type of Huffman trees is therefore defined by

type t = node btree

In outline, the procedure for building a Huffman tree is first to convert the given fre-
quency list into a list of trees, and then repeatedly to combine two trees with lightest
weights until just one tree remains. Combining two trees is done by the function combine

and the two helper functions weight and insert

let combine = function

| xt::yt::xts -> let w = weight xt + weight yt in

insert (Node(xt,(w,None),yt)) xts

| _ -> failwith "length has to be greater than 1"

let is_singleton x = Lst.length x = 1

let weight = function

| Node(_,(w,_),_) -> w

| _ -> failwith "empty tree"

let insert vt wts =

let (xts,yts) =

Lst.span (fun x -> weight x <= weight vt) wts in

xts@(vt::yts)

The Huffman tree is finally built using the function tree

let tree xs =

let ts = Lst.map mknode (sample xs) in

Lst.hd (Lst.until is_singleton combine ts)

let mknode (w,c) = Node(Empty,(w,Some c),Empty)

24

4. Trees

4.3.3. Encoding and Decoding

In a Huffman tree it is easy (and fast) to find a character given a bit sequence, however,
for compressing (i.e., encoding) data, the opposite operation is needed, namely finding
a bit sequence for a given character. For this purpose a code table is generated out of
the Huffman tree. (An example of such a code table was

t 7→ 0
e 7→ 10
x 7→ 11

from the beginning of this section.) Given the following types

type bits = int list

type table = (char * bits)Lst.t

the above code table amounts to [(’t’,[0]);(’e’,[1;0]);(’x’,[1;1])] in Ocaml.
The function table takes a Huffman tree as input and generates a code table. The
helper function performs a top to bottom construction, i.e., it builds the code when
descending in the tree and when arriving at a leaf the code (for a single character) is
already computed. (In Exercise 4.4 you are asked to compute the table bottom to top.)

let table t =

let rec tab code = function

| Node(Empty,(_,Some v),Empty) -> [(v,code)]

| Node(l,_,r) -> tab (code@[0]) l @ tab (code@[1]) r

| _ -> failwith "the Huffman tree is empty"

in tab [] t

To consult the table the function lookup is used.

let rec lookup tab c = match tab with

| ((v,code)::tab) -> if v = c then code else lookup tab c

| _ -> failwith "not found"

The process of transforming a given text (an l-string) into a sequence of bits (int list)
is called encoding. Of course the encoding relies on a code table which has to be gen-
erated from the Huffman tree before. The function encode: t -> Strng.t -> bits is
used for this purpose. first computes the code table (based on the tree it gets as input)
and then encodes the text based on the code table.

let encode t text =

let tab = table t in

Lst.concat(Lst.map (lookup tab) text)

Given some compressed data (bit sequences are encoded as lists of integers where,
e.g., 010110 would be encoded by [0;1;0;1;1;0]) and a Huffman tree, decoding is the
process of reconstructing the original (uncompressed) text. The function decode does
the job and has type t -> bits -> Strng.t.

let rec decode_char = function

| (Node(Empty,(_,Some c),Empty),cs) -> (c,cs)

| (Node(xt,_,_),0::cs) -> decode_char (xt,cs)

| (Node(_,_,xt),1::cs) -> decode_char (xt,cs)

| _ -> failwith "empty tree"

let rec decode t = function

| [] -> []

| xs -> let (c,xs) = decode_char (t,xs) in c::decode t xs

25

4. Trees

4.4. Chapter Notes

The Huffman example is a modified version of the one for Haskell in [3] (Chapter 6).

4.5. Exercises

Exercise 4.1. Compute (on paper) the Huffman tree for the text:

This is a useless message.

How many bits does the compressed text need (ignoring the tree itself).

Exercise 4.2. Compute (on paper) the Huffman encoding for the text:

DON’T PANIC

Exercise 4.3. Show that for a given text the Huffman tree is not unique. Demonstrate
the effect on the text abcdcd. Does this affect the number of bits needed to encode a
message?

Hint: How does an alternative implementation of insert affect the resulting tree?

Exercise 4.4. Consider the module Huffman. The function table (see Section 4.3.3)
performs a top to bottom construction of the code table, i.e., it builds the code when
descending in the tree and when arriving at a leaf the code (for a single character) is
already computed.

A bottom to top function first descends in the tree and then generates the codes from
right to left by adding 0/1 in the code table for the left/right subtree at the front of the
codes.

a) Extend the module Huffman by a function table2 : t -> table, which generates
the code table bottom to top.

b) Which version is more efficient?

Exercise 4.5. Consider make2 : ’a list -> ’a btree

let rec make2 = function

| [] -> Empty

| x::xs ->

let m = Lst.length xs / 2 in

let (ys,zs) = Lst.split_at m xs in

Node (make2 ys, x, make2 zs)

as an alternative implementation of the function make from page 21. Compare the result
of make [1;2;3;4;5;6] and make2 [1;2;3;4;5;6]. Which function is more robust,
i.e., depends less on the implementation/result of Lst.split_at m xs?

Exercise 4.6. Follow the computation of sample [’h’;’e’;’l’;’l’;’o’] by evaluating
(on paper) the results of all function calls starting at sample [’h’;’e’;’l’;’l’;’o’].

Exercise 4.7. Implement in-order, pre-order and post-order tree traversal for binary trees
and run your functions on the example tree below. To be more precise, write functions
that take a binary tree as sole argument and return a list that contains all tree nodes
ordered according to the corresponding method of tree traversal. E.g., for post-order
the tree

26

4. Trees

1

2

4 5

3

6 7

would result in the list [4;5;2;6;7;3;1].

• In-order traversal visits the left subtree first, then the root, and finally the right
subtree.

• Pre-order traversal visits the root first, then the left subtree, and finally the right
subtree.

• Post-order traversal visits the left subtree first, then the right subtree, and finally
the root.

Exercise 4.8. Implement a predicate

is_sorted : ’a tree -> (’a -> ’a -> int) -> bool

such that is_sorted t c returns true if the given tree t is sorted with respect to the
comparison function c.

Exercise 4.9. Implement deletion in binary search trees.

delete : ’a btree -> ’a -> ’a btree

Test the correctness of your function by examples that cover all possible cases. Does your
function delete one or all occurrences of an element? Why is above question irrelevant
for binary search trees?

Exercise 4.10. Define successors : ’a tree -> ’a -> ’a list that computes all suc-
cessors of a given element in a tree. The function should fail with an exception in case
the element is not contained in the tree.

Exercise 4.11. Consider the type

type ’a tree = Empty | Node of (’a * ’a tree list)

Implement depth-first-search and breadth-first-search for trees:

dfs : ’a tree -> ’a -> bool

bfs : ’a tree -> ’a -> bool

The functions should return true if and only if the tree contains the sought element.

Exercise 4.12. Use search trees to implement the module St for finite sets where the
signature is given by

type ’a t

val diff : ’a t -> ’a t -> ’a t

val empty : ’a t

val insert : ’a -> ’a t -> ’a t

val is_empty : ’a t -> bool

val mem : ’a -> ’a t -> bool

val of_list : ’a list -> ’a t

val singleton : ’a -> ’a t

val to_list : ’a t -> ’a list

val union : ’a t -> ’a t -> ’a t

27

4. Trees

i.e., internally the type ’a t is ’a btree as defined above but that fact is hidden from
the user. The operations have following specifications (where S and T are sets and s
and t are elements):

diff S T = S \ T
empty = ∅

insert s S = {s} ∪ S
mem s S = s ∈ S

singleton s = {s}
union S T = S ∪ T

Exercise 4.13. Consider a representation of rational numbers where every number is
given by some integer part plus some fraction. E.g.,

1
2
4 1
2

5 3
4

3
6 5
6

7 7
8

.

In principle this is a (non-empty) binary tree having integers as nodes (just rotated 90
degrees counterclockwise). For this representation, give a function reduce that reduces
every given rational to its representation using at most one minimal (i.e., no further
reduction is possible) fraction. Above example would result in 112096

16813 .

Hint: Split the task into three functions:

a) gcd : int -> int -> int computing the greatest common divisor of two inte-
gers,

b) reduce’ : int t -> int * int reducing a binary tree of integers to a pair (rep-
resenting the numerator and the denominator of the fraction resulting from mul-
tiplying out the complex representation recursively),

c) and finally reduce : int t -> int t which combines reduce’ and gcd (and
some easy mathematics) to get the final result.

Exercise 4.14. Write a function print : (’a -> Strng.t) -> ’a t -> unit for the
BinTree module that given a function converting elements of some type to l-strings and
a binary tree, prints the tree. E.g., the tree of Exercise 4.7 should be printed as

1

+- 2

| +- 4

| |

| +- 5

|

+- 3

+- 6

|

+- 7

If you cannot achieve this in a reasonable amount of time, also

1

 2

28

4. Trees

 4

 5

 3

 6

 7

as output is acceptable (where denotes a space).

Exercise 4.15. Extend the module BinTree by a function mirror : ’a t -> ’a t that
mirrors a tree.

Then the tree

1

3

7 6

2

5 4 becomes

1

2

4 5

3

6 7 .

29

A little bit of syntactic sugar helps
you swallow the lambda calculus.

Peter Landin

5. λ-Calculus

Already Leibniz wanted to create a universal language in which all possible problems
can be stated. Outcomes of such efforts you may already know are for instance Turing
machines and register machines. From there also the expression Turing completeness
stems. A computational model is said to be Turing complete if it can compute all
“effectively” computable functions. In this chapter one of those Turing complete formal
frameworks is introduced: the λ-calculus (speak “lambda calculus”).

5.1. Syntax

The basic building blocks of the λ-calculus are λ-terms (or λ-expressions) where the
possible shapes of a λ-term t—given a set of variables V—are defined by the following
BNF grammar:

t ::= x | (λx.t) | (t t)

Here x is a variable from V, (λx.t) is a (lambda) abstraction (somehow equivalent to a
function definition like f(x) = t), and (t t) is the (function) application of the left λ-term
to the right one. The set of all λ-terms that can be built over some set of variables V, is
denoted by T (V). The OCaml equivalent to abstraction are anonymous functions. The
term (λx.x) for example is equivalent (modulo typing) to the function (fun x -> x).

Example 5.1. Some examples of well-formed λ-terms are:

x,

(λx.x),

(λx.(λy.(x y))),

(((λx.x) (λx.x)) (λx.x)).

In order to save parentheses the conventions that outermost parentheses are dropped,
that application binds tighter than abstraction, and that applications associate to the
left are used. Then the above can be written as

x,

λx.x,

λx.(λy.x y),

(λx.x) (λx.x) (λx.x).

Furthermore nested abstractions associate to the right and in order to save λs, variables
are grouped together, e.g., the rather longish term

(λx.(λy.(λz.((x y) z))))

is written
λxyz.x y z

using all of the above conventions. (In OCaml fun x y z -> x y z can be written
instead of (fun x -> (fun y -> (fun z -> ((x y) z)))).)

30

5. λ-Calculus

5.1.1. Subterms

The simplest λ-term is a variable. All other λ-terms are built using smaller λ-terms.

Example 5.2. The term λx.x x consists of an abstraction on the smaller term x x,
whereas this smaller term consists of the application of the term x to the term x.

In the above example, the terms x and x x are called (proper) subterms of the
term λx.x x. The set Sub(t) of subterms of a λ-term t is defined by

Sub(t)
def
=

{t} if t is a variable

{t} ∪ Sub(u) if t = λx.u

{t} ∪ Sub(u) ∪ Sub(v) if t = u v

Notice that this also includes the term t itself. A term s is called a proper subterm of
a term t, if s ∈ Sub(t) and additionally s 6= t.

5.1.2. Free and Bound Variables

The set Var(t) of variables occurring in a λ-term t is defined by

Var(t)
def
=

{t} if t is a variable

{x} ∪ Var(u) if t = λx.u

Var(u) ∪ Var(v) if t = u v

The set FVar(t) of free variables of a term t consists of all variables that occur outside
of a lambda abstraction.

FVar(t)
def
=

{t} if t is a variable

FVar(u) \ {x} if t = λx.u

FVar(u) ∪ FVar(v) if t = u v

The set BVar(t) of bound variables in a term t is defined by

BVar(t)
def
=

∅ if t is a variable

{x} ∪ BVar(u) if t = λx.u

BVar(u) ∪ BVar(v) if t = u v

Definition 5.1 (Closed terms). A λ-term t without any free variables (i.e., FVar(t) = ∅)
is called closed.

5.2. Evaluation of Lambda Expressions

Until now you know how the syntax of the λ-calculus looks like, but it only starts to
get interesting after knowing how to do computations using such syntactic constructs.
The surprising fact is that the λ-calculus does only need one rule to receive its full
computational power. The name of the rule is β.

5.2.1. Substitutions

Before the β-rule is given, something about substitutions has to be said. For the purpose
of β-reduction (see the next section), a substitution is a mapping from a variable to a
λ-term. We use the notation {x/t} to denote the substitution replacing the variable x
by the term t.

31

5. λ-Calculus

The application of a substitution {x/s} to a λ-term t (written as t{x/s}) is defined
by

t{x/s} def
=

s if t = x

y if t = y and x 6= y

(u{x/s}) (v{x/s}) if t = u v

t if t = λx.u

λy.u{x/s} if t = λy.u, y 6= x, and y /∈ FVar(s)

λz.u{y/z}{x/s} if t = λy.u, y 6= x, and y ∈ FVar(s)

Note that the variable z in the last case is assumed to be fresh, i.e., it is different
from all the variables occurring in u and s, and also unequal to x. Due to case four,
bound variables are not substituted. To understand the last two cases, note what would
happen if it was allowed to apply a substitution {x/s} directly to a term t = λy.u with
y ∈ FVar(s). This would for example yield (λx.y){y/x} = λx.x and (λz.y){y/x} = λz.x.
Where λx.y and λz.y provide the same results for the same inputs, but the two λ-terms
after the substitution do not behave identical on identical input. (This problem is
sometimes referred to as variable capture.)

5.2.2. The β-Rule

Computations within the λ-calculus are done by applying the β-rule stepwise (which is
called β-reduction). A special kind of terms are contexts. A context C is built according
to the following grammar

C ::= � | λx.C | t C | C t

where x ∈ V, t ∈ T (V), and � /∈ V is a special symbol called hole. The set of all
contexts built over some set of variables V is denoted by C(V). With C[s] we denote the
replacement of � (in C) by the term s. Note that since every context contains exactly
one hole (proving that is left as an exercise, cf. Exercise 5.6) the result of this operation
is a term.

The β-rule is defined by
s→β t

if there is a subterm u of s (i.e., u ∈ Sub(s)) that is of the form u = (λx.v) w. Then t
is obtained from s by replacing u with v{x/w}. It is said that s β-reduces to t in one
step. An alternative way to write this down would be: If there exist a context C and
terms s, v, and w, such that

s = C[(λx.v) w]

(which is equivalent to stating that (λx.v) w is a subterm of s) then

s→β C[v{x/w}]

Let s and t be λ-terms. If s reduces to t in a number of β-steps then we denote this
by s→∗β t.

Consider for example the reduction step

(λx.x) (λx.x)→β x{x/λx.x} = λx.x

Here (λx.x) (λx.x) is called a redex (the short form of reducible expression) and λx.x
is its contractum. In principle this alone is sufficient to define and evaluate every ef-
fectively computable function. The only remaining question is: What is the result of a
computation?

32

5. λ-Calculus

5.2.3. Normal Forms

A λ-term is said to be in normal form (NF) if it is not possible to apply any β-reduction.
A normal form can be considered as the outcome of a computation. Note that there are
λ-terms that do not have any normal form. For others it might depend on the order of
β-steps whether a normal form is reached or not.

Example 5.3. Reducing the term (λx.x x) (λx.x x) results in the following reduction
sequence

(λx.x x) (λx.x x)→β (λx.x x) (λx.x x)→β (λx.x x) (λx.x x)→β . . .

In fact this term does not have a normal form. Compare the above term with the
following (λyz.z) ((λx.x x) (λx.x x)). There are two redexes: The first one is the whole
term itself and the second one is (λx.x x) (λx.x x). If the first one is contracted then
a normal form is reached immediately (namely λz.z), but the second redex can be
contracted indefinitely.

5.3. Representing Data Types in the λ-Calculus

To get a grasp of the power of the λ-calculus it is shown how some data types and
operations on them that are frequently used in functional programming languages—like
Booleans with Boolean connectives, integers with integer arithmetic, pairs, and lists with
list operations—can be encoded in the λ-calculus.

5.3.1. Booleans and Conditionals

Consider an expression like if b then t else e. To encode this as a λ-term something of
the shape λbte.s is needed, where s has to specify that if b holds then the result should
be t and otherwise it should be e. In order to achieve such behavior of s the Boolean
values true and false have to be encoded as λ-terms. One nice possibility is

true
def
= λxy.x

false
def
= λxy.y

Then the if b then t else e of OCaml can be encoded as

if
def
= λxyz.x y z

since

if true t e = (λxyz.x y z) (λxy.x) t e→3
β (λxy.x) t e→2

β t

and

if false t e = (λxyz.x y z) (λxy.y) t e→3
β (λxy.y) t e→2

β e

5.3.2. Natural Numbers

One way to encode (natural) numbers, i.e., only the non-negative part of integers, in the
λ-calculus are the so called Church numerals.

33

5. λ-Calculus

Definition 5.2. Let s and t be λ-terms, and n ∈ N.1 Then sn t is defined inductively by

s0 t
def
= t

sn+1 t
def
= s (sn t)

The Church numerals (represented by 0, 1, 2, . . . in the following) are defined by

n
def
= λfx.fn x

Example 5.4. Using the above definition the first four Church numerals are given by

0
def
= λfx.x

1
def
= λfx.f x

2
def
= λfx.f (f x)

3
def
= λfx.f (f (f x))

On first sight this definition does not look very obvious (a reason for that could be
that it is not), however using the above encoding for numbers, the definitions of addition,
multiplication, and exponentiation are very easy, namely

add
def
= λmnfx.m f (n f x)

mult
def
= λmnf.m (n f)

exp
def
= λmn.n m

Example 5.5. To familiarize with Church numerals we reduce the λ-term add 1 2 to
normal form (the contracted redex is underlined in each step):

add 1 2 = (λmnfx.m f (n f x)) 1 2

→β (λnfx.1 f (n f x)) 2

→β λfx.1 f (2 f x)

= λfx.1 f ((λfx.f (f x)) f x)

→β λfx.1 f ((λx.f (f x)) x)

→β λfx.1 f (f (f x))

= λfx.(λfx.f x) f (f (f x))

→β λfx.(λx.f x) (f (f x))

→β λfx.f (f (f x)) = 3

After we have seen that add 1 2 →∗β 3 we investigate why the add combinator works
as it should. First we explain the λmnfx. part. The m and n are the two parameters
add will take. The f and the x are needed since the result of add m n should be a church
numeral, i.e., of the shape λfx. . Now what happens if we apply add to church numerals
m and n? We have

add m n = (λmnfx.m f (n f x)) m n→2
β (λfx.m f (n f x))→∗β ?

1For the purpose of this lecture N does always denote the set {0, 1, 2, 3, . . . } of positive integers together
with 0 (which itself is neither negative nor positive).

34

5. λ-Calculus

To determine the ? we first look at the redex n f x. We have

n f x = (λf x.fn x) f x→2
β f

n x

and hence for the redex m f (n fx) we have

m f (n f x)→2
β m f (fn x) = (λf x.fm x) f (fn x)→2

β f
m (fn x) = fm+n x

The last identity we leave as an exercise (see Exercise 5.10). Consequently we have that
add m n→∗β m + n.

The reasoning for mult is similar but a bit more involved. We have

mult m n = λmnf.m (n f)→2
β λf.m (n f)

and for the redex n f we have

n f = (λfx.fn x) f →β λx.f
n x

and hence for the redex m (n f) we have

m (n f) = (λfx.fm x) ((λfx.fn x) f)→β (λfx.fm x) (λx.fn x)

→β λx.(λx.f
n x)m x→∗β λx.fnm x

We leave the proof for (λx.fn x)m x→∗β fnm x as an exercise (see Exercise 5.11). Con-
sequently mult m n→∗β mn.

5.3.3. Pairs

Concerning pairs, some means to construct them—given two values—and to select the
first and second component respectively, are needed. This is done via the λ-terms

pair
def
= λxyf.f x y

fst
def
= λp.p true

snd
def
= λp.p false

The reader may already have missed subtraction on natural numbers. The reason is,
that pairs are needed before subtraction can be defined. For Church numerals subtraction
is an awfully complex (and slow) operation. We will compute subtraction by repeated
predecessor operations. Hence the first problem is to get λfx.fn x from λfx.fn+1 x,
i.e., get the Church numeral n from n+1. Consider the function

ffstfst
def
= λfp.pair (f (fst p)) (fst p)

which may be easier understandable using pattern matching, i.e.,

ffstfst
def
= λf(x,).(f x, x)

If (ffstfst f) is applied n+ 1 times to an argument pair (x, y) then the result is obviously
(ffstfst f)n+1 (x, y) = (fn+1 x, fn x). The encoding of a Church numeral λfx.fn x ba-
sically is the function that applies fn to x (i.e., f is applied n times to x). Hence the
result of

(λfx.fn+1 x) (ffstfst f) (pair x x)

is (fn+1 x, fn x) and by selecting the second component the predecessor n of n+1 can
be obtained. This facilitates the definitions

pre
def
= λnfx.snd (n (ffstfst f) (pair x x))

sub
def
= λmn.n pre m

for the predecessor function and subtraction (m− n).

35

5. λ-Calculus

5.3.4. Lists

Having pairing and Booleans, a nonempty list x :: y can be encoded by the nested pairs
pair false (pair x y) (using pattern matching (false, (x, y))) where false denotes that the
list is not empty. Before defining the encoding for empty lists consider the functions
that should work on lists. Those are: hd, tl, null (checking whether a list is empty), and
cons. Most of them are easy:

cons
def
= λxy.pair false (pair x y)

hd
def
= λz.fst (snd z)

tl
def
= λz.snd (snd z)

Now for null the desired result for empty lists is true whereas for nonempty lists it is
false. For nonempty lists it would suffice to return the first component of the given pair.
It only remains to define nil in a way that fst l evaluates to false for nonempty lists and
to true for empty lists. Since fst = λp.p true the solution is

nil
def
= λx.x

null
def
= fst

5.4. Recursion

Consider an implementation of a recursive function in the λ-calculus. For instance the
list function length. In OCaml it could be implemented by

let rec length x = if x = [] then 0 else 1 + length(tl x)

Hence it should be possible to write something like

length
def
= λx.if (null x) 0 (add 1 (length (tl x)))

The only problem here is that the definition of length already needs the length function
(which after all is the point of recursive definitions). The idea is to extend length by an
additional parameter f and replace all occurrences of length within its definition by this
parameter. The result is

length
def
= λfx.if (null x) 0 (add 1 (f (tl x)))

Since in the end, length should only take one argument, another λ-term has to be added.
Currently it is not clear how this term should look like, but lets call it Y. Then length
is defined by

length
def
= Y (λfx.if (null x) 0 (add 1 (f (tl x))))

Suppose that Y has the property that for every λ-term t it holds that Y t ↔∗β t (Y t)2

then the following reduction is possible (where length corresponds to Y t):

length→∗β (λfx.if (null x) 0 (add 1 (f (tl x)))) length

→β λx.if (null x) 0 (add 1 (length (tl x)))

which yields the desired result. Indeed such a Y exists.

2Here ↔∗
β means that we can apply β-steps in both directions.

36

5. λ-Calculus

Definition 5.3. The ‘Y’-combinator Y—discovered by Haskell B. Curry—is defined by

Y
def
= λf.(λx.f (x x)) (λx.f (x x))

and has the fixed point3 property, i.e., for all λ-terms t

Y t↔∗β t (Y t)

A remarkable result is that the content of this chapter until here is sufficient to encode
almost all OCaml programs that were implemented so far during the lecture, only using
the λ-calculus. For example, strings are lists of characters, however, on a computer
characters are essentially numbers.

5.5. Evaluation Strategy

The evaluation strategy (or strategy for short) determines which redex to choose if there is
more than one possibility. Until now the decision was arbitrary, but when implementing
β-reduction the computer needs to know exactly what to do. Two “natural” choices of
evaluation strategies are outlined in the following.

5.5.1. Outermost Reduction

The (leftmost) outermost strategy always chooses the (leftmost) outermost redex in a
term to apply a β-step. An outermost redex is one that is not a subterm of some other
redex.

5.5.2. Innermost Reduction

The (leftmost) innermost strategy always chooses the (leftmost) innermost redex in a
term to apply a β-step. An innermost redex is one that does not contain any redexes as
proper subterms.

5.5.3. Call-by-Value vs. Call-by-Name

From the above (rewrite) strategies two evaluation strategies for functional programs can
be extracted. The first is called call-by-name and the second call-by-value. Call-by-value
is the evaluation strategy adopted by most programming languages. In this evaluation
strategy the arguments (value) of a function are evaluated before the function is called
on them. For example the function call

let f x = x + 1 in f (3 + 2)

will be evaluated in the following order in OCaml

f (3 + 2)→ f 5

→ 5 + 1

→ 6

Still it is thinkable to do the derivation in a different order, as in

f (3 + 2)→ (3 + 2) + 1

→ 5 + 1

→ 6

3Intuitively speaking, a fixed point of a function f is a value v such that applying f to v always results in
v. Consequently v = f v = f (f v) = · · · = fn v for an arbitrary n ∈ N. The fixed point combinator
somehow computes such a fixed point for a given function.

37

5. λ-Calculus

which would be call-by-name, i.e., evaluate the function(-name) and pass the argument
as it is.

It can be seen that there is a tight correspondence between call-by-name and out-
ermost reduction as well as between call-by-value and innermost reduction. Next we
will elaborate on the slight difference: In addition to only reduce outermost (innermost)
redexes, call-by-name (call-by-value) does only consider terms that are in weak head
normal form.

Definition 5.4. A λ-term t is said to be in weak head normal form (WHNF) if it is not
a function application, i.e., there do not exist λ-terms u and v s.t.

t = u v

Intuitively this means that the function body of a function without arguments is
considered as normal forms, e.g., in

let foo = (fun x -> 1 + 2)

foo is not reduced to fun x -> 3 as long as it does not get any argument. This is of
practical interest because if the function foo from above is never applied to any argument
in the remainder of the program then the (useless) effort of evaluating 1+2 is avoided.
Note that in general the function body might include more costly (even non-terminating)
computations.

In other words call-by-name corresponds to outermost reduction to WHNF whereas
call-by-value corresponds to innermost reduction to WHNF.

Example 5.6. Consider the λ-term length nil, computing the length of the empty list.
This corresponds to the term

(Y (λfx.if (null x) 0 (add 1 (f (tl x))))) (λx.x)

having the eight redexes

tl x (5.1)

add 1 (5.2)

null x (5.3)

snd z (5.4)

if (null x) (5.5)

snd (snd z) (5.6)

(λx.f (x x)) (λx.f (x x)) (5.7)

Y (λfx.if (null x) 0 (add 1 (f (tl x)))) (5.8)

where (5.4) and (5.6) are hidden in the definition of tl and (5.7) is hidden in the definition
of Y. If scanning for redexes starting at the left then the first one obtained is (5.8), which
turns out to be the leftmost outermost redex since it is not a subterm of any other redex.
Using an outermost strategy will yield the result in some reduction steps. However, the
leftmost innermost redex of the above term that is not in WHNF is (5.7). This term is
the starting point of the reduction sequence

(λx.f (x x)) (λx.f (x x))→β f ((λx.f (x x)) (λx.f (x x)))

→β f (f ((λx.f (x x)) (λx.f (x x))))

. . .

using innermost reduction to WHNF. This does not terminate. Indeed every recursive
definition using Y is nonterminating under call-by-value evaluation.

38

5. λ-Calculus

As can be seen from the above example, Y is not suitable for call-by-value reduction.
Gladly there is an alternative to Y which does work also in this case.

Definition 5.5. The ‘Z’-combinator Z—which is a slight variation of Y—is a fixed point
combinator (i.e., having the fixed point property) that can be used for call-by-value
reduction and is defined by

Z
def
= λf.(λx.f (λy.x x y)) (λx.f (λy.x x y))

As already mentioned, two different evaluation strategies are considered. Call-by-value
is tightly connected to strict or eager evaluation (that is adopted by most imperative
programming languages and also by OCaml). A similar connection can be found between
call-by-name and non-strict or lazy4 evaluation.

5.6. Chapter Notes

Similar examples and further information can be found in [2,5,13]. An important property
of the λ-calculus is that β-reduction (=computation) gives unique results, i.e., there is
no term s such that s→∗β t and s→∗β u with different normal forms t and u. The lambda
calculus satisfies this property since it satisfies the stronger “Church-Rosser property”,
claiming that for all terms t and u with t↔∗β u we can find a common reduct v of t and
u, i.e., t→∗β v and u→∗β v.

5.7. Exercises

Exercise 5.1. Use the conventions backwards to write the following λ-terms in ‘full-
detail’. Which one is a normal form. Which one is not?

• λx.x y

• (λx.x) y

Exercise 5.2. Use the conventions to simplify the following λ-term

(λx.(λy.(λz.(((x y) (y x)) z))))

Use the conventions backwards to write the following λ-term in ‘full-detail’

λabcd.a b c d (d c b a)

Exercise 5.3. A well-known λ-term is the so called S-combinator ; defined by

S
def
= λxyz.x z (y z)

Give set Sub(S) of all its subterms.

Exercise 5.4. For each λ-term t out of {λx.x y, λxy.z, λx.x (y z)} give the sets Var(t),
BVar(t), and FVar(t)—the set of variables, bound variables, and free variables in t,
respectively.

Exercise 5.5. Consider the substitution σ = {x/λx.x} and the λ-term (λxz.x) (y x).
What is the result of tσ, i.e., applying σ to t?

4Lazy evaluation and call-by-name are not the same, but they are quite similar. Lazy evaluation cor-
responds to call-by-name evaluation where additionally a technique called sharing (or memoization)
is used to avoid multiple computations of the same expression. However, that’s a different story.

39

5. λ-Calculus

Exercise 5.6. Prove that every context C ∈ C(V) contains exactly one occurrence of �.

Exercise 5.7. Consider the λ-term (λxy.y) (λx.x x) (λx.x x). Reduce it to normal form.

Exercise 5.8. Reduce each of the following λ-terms to normal form.

(λw.w) ((λxy.y) (z z))

(λxy.x) (λz.y z)

λz.(λxy.y z) (λx.x z y)

λxy.y (λyz.y x (λw.w))

Exercise 5.9. Reduce mult 2 3 and exp 2 3 to normal form.

Exercise 5.10. Show that sl (sk t) = sl+k t for all natural numbers l, k ∈ N and lambda
terms s, t ∈ T (V).

Hint: Use induction on l.

Exercise 5.11. Show that (λx.fn x)m x→∗β fnm x for all natural numbers n,m ∈ N.
Hint: Use induction on m.

Exercise 5.12. Use the following type for λ-terms

type var = Strng.t

type term = Var of var

| App of (term * term)

| Abs of (var * term)

to implement the functions:

subterms : term -> term list

vars : term -> var list

fvars : term -> var list

bvars : term -> var list

Exercise 5.13. Which of the following terms are in normal form (NF), which are in weak
head normal form (WHNF)?

a) λx.x

b) (λx.x) y

c) (λx.x) y x

d) x x

e) λx.(λy.y) x

Exercise 5.14. Reduce add 2 3 to WHNF, applying

a) leftmost innermost and

b) leftmost outermost

reduction.

Exercise 5.15. Using the definitions

true = λxy.x

false = λxy.y

give λ-terms corresponding to the Boolean connectives not, and, and or.
Hint: For not find a λ-term such that not true→∗β false and not false→∗β true.

40

5. λ-Calculus

Exercise 5.16. Give all subterms of the λ-term Y. Which of those are proper subterms?
For each subterm ti give the sets Var(ti), FVar(ti), and BVar(ti).

Exercise 5.17. Consider the closed λ-terms

I
def
= λx.x,

K
def
= λxy.x,

S
def
= λxyz.x z (y z).

Give all β-reduction sequences of the term S K I I.

Exercise 5.18. Give a λ-expression succ computing the successor of a Church numeral
to which it is applied, i.e., succ n→∗β n+1.

Exercise 5.19. Prove that for every λ-term t there exists a λ-term X such that

X→∗β t X.

Hint: Construct such an X for a given t.

Exercise 5.20. Give a λ-term that corresponds to Lst.map.

Exercise 5.21. Show that Y t↔∗β t (Y t) for every term t.

Exercise 5.22. Try to reduce the λ-term hd (cons 1 nil) to WHNF using the leftmost
innermost strategy.

Exercise 5.23. Reduce the λ-term hd (cons 1 nil) to WHNF using the leftmost outermost
strategy.

Exercise 5.24. Consider the infinite list of natural numbers nats, defined by

let rec from n = n :: from(n+1)

let nats = from 0

Give the computation steps of hd nats using call-by-name. What happens using call-
by-value?

Exercise 5.25. Consider the list ls = [1;2;3].

a) Write ls as a λ-term L.

b) Reduce hd (tl L) to β-normal form.

c) Reduce tl nil to β-normal form.

Hint: Use Church numerals to represent natural numbers.

Exercise 5.26. Consider Church numerals m and n and leftmost innermost evaluation.

a) How many β-steps does the evaluation of add m n to normal form need?

b) How many β-steps does the evaluation of mult m n to normal form need?

c) How do you explain the results?

Exercise 5.27. Consider the following OCaml program

41

5. λ-Calculus

\exlabel{ocaml_whnf}

let print s _ = Format.printf "%s " s;;

let p = print "hello" ();;

let p1 _ = p;;

let p2 _ = print "world" ();;

p1 ();;

p2 ();;

p1 ();;

What is the output of the program (and why)?

Exercise 5.28. Explain the output of the following OCaml program

let x = ref 0;;

let f x () = Format.print_int x;;

let p1 = f !x;;

let p2 _ = f !x ();;

x := 1;;

p1 ();;

p2 ();;

42

All animals are equal but some
animals are more equal than others.

George Orwell

6. Reasoning About Functional Programs

Perhaps the most favored property of programs is that they are correct, i.e., do not con-
tain errors (in the end it is often enough to have as few errors as possible). Programmers
are sometimes already satisfied when they have a close look at their program and do
not find anything wrong. Obviously that does not suffice. The best thing that could
happen would be if one was able to prove that some program is correct. Since functional
programming is so close to mathematics, some mathematical proof methods (most no-
tably induction) can directly be applied to functional programs giving rise to rigorous
correctness proofs. The process of proving the correctness of programs is called program
verification. In this chapter one method to verify programs is presented: Structural
induction.

6.1. Structural Induction

Structural induction is a generalization of induction over natural numbers (aka mathe-
matical induction). In mathematical induction the goal is to prove that some property
holds for all natural numbers.

Example 6.1. Consider the formula

1 + 2 + · · ·+ n =
n · (n+ 1)

2
, (6.1)

stating that the sum of the first n natural numbers can be computed by the formula
(n · (n+ 1))/2.

Proof. Using the principle of mathematical induction this can be proved by first consid-
ering the base case, which happens to be n = 0. Clearly the sum of the first 0 natural
numbers is 0. Substituting 0 for n in the rhs (right-hand side) of (6.1) results in

0 · (0 + 1)

2
= 0.

Hence the statement is true for the base case. Afterwards the induction step (or step
case) is considered. For natural numbers that is proving—under the assumption that
the desired property holds for n—that the property does hold for n+1. The assumption
is called induction hypothesis (IH). In the current example the IH is

1 + 2 + · · ·+ n =
n · (n+ 1)

2
.

It remains to be shown, that the lhs (left-hand side) of (6.1) equals the rhs of (6.1) if
n + 1 is substituted for n. After the substitution the lhs becomes 1 + 2 + · · · + (n + 1)

43

6. Reasoning About Functional Programs

which can be transformed as follows:

(1 + 2 + · · ·+ n) + (n+ 1)

=
n · (n+ 1)

2
+ (n+ 1) (by IH on 1 + 2 + · · ·+ n)

=
n · (n+ 1) + 2n+ 2

2
(denominator adaption)

=
n2 + n+ 2n+ 2

2
(multiplication)

=
(n+ 1) · (n+ 2)

2
(expansion)

which is the rhs of (6.1) where n+1 is substituted for n and thus concludes the proof.

The intuition behind this proof method is the following: Suppose you want to convince
yourself that (6.1) does hold for n = 3. The available ingredients are a proof that the
formula does hold for n = 0 and a proof of the implication:

If 1 + 2 + · · ·+ n =
n · (n+ 1)

2
then 1 + 2 + · · ·+ n+ (n+ 1) =

(n+ 1) · (n+ 2)

2
.

Then starting at 0 = (0 · (0 + 1))/2 the implication can be used to get the result for 1
namely 1 = (1 ·(1+1))/2. Applying the implication another two times yields the desired
result 6 = (3 · (3 + 1))/2. In this way every natural number can be reached and hence
the property has to hold for all natural numbers.

Definition 6.1. The principle of mathematical induction states that if P (0) holds and
P (n)→ P (n+ 1) holds for all n ∈ N and some property P , then P (n) for all n ∈ N. Put
more formally,

(P (0) ∧ ∀n.(P (n)→ P (n+ 1)))→ ∀n.P (n).

Now it is obvious that the second bound occurrence of n does not depend on the first
and hence it could also be stated, e.g.,

(P (0) ∧ ∀k.(P (k)→ P (k + 1)))→ ∀n.P (n)

since renaming bound variables does not change the meaning.

Let us have a second look at the proof of (6.1). This time concentrating on the
different ingredients of the principle of mathematical induction that occur in it. The
property P is identified to be

P (x) =

(
x∑
i=1

i =
x · (x+ 1)

2

)
,

i.e., the whole equation from (6.1) (which should be indicated by the surrounding paren-
theses). From a functional programming point of view, P can be seen as a function of
type int -> bool, returning true if the given number satisfies (6.1) and false other-
wise. A different reading of the formula

(P (0) ∧ ∀k.(P (k)→ P (k + 1)))→ ∀n.P (n)

would be: “In order to prove ∀n.P (n), it suffices to show that P (0) is true (base case)
and ∀k.(P (k) → P (k + 1)) is true (step case).” Hence there are two things to show.
Firstly P (0) which is called the base case and secondly ∀k.(P (k) → P (k + 1)) which
is called the step case. A different reading of the step case would be: “Assuming that
P (k) for arbitrary k (∈ N) show that also P (k+ 1).” Hence to prove the step case, P (k)
is used as a fact (called induction hypothesis) and using this fact, P (k + 1) has to be
shown. Consider the following proof of (6.1)

44

6. Reasoning About Functional Programs

Base Case The property P has to be shown for 0. By substituting x by 0 in P (x) this
translates to

0∑
i=1

i =
0 · (0 + 1)

2
.

This is obviously true, hence P (0) has been shown.

Step Case Assume P (k) holds for an arbitrary k, i.e.,
∑k

i=1 = k·(k+1)
2 . Using this try

to show P (k + 1), i.e.,

k+1∑
i=1

i =
(k + 1) · ((k + 1) + 1)

2
.

This can be shown in a similar way as in the previous proof of (6.1).

Reconsidering what has been shown yields P (0) (from the base case) and ∀k.(P (k)→
P (k+1)) (from the step case, since k has been arbitrary). Combining these two formulas
yields

P (0) ∧ ∀k.(P (k)→ P (k + 1)).

This is exactly the premise of

(P (0) ∧ ∀k.(P (k)→ P (k + 1)))→ ∀n.P (n)

and hence it follows that ∀n.P (n) denoting that P is true for all natural numbers.
In the case of structural induction a proof is very similar, the only difference being

that the number of base cases and step cases depends on the exact structure induction
is applied upon. In the following this structure is always a variant type, where the base
cases correspond to constructors that do not refer recursively to the defined type and
the step cases correspond to those that do.

6.1.1. Structural Induction Over Lists

Recall the type of lists that could be defined by

type ’a list = [] | (::) of (’a * ’a list)

With respect to induction, lists are very similar to natural numbers. The base case
being ‘[]’ (i.e., a list of length 0) and the step case xs → x :: xs (i.e., assuming that
the property holds for lists of length n it does also hold for lists of length n+ 1). Indeed
structural induction over lists is exactly the same as mathematical induction on the
length of lists.

Example 6.2. As an example it is proved that the sum of the lengths of two lists is the
same as the length of the combined list, i.e., for all lists xs and ys it holds that

length xs+ length ys = length(xs @ ys)

Where length is defined by

let rec length = function [] -> 0

| _::xs -> 1 + length xs

and recall that ‘@’ is defined as

let rec (@) xs ys = match xs with [] -> ys

| x::xs -> x::(xs @ ys)

45

6. Reasoning About Functional Programs

Proof. We use induction over xs to show the property

P (xs) = (length xs+ length ys = length(xs @ ys))

Base Case (xs = []). We have to show P ([]), i.e.,

length [] + length ys = length([] @ ys)

By the definition of length the length of an empty list is 0. Hence the lhs equals
length ys. By the definition of ‘@’ the rhs also yields length ys.

Step Case (xs = z :: zs).
The IH is P (zs), i.e., length zs+ length ys = length(zs @ ys).
We have to show P (z :: zs), i.e.,

length (z :: zs) + length ys = length ((z :: zs) @ ys)

Let us try to transform the lhs to the corresponding rhs:

length(z :: zs) + length ys = 1 + length zs+ length ys
IH
= 1 + length(zs @ ys)

= length(z :: (zs @ ys))

= length((z :: zs) @ ys)

Often induction over lists is used to prove equality between two expressions. If one
of the expressions is intuitively easy to understand but inefficient and the other is very
complex but fast, then induction is a nice way to make sure that replacing the easy
expressions by the complex ones will not alter the result of a program (but maybe the
program will be much faster afterwards). However, to prove such equalities there is still
something missing. Consider for example the function hd that is defined by

let hd = function x::_ -> x

| _ -> failwith "empty list"

What is the result of this function if it is applied to an empty list? In terms of program
execution some exception is raised and the program is aborted. But for the purpose of
induction proofs it is assumed that the result is undefined. Therefor the value ⊥ (speak
‘bottom’) is introduced, representing undefined results of computations. Then

hd [] = ⊥.

Additionally every function applied to ⊥ results in ⊥.1 E.g., extracting the second
element of a list xs by

hd(tl xs)

is ⊥ if length xs < 2 and the second element otherwise.

1At least for eager evaluation schemes. Since OCaml is a strict functional language, this assumption is
fine for proofs about OCaml functions.

46

6. Reasoning About Functional Programs

Properties of List Functions

Recall the function ‘@’ that is implemented as

let rec (@) xs ys = match xs with [] -> ys

| x::xs -> x::(xs @ ys)

where xs @ ys is written instead of (@) xs ys. First it can be shown that nil is a left
identity w.r.t. list concatenation.

Lemma 6.1. ‘[]’ is a left identity of ‘@’, i.e.,

[] @ ys = ys

for all lists ys.

Proof. This follows immediately from the definition of ‘@’.

It can also be shown that nil is a right identity for list concatenation.

Lemma 6.2. ‘[]’ is a right identity of ‘@’, i.e.,

xs @ [] = xs

for all lists xs.

Proof. By induction over the list xs.

Base Case (xs = []). By the definition of ‘@’ it follows immediately that [] @ [] = [].

Step Case (xs = z :: zs). The IH is zs @ [] = zs.

(z :: zs) @ [] = z :: (zs @ []) (definition of ‘@’)
IH
= z :: zs.

Then by induction it can be proved that the evaluation order of ‘@’ is irrelevant.

Lemma 6.3. Concatenation of lists is associative, i.e.,

(xs @ ys) @ zs = xs @ (ys @ zs).

Proof.

Base Case (xs = []). Starting at the lhs, the following derivation can be done

([] @ ys) @ zs = ys @ zs. (by Lemma 6.1)

The same result can be obtained starting at the rhs:

[] @ (ys @ zs) = ys @ zs. (by Lemma 6.1)

Step Case (xs = w :: ws). The IH is (ws @ ys) @ zs = ws @ (ys @ zs). For the lhs one
gets:

((w :: ws) @ ys) @ zs = (w :: (ws @ ys)) @ zs (definition of ‘@’)

= w :: ((ws @ ys) @ zs) (definition of ‘@’)
IH
= w :: (ws @ (ys @ zs)).

And for the rhs the same result is obtained by the derivation step:

(w :: ws) @ (ys @ zs) = w :: (ws @ (ys @ zs)). (definition of ‘@’)

47

6. Reasoning About Functional Programs

In mathematics a structure consisting of a set (here the set of lists) and a binary
operation on it (here list concatenation) such that the binary operation is associative
and has an identity element (here the empty list) is called a monoid. Hence lists together
with list concatenation build a monoid.

Another application of induction is to prove that ‘@’ can alternatively be implemented
in terms of foldr, where foldr from page 9 is defined by

let rec foldr f b = function [] -> b

| x::xs -> f x (foldr f b xs)

This amounts to proving the following lemma.

Lemma 6.4.
xs @ ys = foldr (fun z zs -> z :: zs) ys xs

Proof.

Base Case (xs = []). The base case follows immediately from the definitions of ‘@’ and
foldr.

Step Case (xs = w ::ws). The IH is ws@ys = foldr (fun z zs->z ::zs) ys ws. Then
by transforming the lhs one gets:

(w :: ws) @ ys = w :: (ws @ ys)
IH
= w :: (foldr (fun z zs -> z :: zs) ys ws)

= foldr (fun z zs -> z :: zs) ys (w :: ws).

6.1.2. General Structures

Not only lists are usable for structural induction. In principle every variant type gives
rise to possible structural induction proofs over that type.

Binary Trees

As an example binary trees are used to show the more general case of structural induction
with several step cases. Recall the definition of the type ’a btree given by

type ’a btree = Empty | Node of (’a btree * ’a * ’a btree)

A binary tree is called perfect if all leaf nodes have the same height (i.e., all paths from
the root to some leaf node have the same length). By structural induction the following
lemma can be shown (recall the definition of height on page 20).

Lemma 6.5. A perfect binary tree t of height k has exactly 2k − 1 nodes.

Proof.

Base Case (t = Empty). By definition of height, the height of an empty tree is 0.
Substituting 0 for k in the goal results in 20 − 1 = 0 which happens to be the
number of nodes in an empty tree.

Step Case (t = Node (l, v, r)). Since t is a perfect binary tree of height k + 1 it follows
that l and r are perfect binary trees of respective heights k. Hence by IH it holds
that l and r each have 2k − 1 nodes. Since t is built by combining l, r, and one
additional node, the number of nodes in t equals the number of nodes in l plus the

48

6. Reasoning About Functional Programs

number of nodes in r plus one, i.e., 2 · (2k − 1) + 1. The proof concludes by the
following derivation:

2 · (2k − 1) + 1 = 2 · 2k − 2 + 1 (multiplication)

= 2 · 2k − 1 (addition)

= 2k+1 − 1.

λ-Terms

Another example are λ-terms. Recall that a λ-term t is of the form

t ::= x | (λx.t) | (t t)

with x ∈ V, and that the (OCaml) type of λ-terms is defined by

type term = Var of var

| Abs of (var * term)

| App of (term * term)

The base case for induction proofs is the case without a recursive reference to the defini-
tion of terms itself (i.e., x for λ-terms and Var for the OCaml type). For the step cases
abstractions ((λx.t) and Abs, respectively) and applications ((t t) and App, respectively)
have to be considered for λ-terms and the corresponding type. First let’s prove that un-
der the assumption that there is a unique mapping between variables x ∈ V and OCaml
values of type var, there is exactly one instance of the type term for every λ-term t.
This is done via structural induction over t.

Base Case (t = x). For the case of a variable Var x can be taken for a uniquely
determined value x of type var by assumption.

Step Case (t = (λx.s)). The IH is that there is a unique instance of term that cor-
responds to the term s. Let us call this instance s. Then by taking a uniquely
determined identifier x, the instance Abs(x,s) can be built.

Step Case (t = (u v)). By IH there are unique representations for u and v respectively
(since they are both structurally smaller than t). Let us call these values u and v.
Then the instance App(u,v) can be built.

It is left as an exercise (cf. Exercise 6.6) to show that (under the above assumption)
there is a unique λ-term t for every value of type term. Both proofs together establish
that λ-terms and values of type term are equivalent, i.e., it does not matter whether to
use induction over a λ-term t or its term t.

Example 6.3. It can be shown that for every λ-term t the application (t t), i.e., t applied
to itself, has an odd number of opening parentheses.

Proof.

Base Case (t = x). The term (x x) has one opening parenthesis. Since 1 is an odd
number that concludes the base case.

Step Case (t = (λx.u)). The IH is that (u u) has an odd number of opening parentheses.
In the application ((λx.u) (λx.u)) two more opening parentheses are added to those
of (u u). This results in an odd number.

49

6. Reasoning About Functional Programs

Step Case (t = (u v)). By IH (u u) and (v v) both have an odd number of opening
parentheses. In the application ((u v) (u v)) one more opening parenthesis in ad-
dition to those of (u u) and (v v) is added. This results in an odd number.

6.2. Exercises

Exercise 6.1. Use mathematical induction on n to prove for all n ≥ 1:

n∑
i=1

2i = 2n+1 − 2

Exercise 6.2. For the induction proof of Exercise 6.1 identify the property P , the base
case, the step case, and the induction hypothesis corresponding to the principle of math-
ematical induction (note that for Exercise 6.1 we start at 1 instead of 0).

Exercise 6.3. Use mathematical induction on n to show that for all n > 1:

n3 > 3 · n

Exercise 6.4. Prove the following equation by induction over n:

n∑
i=1

i2 =
n · (n+ 1) · (2n+ 1)

6

Exercise 6.5. Prove the following equation by induction over natural numbers:

xm+n = xm · xn

for all natural numbers m, n, and x.
Hint: Use induction over m. Can you also succeed by induction over n?

Exercise 6.6. Prove by structural induction over t (i.e., an instance of type term) that
under the assumption that there is a unique mapping between variables x ∈ V and
OCaml values of type var, there is exactly one λ-term t for every instance t of the
OCaml type term as defined above.

Exercise 6.7. Use structural induction over xs to show that

map f xs = foldr cf [] xs

where cf = (fun y ys -> (f y) :: ys), map is defined by

let rec map f = function [] -> []

| x::xs -> f x::map f xs

and foldr by

let rec foldr f b = function [] -> b

| x::xs -> f x (foldr f b xs)

Exercise 6.8. Prove by structural induction that for all lists xs and zs and elements y
it holds that

(xs @ [y]) @ zs = xs @ (y :: zs)

where ‘@’ is defined by

50

6. Reasoning About Functional Programs

let rec (@) xs ys = match xs with [] -> ys

| x::xs -> x::(xs @ ys)

Hint: Use induction on xs.

Exercise 6.9. Can associativity of ‘@’ (Lemma 6.3) be used to prove the equation in Ex-
ercise 6.8?

Exercise 6.10. Prove the following equation by structural induction over lists:

reverse(xs @ ys) = reverse ys @ reverse xs

where ‘@’ is defined as

let rec (@) xs ys = match xs with [] -> ys

| x::xs -> x::(xs @ ys)

and reverse is defined by

let rec reverse = function [] -> []

| x::xs -> (reverse xs) @ [x]

and you may use the equations

xs @ [] = xs (?)

(xs @ ys) @ zs = xs @ (ys @ zs) (??)

Hint: Use induction on xs.

Exercise 6.11. Prove by structural induction that for all lists xs

reverse (reverse xs) = xs

where reverse is defined by

let rec reverse = function [] -> []

| x::xs -> (reverse xs) @ [x]

and ‘@’ is defined as

let rec (@) xs ys = match xs with [] -> ys

| x::xs -> x::(xs @ ys)

Hint: Use the equation from Exercise 6.10.

Exercise 6.12. Consider the functions length defined by

let rec length = function [] -> 0

| _::xs -> 1 + length xs

and length2 defined by

let length2 xs = foldr (fun _ acc -> 1 + acc) 0 xs

where foldr is defined by

let rec foldr f b = function [] -> b

| x::xs -> f x (foldr f b xs)

Prove that length xs = length2 xs for all lists xs.

Exercise 6.13. Consider the following functions

let rec foldr f b = function [] -> b

| x::xs -> f x (foldr f b xs)

let sum xs = Lst.foldr (+) 0 xs

51

6. Reasoning About Functional Programs

let rec sum2 = function

| [] -> 0

| x::xs -> x + sum2 xs

Use induction over xs to show the property

P (xs) = (sum xs = sum2 xs) .

Exercise 6.14. Consider Towers of Hanoi.

a) Prove by induction on the height h of the tower that a solution can be obtained in
2h − 1 steps.

b) Implement an algorithm which solves Towers of Hanoi.

Hint: Consider the slightly stronger property that a tower of height h can be moved
from one place to another in 2h − 1 steps.

Exercise 6.15. Consider the mirror function from Exercise 4.15. Prove by structural
induction that for all binary trees t the following property holds:

mirror (mirror t) = t

Exercise 6.16. Consider the following OCaml type for binary trees

type ’a t = Empty | Node of (’a t * ’a * ’a t)

and the functions:

let rec reverse = function [] -> []

| x::xs -> (reverse xs) @ [x]

let rec mirror = function

| Empty -> Empty

| Node (l,x,r) -> Node(mirror r,x,mirror l)

let rec flatten = function

| Empty -> []

| Node(l,v,r) -> (flatten l)@(v::flatten r)

Prove by structural induction that for all binary trees t

reverse (flatten t) = flatten (mirror t)

You may use

xs @ (ys @ zs) = (xs @ ys) @ zs (?)

reverse(xs @ ys) = reverse ys @ reverse xs (??)

Hint: You may abbreviate flatten by f, reverse by r, and mirror by m.

a) Base case: Show the base case.

b) Step case: Identify the property to prove, the induction hypothesis, and prove the
step case.

52

Software efficiency halves every 18
month, compensating Moore’s law.

David May

7. Efficiency

Until now we have almost been recklessly careless about the computational expensiveness
of a function. In real world applications however, it often is very important that functions
are implemented efficiently (i.e., do not make more steps than absolutely necessary). In
the following it is shown that some intuitive function definitions are very inefficient (i.e.,
there are much faster implementations) and two techniques are provided that often yield
more efficient implementations.

7.1. The Fibonacci Numbers

In many textbooks one of the first examples of recursive functions is to compute the
n-th Fibonacci number.

Definition 7.1. The Fibonacci numbers are given by the equations

fib 0 = 1

fib 1 = 1

fibn = fib(n− 1) + fib(n− 2) for n > 1

A straightforward implementation in OCaml can directly be inferred:

let rec fib n = if n < 2 then 1 else fib(n-1) + fib(n-2)

Using the above definition of fib, the computation of the n-th Fibonacci number does
need an exponential (w.r.t. n) number of recursive calls to itself. The claim is that
2 · fib n− 1 calls to fib are needed in order to compute fib n. This can be proved by
induction on n. Notice that there are two base cases, since the recursion stops either at
1 or at 0.

Lemma 7.1. To compute the n-th Fibonacci number 2 · fib n − 1 calls to the function
fib are needed.

Proof.

Base Case (n = 0). To evaluate fib 0, one call to fib is needed. Since the 0th Fibonacci
number is 1 this concludes the first base case.

Base Case (n = 1). Also to evaluate fib 1, one call to fib is needed. Since the 1st

Fibonacci number is 1 this concludes the second base case.

Step Case (n = m+ 2). The IHs are that the number of calls to fib when computing
fib(m+1) equals 2·fib(m+1)−1 and the number of calls to fib when computing
fib m equals 2 · fib m − 1. It is easily observed that the number of calls to fib

when computing fib(m+ 2) is equal to the number of calls needed for fib(m+ 1)
plus the number of calls needed for fib m plus 1. Hence

(2 · fib(m+ 1)− 1) + (2 · fib m− 1) + 1
= 2 · (fib(m+ 1) + fib m)− 1
= 2 · (fib(m+ 2))− 1

53

7. Efficiency

It remains to be shown, that 2 · fib n − 1 is an exponential number w.r.t. n. Since
2 · fib n− 1 ≥ fib n it suffices if fib n ≥ 2C·n for some constant C. This can be shown
by the following derivation:

fib n = fib(n− 1) + fib(n− 2) (definition of fib)

= fib(n− 2) + fib(n− 3) + fib(n− 2) (definition of fib)

= 2 · fib(n− 2) + fib(n− 3)

≥ 2 · fib(n− 2)

≥ 2 · (2 · fib(n− 2− 2))

= 4 · (fib(n− 4))

≥ 4 · (2 · fib(n− 4− 2))

...

≥ 2k · fib(n− 2 · k)

for n > 1 and n− 2 · k ≥ 0. If n is even, a base case is reached at n− 2 · k = 0, otherwise
at n−2 ·k = 1. In both cases k = n/2 (using integer division). Since fib 0 = fib 1 = 1,
the result fib n ≥ 2n/2 is obtained. This inefficiency stems from the fact, that work is
repeated unnecessarily. For example to compute fib 3, fib 2 and fib 1 are computed.
Then to compute fib 2, fib 1 (again) and fib 0 are computed. Hence fib 1 is computed
twice, repeating work that has already been done. In order to make the implementation
of fib more efficient, results that are needed later on in the computation have to be
stored somehow.

7.2. Tupling

The technique that can be used to achieve this goal is called tupling. Consider for
example the function

let rec fibpair n = if n < 1 then (0,1) else (

if n = 1 then (1,1)

else let (f1,f2) = fibpair (n-1) in (f2,f1+f2)

)

Since there is just a single recursive call to fibpair in the function body and the argu-
ment (n) is reduced by 1, it is clearly the case that only a linear number of recursive
function calls is needed. Furthermore it is claimed, that fibpair can be used to compute
the n-th Fibonacci number.

Lemma 7.2. The two components of the result of fibpair (n + 1) are the n-th and
(n+ 1)-st Fibonacci numbers, i.e.,

fibpair (n+ 1) = (fib n, fib (n+ 1))

for n > 0.

Proof.

Base Case (n = 0). fibpair 1 = (1, 1) = (fib 0, fib 1).

54

7. Efficiency

Step Case (n = m+ 1). The IH is that fibpair (m+ 1) = (fib m, fib (m+ 1)). We
have to show fibpair (m+ 2) = (fib (m+ 1), fib (m+ 2)). The proof concludes
by the derivation:

fibpair (m+ 2) = (f2, f1 + f2) (with (f1, f2) = fibpair (m+ 1))
IH
= (fib (m+ 1), fib m+ fib (m+ 1))

= (fib (m+ 1), fib (m+ 2)).

Lemma 7.3. The function fibpair can be used to implement fib as follows:

let fib n = snd(fibpair n)

Proof. From Lemma 7.2 it is known that fibpair n = (fib(n−1), fib n), i.e., for n > 0
the second component is the n-th Fibonacci number. Since fibpair 0 = (0, 1), also for
n = 0, the second component is the n-th Fibonacci number.

In general, tupling is used to modify existing functions in a way that they return more
than one result, aiming at a more efficient implementation. Consider for example a
function average, computing the average of the elements of an integer list. Therefor the
sum of all elements and the number of elements is needed. This could be implemented
as

let average xs = IntList.sum xs / Lst.length xs

however, in this case the list xs is traversed twice, once to compute the sum, and a
second time to compute the length of the list. This could be combined into the function

let rec sumlen = function

| [] -> (0,0)

| x::xs -> let (s,l) = sumlen xs in (x+s,l+1)

Then average can be implemented by

let average xs = let (s,l) = sumlen xs in s/l

7.3. Tail Recursion

A special kind of recursion is tail recursion. A function is said to be tail recursive, if
the recursive call is the last thing to do.1 This kind of recursion is special, since it can
automatically be transformed (by the compiler) into a loop, that does need constant
stack space only. Therefore tail recursive functions are sometimes also called iterative.

On a standard computer the function stack (or call stack, or execution stack) stores
information about a function call until it is finished. Hence at the call, information is
pushed on top of the stack and as the function finishes, popped off the stack. However, if
a recursive call occurs within a function call, then, the information for this call is pushed
on top of the stack before popping the former call. If the recursive call again causes a
recursive call additional call information is pushed on top of the stack. This continues
until the last recursive call, after which, the call information can be popped one after
the other computing the result of the function. Hence the used stack space depends on
the size of the input, e.g., a recursive function on a list containing 100,000 elements, will
push 100,000 entries on top of the stack before removing anything. If the stack grows
too big, a stack overflow is generated and the function is aborted.

1Note that as a consequence there can be at most one recursive call.

55

7. Efficiency

Tail recursion does circumvent this problem, since any serious compiler will transform
a tail recursive function into machine code using constant stack space only. The concept
from the next section will give us the means to write tail recursive functions.

7.4. Parameter Accumulation

For tupling the idea was to introduce additional result values to a function. In param-
eter accumulation the idea is to introduce new parameters that are used to transfer
intermediate results between function calls. In this way, often tail recursive variants of
existing functions can be achieved. E.g., the above sumlen is not tail recursive (after the
recursive call additions are performed and a pair is constructed). Consider the following
implementation

let rec sumlen_acc sum len = function

| [] -> (sum,len)

| x::xs -> sumlen_acc (x+sum) (len+1) xs

let sumlen xs = sumlen_acc 0 0 xs

which can also be written as

let sumlen xs =

let rec sumlen sum len = function

| [] -> (sum,len)

| x::xs -> sumlen (x+sum) (len+1) xs

in

sumlen 0 0 xs

The second variant is used more often in this lecture since most of the time the auxiliary
functions are not needed somewhere else.

As a second example consider the range function of the IntLst module. Try to
evaluate range 1 1000000. Maybe a tail recursive version of range could do a better
job. But then the resulting list has to be built from right to left rather than from left
to right, i.e.,

let range_tl m n =

let rec range acc m n =

if m >= n then acc else range ((n-1)::acc) m (n-1)

in

range [] m n

7.5. Linear vs. Quadratic Complexity

In this section we demonstrate that for large values of n it can already be problematic
if a function runs in time O(n2).

Consider the function

let rec (@) xs ys = match xs with [] -> ys

| x::xs -> x::(xs @ ys)

Obviously this function takes linear time in the size of its first parameter, which is
harmless. More precisely if xs has n elements, then xs @ ys takes n + 1 computation
steps (do not forget the base case, i.e., when xs = []).

Let us in addition consider the function

let rec reverse = function [] -> []

| x::xs -> (reverse xs) @ [x]

56

7. Efficiency

which calls itself and ‘@’ linearly often. While this might also look harmless (at first
sight), it definitely is not. What happens is the following. The function ‘@’ is called
linearly often but has linear complexity itself, resulting in a quadratic complexity in
total. This can be seen if we evaluate reverse [1;...;n] as follows:

reverse [1; . . . ;n]→n+1 ((([] @ [n]) @ [n− 1]) @ [n− 2]) @ · · · @ [1]

→1 (([n] @ [n− 1]) @ [n− 2]) @ · · · @ [1]

→2 ([n;n− 1] @ [n− 2]) @ · · · @ [1]

→3 [n;n− 1;n− 2] @ · · · @ [1]

· · ·
→n [n;n− 1;n− 2; . . . ;1]

Hence in total we have

(n+ 1) + 1 + 2 + 3 + . . .+ n = (n+ 1) +
n · (n+ 1)

2

=
(n+ 1) · (n+ 2)

2
∈ O(n2)

computation steps. Here we used (6.1) in the first equality.
Consider in contrast the alternative implementation:

let rev xs =

let rec rev acc = function [] -> acc

| x::xs -> rev (x::acc) xs

in

rev [] xs

With the help of the accumulator this function needs linear time only (to be more precise
for a list of length n this function requires n+ 1 computation steps). We leave it as an
exercise to evaluate these two functions for lists of arbitrary length to see the (dramatic)
differences in execution time for larger n, e.g., n = 100000.

7.6. Chapter Notes

See also [15] for a discussion on how recursive algorithms should be treated in computer
science courses. Additionally to Fibonacci numbers also binomial coefficients are used
there as example. Note that for the Fibonacci numbers a closed expression is known,
i.e.,

fib(n) =
1√
5
·
(

1 +
√

5

2

)n
− 1√

5
·
(

1−
√

5

2

)n
.

7.7. Exercises

Exercise 7.1. Which of the following functions is tail recursive, which one is not?

let rec map f = function [] -> []

| x::xs -> f x::map f xs

let rec foldl f b = function [] -> b

| x::xs -> foldl f (f b x) xs

let rec foldr f b = function [] -> b

| x::xs -> f x (foldr f b xs)

57

7. Efficiency

Exercise 7.2. Implement a tail recursive function rev_append_tl such that

rev_append_tl [1;2;3] [4;5;6] = [3;2;1;4;5;6]

Hint: Your function should have the type ’a list -> ’a list -> ’a list

Exercise 7.3. Consider ‘@’ defined as

let rec (@) xs ys = match xs with [] -> ys

| x::xs -> x::(xs @ ys)

and reverse defined as

let rec reverse = function [] -> []

| x::xs -> (reverse xs) @ [x]

Prove by induction on xs that your function rev_append_tl from Exercise 7.2 satisfies

(reverse xs) @ ys = rev_append_tl xs ys

Hint: You may use Lemma 6.3.
Bonus: Can you also prove xs @ ys = rev_append_tl (reverse xs) ys?

Exercise 7.4. Consider the function Lst.replicate

let rec replicate n x =

if n < 1 then [] else x::replicate (n-1) x

Is this function tail recursive? If yes, justify your answer, otherwise give a tail recursive
implementation.

Exercise 7.5. Give a tail recursive version of the function Lst.length

let rec length = function [] -> 0

| _::xs -> 1 + length xs

Exercise 7.6. Use induction over lists to prove that your function from Exercise 7.5,
produces the same results as the non-tail recursive one.

Exercise 7.7. Is the function fibpair from Chapter 7.2 tail recursive? If yes, justify
your answer, otherwise give a tail recursive implementation.

Exercise 7.8. Use tupling to implement a version of Lst.split_at

let split_at n xs = (take n xs,drop n xs)

that just needs one list traversal to compute its result.

Exercise 7.9. Use tupling to implement a version of Lst.span

let span p xs = (take_while p xs, drop_while p xs)

that just needs one list traversal to compute its result.

Exercise 7.10. Use induction over lists to prove the equation

sumlen xs = (sum xs, length xs)

using the function definitions

let rec sum = function [] -> 0

| x::xs -> x + sum xs

let rec length = function [] -> 0

| _::xs -> 1 + length xs

let rec sumlen = function

| [] -> (0,0)

| x::xs -> let (s,l) = sumlen xs in (s+x,l+1)

58

7. Efficiency

Exercise 7.11. Find a non tail recursive function in the modules from the lecture that
has not been treated yet. Justify why it is not tail recursive.

Exercise 7.12. Consider ‘@’ in OCaml, i.e.,

let rec (@) xs ys = match xs with [] -> ys

| x::xs -> x::(xs @ ys)

a) From Lemma 6.3 we know that ‘@’ is associative. However, internally OCaml has
to evaluate the operator either left- or right-associative. What is the choice for ‘@’
in OCaml? Give evidence.

Hint: Which of the following reductions is performed by OCaml: Either

[1]@[2]@[3]→ [1;2]@[3]→ [1;2;3]

or
[1]@[2]@[3]→ [1]@[2;3]→ [1;2;3] ?

b) Determine the number of computation steps OCaml needs to evaluate

i) (([1]@[2])@ · · ·)@[n] (left-associative)

ii) [1]@([2]@(· · · @[n])) (right-associative)

Hint: Recall that OCaml adopts an eager evaluation strategy.

Exercise 7.13. Consider the following functions:

let rec reverse = function [] -> []

| x::xs -> (reverse xs) @ [x]

let rev xs =

let rec rev acc = function [] -> acc

| x::xs -> rev (x::acc) xs

in

rev [] xs

Show that for all lists xs we have

reverse xs = rev xs .

You may use Lemma 6.3.
Hint: Show (reverse xs) @ acc = rev acc xs by structural induction on xs and

conclude the result using Lemma 6.2.

Exercise 7.14. Implement a tail recursive variant of foldr.

59

Words – so innocent and powerless
as they are, as standing in a
dictionary, how potent for good and
evil they become in the hands of
one who knows how to combine
them.

Nathaniel Hawthorne

8. Combinator Parsing

Often some information is only available in a textual representation—like for example
the source code of a program—but a more structured representation would be desirable.
The process of scanning textual input and transforming it to something more structured
is called parsing .1 Parsing is a fundamental part of many applications in computer
science, e.g., every program source code has to be parsed in order to be transformed
to something understandable by the machine. Parsing can be implemented in different
ways, to mention two: finite automata and parser combinators. In the following the
latter method is used, since it is a very nice application of the functional programming
paradigm. It is assumed that textual information is given as a sequence of tokens.

Hence a parser is a function of type

type (’a,’t)t = ’t list -> (’a * ’t list)option

where the input is a sequence (i.e., list) of tokens (’t list) and the output is an option
type. If a parser returns None this indicates that an error was encountered and otherwise
the result is Some (x,ts) where x is the parsed object and ts is the remaining list of
tokens to be parsed.

Combinator parsing is very modular. The smallest components are primitive parsers
and character parsers. Parser combinators are then used to create more complex parsers
from some given ones.

8.1. Implementation of Parsers

In the following the internal representation of parsers used in this chapter is discussed
and some basic examples are given.

8.1.1. Applying a Parser

Before parsers (i.e., functions that are used for parsing) are defined, some framework to
apply a parser to a given input is needed. Therefor consider

let parse p input = match p input with None -> None

| Some (x,_) -> Some x

taking a parser p and some l-string input as arguments and returning the result of
applying p to input (if it exists). For testing purposes also a version of parse that
works on OCaml strings (s) and raises an exception on failure is given

let test p s = match p (Strng.of_string s) with

| None -> failwith "parse error"

| Some (x,ts) -> (x,ts)

1More precisely this process happens in two stages. In the first stage the lexer decomposes the stream
of input symbols into so called tokens. This can be seen as the syntactic check of the program. In
the second stage the parser then checks if the sequence of tokens corresponds to sentences of a given
grammar. This can be seen as the semantic check of the program. Since humans tend to be imprecise
whenever possible, both processes together are also referred to as parsing.

60

8. Combinator Parsing

8.1.2. Lexing

To process a single token, token takes a function f and a list of tokens as parameters
and applies f to the first token. For simplicity, in our setting a single token will always
be a character.

let token f = function

| [] -> None

| t::ts -> match f t with

| Some x -> Some (x,ts)

| None -> None

Note that f is not a parser since f : ’t -> ’a option but token f has the correct
type.

8.1.3. Some Simple Parsers

The first example of a parser does just accept any token satisfying a given property and
returns it (or indicates an error if either the property was not satisfied or no input was
left), i.e.,

let sat p ts = token(fun t -> if p t then Some t else None) ts

Note that sat : (’t -> bool) -> (’t, ’t) t. Hence applying to sat a function that
tests a property of a token (’t -> bool) yields a parser. Using sat a parser accepting
any token can be defined as follows

let any ts = sat (fun _ -> true) ts

If this parser is applied to any input that is not empty, it will succeed.

Example 8.1. The any parser can be tested on the input "test". This is done via the
function call

test any "test"

where the result will be (’t’,"est"), i.e., the first component of the pair is the parsed
character of the given input and the remaining input will be "est". 2 Applying any to
an empty input, i.e.,

test any ""

will result in an error.

Again using sat we can define a character parser accepting only a specific character

let char c ts = sat ((=) c) ts

The parser char c does only succeed if the next character in the input is c.

8.1.4. Parser Combinators

Parser combinators make more complex parsers using the simple parsers from before.
Often (but not always) they combine two parsers into a single one.

The first parser combinator discussed here—called bind3—is used to implement se-
quential composition. The special infix syntax (>>=) is given to bind, to make its use
more comfortable. Bind applies its first argument (a parser) p to the input. If the result
is an error then the error is passed on. Otherwise the result (x) of the first parser is given
to f, which results in a second parser that in turn is applied to the remaining input ts.

2 In the sequel we assume that the pretty printer for the Strng module is installed, i.e., a char list
[’H’;’e’;’l’;’l’;’o’] is then printed as "Hello".

3The name stems from its connection to monads. Never mind if you don’t know what monads are.

61

8. Combinator Parsing

let (>>=) p f ts = match p ts with None -> None

| Some(x,ts) -> f x ts

From the type of bind (>>=) : (’a,’t)t -> (’a -> (’b,’t)t) -> (’b,’t)t we see
that p is a parser and f yields a parser, if applied to the result of p.

Lemma 8.1. Bind is associative, i.e., (p >>= f) >>= g = p >>= (fun x -> f x >>= g).4

Proof. As usual we consider two functions as equal, if they produce the same result on
the same input. Hence the above equation is true if and only if

((p >>= f) >>= g) ts = (p >>= (fun x -> f x >>= g)) ts

for every input ts. Then the property follows by case distinction on p ts.

Case 1 (p ts = None). Hence

((p >>= f) >>= g) ts = match (p >>= f) ts with . . .

= None

= (p >>= (fun x -> f x >>= g)) ts

Case 2 (p ts = Some(y, j)). There are again two cases

Case a (f y j = None). Starting from the lhs we get

((p >>= f) >>= g) ts = match (p >>= f) ts with . . .

= match f y j with . . .

= None

And starting from the rhs we also get

(p >>= (fun x -> f x >>= g)) ts = (fun x -> f x >>= g) y j

= (f y >>= g) j

= None

Case b (f y j = Some(z, k)). Starting from the lhs we get

((p >>= f) >>= g) ts = match (p >>= f) ts with . . .

= match f y j with . . .

= g z k

And starting from the rhs we also get

(p >>= (fun x -> f x >>= g)) ts = (fun x -> f x >>= g) y j

= (f y >>= g) j

= match f y j with . . .

= g z k

4Because of types we cannot write p >>= (f >>= g) since f is not a parser (which is required by the
second bind). Hence we write fun x -> f x >>= g, being a function that yields a parser. Note that f x
is a parser.

62

8. Combinator Parsing

Example 8.2. A possible application of bind would be to scan the first two characters of
the input. This is easily achieved by combining two any parsers using (>>=).

let any_pair = any >>= fun c -> any >>= fun d -> return(c,d)

Note that no parentheses are needed since (>>=) is associative and fun associates to the
right. Hence the above code does the same as

let any_pair = (any >>= (fun c -> (any >>= (fun d -> return(c,d)))))

Somehow similar to bind is the combinator then

let (>>) p q ts = (>>=) p (fun _ -> q) ts

only that the output of the first parser is ignored.

Example 8.3. The following parser accepts an opening parenthesis followed by a closing
parenthesis (i.e., "()").

let open_close = char ’(’ >> char ’)’

This parser is successful on any input that starts with "()". E.g.,

test open_close "()(())"

returns the pair (’)’,"(())") (the result of char ’)’), whereas

test open_close ")("

fails.

The parser return : ’a -> (’a,’t) t is used to turn an arbitrary value into a
parser returning that value and leaving the input unchanged.

let return x = fun ts -> Some (x,ts)

There are several more parser combinators. Consider (<|>)—called choice—taking
two parsers p and q, and creating a new one that returns the result of p if it was successful
and otherwise applies q.

let (<|>) p q ts = match p ts with None -> q ts

| Some _ as r -> r

Example 8.4. Using (<|>) the example from above can be modified to accept an arbi-
trary string of balanced parentheses given by the BNF:

p ::= (p)p | ε

For the one to one translation of the grammar

let rec parens =

(char ’(’ >> parens >> char ’)’ >> parens) <|> return()

the OCaml compiler detects that this statement would never terminate (since the re-
cursive call to parens would be executed immediately; recall that OCaml has an eager
evaluation strategy).

Introducing a dummy argument, and demanding the evaluation of char ’(’ (and
char’)’) before the recursive calls to parens fixes this problem:

let rec parens() = (

char ’(’ >>= fun _ ->

parens() >>

char ’)’ >>= fun _ ->

parens()

) <|> return()

63

8. Combinator Parsing

Then parens (apparently) works

test (parens ()) "(()(()))"

- : unit * char list = ((), "")

but does always succeed, i.e., unbalanced parentheses are not parsed but just remain in
the list of tokens. To see this consider the call:

test (parens ()) "()((())(";;

- : unit * char list = ((), "((())(")

Therefore a parser would be handy that only accepts, if the end of the input is reached.
This can be implemented by

let eoi = function [] -> Some ((),[])

| _ -> None

Now (parens() >> eoi) can be used to create a parser that only accepts if the full
input is consumed and corresponds to the above grammar.

Finally we discuss the option

let (?>) p d = p <|> return d

which returns the result of applying p (if successful) and otherwise the default value d

is returned.

8.1.5. Giving Parsers Work

In the examples so far, the purpose of the parsers was just to succeed if the input
corresponded to some grammar and to fail otherwise. Actually most of the time parsers
are used to generate some result from the information parsed. This is achieved using
the return function.

Example 8.5. We want to write a parser that computes the maximum nesting depth of
some input fitting the grammar of Example 8.4. The solution that yields the desired
behaviour is

let rec nesting() =

(char ’(’ >>= fun _ ->

nesting() >>= fun i ->

char ’)’ >>= fun _ ->

nesting() >>= fun j ->

return(max (i+1) j)

) <|> return 0

We remove the dummy argument by

let nesting = nesting ()

and test the parser

test nesting "()"

-: int * char list = (1, "")

which looks promising. Fixing the (open) issue that this parser never fails (it should fail
if the input does not correspond to the grammar in Example 8.4, is left as an exercise,
cf. Exercise 8.3).

64

8. Combinator Parsing

8.2. The Parser Module

Additionally to the primitive parsers, character parsers, and parser combinators that
have been presented above, there are many others implemented in the module Parser.
To use the module, nothing has to be known about the implementation of these functions.
For the user just the interface is interesting, which can be found in Listing 8.1. A short
description of each function that has not already been described follows:

between. The parser resulting from between o p c accepts the same as the parser p but
enclosed in o and c, i.e., the accepted input is the accepted input of the parser o

(open), followed by the accepted input of p, followed by the accepted input of c
(close). The result is the result of p.

Example 8.6. A parser accepting any character enclosed in braces is

let braced_char = between (char ’{’) any (char ’}’)

digit. This is a character parser that only accepts a single digit, i.e., exactly one of ‘’0’’,
‘’1’’, . . . , ‘’9’’, and returns it as character.

letter. This is a character parser that accepts any (lower or uppercase) letter, i.e., ‘’a’’,
. . . , ‘’z’’, ‘’A’’, . . . , ‘’Z’’.

many. The parser resulting from many p applies the parser p zero or more times and
returns a list of the returned values of p. Note that many is greedy, i.e., as many
applications of p as possible are performed.

Example 8.7. Usually a word is defined to consist of letters. Hence a parser for
arbitrary words could be implemented and used as follows:

let word = many letter;;

val word : (char list, char) Parser.t = <abstr>

test word "hello, world!";;

- : char list * char list = ("hello", ", world!")

test word "123hello";;

- : char list * char list = ([], "123word")

The only problem is that also the empty input is accepted (it mainly depends on
the exact application of the parser whether this really is a problem or not). To
avoid this, the next combinator is useful.

many1. This combinator works exactly like many, only that the empty input is not
accepted, i.e., for many p to accept, p has to accept at least once.

Example 8.8. By redefining the word parser as follows

let word = many1 letter;;

only non empty words are accepted. Here are two example runs:

test word "hello";;

- : char list = ("hello", "")

test word "123hello";;

Exception: Failure "parse error".

noneof. A character parser that accepts any character except those specified in the given
string, e.g., noneof "hello" would accept any single character except ‘’h’’, ‘’e’’,
‘’l’’, or ‘’o’’. The result is the accepted character.

65

8. Combinator Parsing

(* type t *)

type (’a,’t)t

(* *)

(** Primitive Parsers *)

val eoi : (unit,’t)t

val return : ’a -> (’a,’t)t

val token : (’t -> ’a option) -> (’a,’t)t

(** Parsers *)

val sat : (’t -> bool) -> (’t,’t)t

(** Primitive Combinators *)

(** Combinators *)

val (?>) : (’a,’t)t -> ’a -> (’a,’t)t

val (>>=) : (’a,’t)t -> (’a -> (’b,’t)t) -> (’b,’t)t

val (>>) : (’a,’t)t -> (’b,’t)t -> (’b,’t)t

val (<|>) : (’a,’t)t -> (’a,’t)t -> (’a,’t)t

val between : (’a,’t)t -> (’b,’t)t -> (’c,’t)t -> (’b,’t)t

val many1 : (’a,’t)t -> (’a list,’t)t

val many : (’a,’t)t -> (’a list,’t)t

val sep_by1 : (’a,’t)t -> (’b,’t)t -> (’b list,’t)t

val sep_by : (’a,’t)t -> (’b,’t)t -> (’b list,’t)t

(** Character Parsers *)

val any : (char,char)t

val char : char -> (char,char)t

val digit : (char,char)t

val letter : (char,char)t

val noneof : string -> (char,char)t

val oneof : string -> (char,char)t

val space : (char,char)t

val spaces : (int,char)t

val string : string -> (char list,char)t

(** Running Parsers on Input *)

val parse : (’a,’t)t -> ’t list -> ’a option

val test : (’a,char)t -> string -> (’a * char list)

(* *)

Listing 8.1: Parser.mli

66

8. Combinator Parsing

oneof. Behaves exactly like noneof, only that the set of accepted characters is specified.

sep by. This combinator takes two parsers s and p. Then sep_by s p parses zero or
more occurrences of p, separated by s and returns the list of values returned by p.

Example 8.9. For example a parser for a comma separated list of characters could
be used as follows:

let comma_chars = sep_by (char ’,’) any;;

val comma_chars : (char list, char) Parser.t = <abstr>

test comma_chars "";;

- : char list * char list = ("", "")

test comma_chars "a";;

- : char list * char list ("a", "");;

test comma_chars "h,e,l,l,o";;

- : char list * char list = ("hello", "")

Again also the empty input is accepted.

sep by1. This is the obvious restriction of sep_by.

space. A character parser that consumes an arbitrary white space character, i.e., ‘’ ’’,
‘’\n’’, or ‘’\t’’ and returns nothing.

spaces. A parser that accepts an arbitrary (possibly empty) sequence of white spaces.

string. The parser string "test" accepts if and only if the input starts with "test".

8.3. A Parser for Simplified Arithmetic Expressions

In the following an example parser is given that transforms a string into an abstract
syntax tree for arithmetic expressions. The grammar for (the somehow simplified) arith-
metic expressions is

e ::= e + t | t
t ::= t * f | f
f ::= (e) | n
n ::= d n | d
d ::= 0 | . . . | 9

where the hierarchy of the grammar corresponds to the operator priority. The type for
the abstract syntax tree is given by

type arith = Num of int

| Add of arith * arith

| Mul of arith * arith

A first approach for a parser could be

let rec e() =

(e() >>= fun e1 -> char ’+’ >> t() >>= fun e2 -> return(Add(e1,e2)))

<|> (t())

and t() =

(t() >>= fun t1 -> char ’*’ >> f() >>= fun t2 -> return(Mul(t1,t2)))

<|> (f())

and f() = (

char ’(’ >>= fun _ ->

67

8. Combinator Parsing

e() >>= fun e1 ->

char ’)’ >>

return e1

) <|> n

and n = many1 digit >>= fun r -> return(Num r)

There is a “slight” problem however. Since the first thing that e() does, is recursively
calling itself (before checking any break condition) this parser does always loop forever.
The problem is caused by the fact that above grammar is left recursive. Gladly, every
left recursive grammar can be transformed into a non left recursive one. For the above
grammar, the result after eliminating left recursion is

e ::= t e′ e′ ::= + t e′ | ε
t ::= f t′ t′ ::= * f t′ | ε
f ::= (e) | n n ::= d n | d d ::= 0 | . . . | 9

where the straightforward implementation (okay at first sight it looks complex, but by
straightforward it is meant that once you are used to this kind of transformations it is
very easy to apply them) is:

let rec e() = t() >>= e’

and e’ term = (

char ’+’ >>= fun _ ->

t() >>=

e’ >>= fun t2 ->

return(Add(term,t2))

) <|> return term

and t() = f() >>= t’

and t’ factor = (

char ’*’ >>= fun _ ->

f() >>=

t’ >>= fun f2 ->

return(Mul(factor,f2))

) <|> return factor

and f() = (

char ’(’ >>= fun _ ->

e() >>= fun e1 ->

char ’)’ >>

return e1

) <|> n

and n = many1 digit >>= fun r ->

return (Num (int_of_string (Strng.to_string r)))

In the example two things can be seen: Firstly one should think about a grammar
before starting to implement it and secondly there is much more to learn in the field of
formal languages that is not part of this lecture (e.g., how to eliminate left recursion).

8.4. Chapter Notes

In the literature, combinator parsers are not new. However, efficient combinator parsers
are rare. In [8] and [7] the implementation of an efficient combinator parser library is
discussed. The module Parser is based on the Parsec library for Haskell and many of
the above examples originate from [7].

Also note that in realistic applications, parsing is usually split into two phases: The
first is usually called lexing and it converts the raw input into so called tokens. (It is of
course possible to implement a lexer using combinator parsing.) The second phase—the

68

8. Combinator Parsing

actual parsing—then operates on the stream of tokens generated by the lexer. All our
example parsers work as if single characters would be the tokens (which is possible but
tends to require parsers that take care about low-level stuff like separating white spaces).

8.5. Exercises

Exercise 8.1. Write a parser

uibk_mail : (Strng.t * Strng.t, char)Parser.t

that accepts an email address as used for students at the university of Innsbruck, i.e.,

l+.l+@student.uibk.ac.at

where l is a letter. The result should be the forename and the surname as a pair, e.g.,

test uibk_mail "christian.sternagel@student.uibk.ac.at";;

should give the result (("christian", "sternagel"),""). The functions of Parser
may (and should) be used freely.

Exercise 8.2. Use the module Parser together with the type

type role = Employee | Student

to implement a function

mail : string -> (role * string * string)option

that parses a university e-mail address and returns the role, the first name, and the last
name corresponding to the address, e.g.,

mail "christian.sternagel@uibk.ac.at"

= Some(Employee,"Christian","Sternagel")

mail "some.student@student.uibk.ac.at"

= Some(Student,"Some","Student")

mail "some.student@gmail.com"

= None

Exercise 8.3. Extend the parser nesting from Example 8.5 such that it is successful if
and only if the input corresponds to the grammar given in Example 8.4.

Exercise 8.4. Implement a parser int : (int, char)Parser.t for (decimal) integers
where an integer is given by the (simplified) grammar

i ::= n | +n | -n
n ::= d+

d ::= 0 | . . . | 9

Exercise 8.5. Using the parser int : (int, char)Parser.t of the previous exercise,
implement a parser int_list: (int list) t that accepts any integer list where ele-
ments are enclosed in brackets (‘[’ and ‘]’) and separated by semicolons (‘;’). Your
parser should drop any white spaces.

Exercise 8.6. Write a parser words : (Strng.t list, char)Parser.t that accepts ar-
bitrarily many sentences and returns all the words that are contained as a list of l-strings.
Here a sentence is a sequence of words (i.e., lowercase or uppercase letters) that are sep-
arated by white spaces and/or commas and terminated by a full stop (.), question mark
(?), or exclamation mark (!).

69

8. Combinator Parsing

Exercise 8.7. Implement a parser btree: (ctree, char)Parser.t that accepts the
grammar

b ::= l | (b , l , b)
l ::= a | . . . | z | A | . . . | Z

where the type ctree is the following:

type ctree = Leaf of char | Node of ctree * char * ctree

Exercise 8.8. Write a parser tag : ((Strng.t * Strng.t), char) t that accepts a
simplified version of XML tags. For this purpose let a tag be of the form

<tagname>content</tagname>,

where tagname is an arbitrary (non empty) sequence of letters, content is an arbitrary
sequence of characters except ‘<’, and the first and second occurrence of tagname have
to be identical. The result of the parser should be a pair of l-strings, where the first is
the name of the tag and the second its content. E.g., <a>bla should be accepted
with result ([’a’], [’b’; ’l’; ’a’]), whereas <a>bla and <a>bla should
both fail.

Hint: You need not consider nested XML tags.

Exercise 8.9. Write a parser accepting only strings that are valid floating-point literals
for OCaml.

Hint: See http://caml.inria.fr/pub/distrib/ocaml-3.10/ocaml-3.10-refman.

pdf, page 92.

Exercise 8.10. Write a function

regexp : string -> (Strng.t, char)Parser.t}

that takes a string describing a regular expression and gives back a parser accepting any
input that matches this expression. A regular expression e is built using the following
(non left recursive) grammar:

e ::= .e′ | x e′ | (e)e′

e′ ::= e e′ | *e′ | ε
x ::= c | \s
s ::= . | (|) | * | \

where ε denotes the empty string, ‘.’ stands for an arbitrary character, parentheses are
used for grouping, ‘*’ says that the previous pattern may match zero or more times, and
c can be any character except ‘.’, ‘(’, ‘)’, ‘\’, and ‘*’. It should be possible to enter
the above excluded characters by escaping them with a prefixed backslash. Hence ‘\\’
is used to match a single backslash and ‘\.’ to match a dot. E.g.,

test (regexp "(ab)*a") "ababac" = [’a’;’b’;’a’;’b’;’a’]

test (regexp "\\..") ".z" = [’.’;’z’]

Hint: You have to write "\\" within a string to get a single backslash.

Exercise 8.11. Write a lexer tokenize : (token list,char)Parser.t (i.e., a parser
working on chars and returning a list of tokens) for the following grammar:

〈rules〉 def
= 〈rule〉(,〈rule〉)∗

〈rule〉 def
= 〈string〉->〈string〉

〈string〉 def
= 〈ident〉(〈ident〉)∗ | ε

〈ident〉 def
= 〈letter〉+

〈letter〉 def
= a | · · · | z | A | · · · | Z

70

http://caml.inria.fr/pub/distrib/ocaml-3.10/ocaml-3.10-refman.pdf
http://caml.inria.fr/pub/distrib/ocaml-3.10/ocaml-3.10-refman.pdf

8. Combinator Parsing

Here ε denotes the empty string and the data type for tokens is:

type token = Ident of Strng.t | Arrow | Comma

Exercise 8.12. Write a parser parse : (srs,token)Parser.t (i.e., a parser working on
tokens and returning an abstract syntax tree), using the type token and the grammar of
Exercise 8.11. The AST is represented by the data type srs (standing for string rewrite
system):

type ident = Strng.t list

type string = ident list

type rule = (string * string)

type srs = rule list

Exercise 8.13. Write a function

split_prefix : ’a list -> ’a list -> ’a list option

where split_prefix l s checks whether l is a prefix of s, and if so, returns Some u

such that l @ u = s—otherwise None is returned.

Exercise 8.14. Write a function

split_sublist : ’a list -> ’a list -> (’a list * ’a list)option

where split_sublist l s checks whether l does occur somewhere inside s, and if so,
returns Some(u,v) such that u @ l @ v = s—otherwise None is returned.

Exercise 8.15. Write a function step : srs -> string -> string option (here the
type string refers to the type of Exercise 8.12) that for a given SRS S and a given
string s, searches for a rule l -> r ∈ S such that s = ulv for some strings u and v, and
returns as result urv, i.e., it replaces an occurrence of the left-hand side l in s by the
corresponding right-hand side r. This function computes a so-called S-rewrite step on
the string s.

Exercise 8.16. Combine Exercise 8.11–Exercise 8.15 to an interpreter for SRSs, i.e., a
command line program srs that takes two arguments, a file containing the textual
description of an SRS (as given by the grammar above), as well as a string from where
to start and applies step as often as possible printing the intermediate results. E.g., for
a file an.srs containing

a b -> b a,

b b -> a,

a a a ->
and the starting string a b a b we get

> srs an.srs "a b a b"

a b a b

b a a b

b a b a

b b a a

a a a

[e]

Hint: The function File.read : string -> Strng.t (here string refers to OCaml
strings) from the archive of week 9 may be useful to read the contents from a file.

Exercise 8.17. Write a parser list: (Strng.t list,char)Parser.t for lists, e.g.,

test list "[Hello;World]"

- : Strng.t list * char list = (["Hello"; "World"], "")

71

8. Combinator Parsing

Test your parser on the following calls:

test list "[Hello;World;]"

test list "[Hello;World]blabla"

test list "[Hello;;;;World]"

test list "[[1]]"

Hint: Your parser need not give the desired output on the test cases.

Exercise 8.18. Consider the following grammar for propositional formulas:

φ ::= p | (! φ) | (φ & φ)

a) Write a lexer for this grammar such that e.g.

Parser.test lexer "(a & (!a))";;

- : token list * char list =

([LPAR; ID "a"; AND; LPAR; NOT; ID "a"; RPAR; RPAR], "")

and

Parser.test lexer "(a a)";;

- : token list * char list =

([LPAR; ID "a"; ID "ab"; RPAR], "")

b) Write a parser for this grammar such that e.g.

Parser.parse parser [LPAR; ID "a"; AND; LPAR; NOT; ID "a"; RPAR; RPAR];;

- : t option = Some (And (Atom "a", Not (Atom "a")))

and

Parser.parse parser [LPAR; ID "a"; AND; LPAR; NOT; ID "a"; RPAR; RPAR];;

- : t option = Some (And (Atom "a", Not (Atom "a")))

c) Give a non-left recursive grammar such that ! binds stronger than &.

Exercise 8.19. Consider the parsers digit : (char,char) t and digit_int : (int,char) t.
The calls

test digit "1234";;

- : char * char list = (’1’, "234")

test int_digit "1234";;

- : int * char list = (1, "234")

show the difference of the two functions.

a) Implement digit_int with the help of digit.

b) Implement digit_int without using digit.

Hint: For item b) the function token is useful.

Exercise 8.20. For each of the following parsers explain why the call

test (count_spaces 0) " hello world "

terminates or not.

a)

72

8. Combinator Parsing

count_spaces i =

(eoi >> return i)

<|> (noneof " \t\r" >>= fun _ -> count_spaces i)

<|> (spaces >>= fun j -> count_spaces (i+j))

b)

let rec count_spaces i =

(eoi >> return i)

<|> (spaces >>= fun j -> count_spaces (i+j))

<|> (noneof " \t\r" >>= fun _ -> count_spaces i)

c)

let rec count_spaces i =

(eoi >> return i)

<|> (noneof " \t\r" >> count_spaces i)

<|> (spaces >>= fun j -> count_spaces (i+j))

d)

let rec count_spaces i =

(eoi >>= fun _ -> return i)

<|> (noneof " \t\r" >> count_spaces i)

<|> (spaces >>= fun j -> count_spaces (i+j))

e)

let rec count_spaces i =

(noneof " \t\r" >> count_spaces i)

<|> (spaces >>= fun j -> count_spaces (i+j))

<|> (eoi >>= fun _ -> return i)

73

9. Types

There are two important tasks concerning types in a functional language: type checking
and type inference.

The former is the process of verifying given constraints on types and may either occur
at compile-time (static type checking) or at run-time (dynamic type checking). The
advantage of static type checking is that no type information has to be stored after the
compilation process, since type correctness has already been proved. OCaml uses static
type checking, hence this is also what is discussed in the following.

The latter is the process of computing a (most general) type for a given expression. A
language where types are inferred automatically (like OCaml) makes some programming
tasks easier. E.g., types of variables need not to be declared explicitly. But still type
safety is maintained.1

Before giving the details of type checking and type inference, some typed language is
needed. Two obvious choices would be λ-calculus extended by types (also called simply
typed lambda-calculus) and OCaml itself. Since the former is inconvenient to use and
the latter is more complex than necessary, a mixture of both is considered.

9.1. Core ML

The combination of the λ-calculus and OCaml used to demonstrate type checking and
inference is called core ML. Its expressions (e) are defined by the following BNF grammar

e ::= x | e e | λx.e (λ-calculus)
| c (for primitives)
| let x = e in e (let binding)
| if e then e else e (conditional)

where x is a variable and c a constant denoting any of the primitives true, false, +, −,
×, >, <, =,

9.2. Type Checking

Before introducing how to check types some formal definitions are needed. In the fol-
lowing a type τ is of the form

τ ::= α | τ → τ | g(τ, . . . , τ)

where α is a type variable, ‘→’ is the arrow type constructor (in the end just a special
case of the following construct), and g an arbitrary type constructor (e.g., for lists or
tuples). Every type constructor has a fixed arity, i.e., number of arguments it takes.
E.g., list is unary, hence applications of the type constructor for lists are of the form
list(α), list(int), list(bool), etc. Note that the base types (bool, int, . . .) are just a special
case of type constructors, namely those of arity 0 (i.e., without arguments). Instead of

1A program is type safe if a certain class of errors—namely type errors—is prevented by the compiler.
An example of a type error would be the application of a list length function to an integer.

74

9. Types

e : τ ∈ E
E ` e : τ

(ref)
E ` e1 : τ2 → τ1 E ` e2 : τ2

E ` e1 e2 : τ1
(app)

E, x : τ1 ` e : τ2
E ` λx.e : τ1 → τ2

(abs)
E ` e1 : τ1 E, x : τ1 ` e2 : τ2
E ` let x = e1 in e2 : τ2

(let)

E ` e1 : bool E ` e2 : τ E ` e3 : τ

E ` if e1 then e2 else e3 : τ
(ite).

Table 9.1.: The inference system C for type checking.

bool() or int(), as indicated by the BNF grammar, such nullary type constructors are
written without (), i.e., bool, int.

A typing environment is a set of pairs, mapping variables and constants to types.
Instead of (e, τ) these pairs are written e : τ , denoting “e has type τ”. E.g., the typing
environment where the variable x is of type bool and the variable y of type list(α), is
written as

{x : bool, y : list(α)}.

In the following let

P = {true : bool, false : bool,+ : int→ int→ int, 0 : int, 1 : int, . . . }

denote the primitive typing environment (containing type information for every primitive
constant).

The domain of a typing environment E is defined by

Dom(E) = {e | (e : τ) ∈ E}.

It consists of all variables or constants that have a type assigned in the environment E.
A typing judgment is written E `C e : τ for some typing environment E, core ML

expression e, type τ and the type checking system C. Such a typing judgment reads:
“From the typing environment E the type τ can be derived for the expression e using
the type checking system C.” The system C is given by the rules of Table 9.1. Usually
it is clear from the context that the system C is used. Hence in the following E ` e : τ
is written instead of the longer form from above.

In such a system a single rule is called an inference rule. The part of an inference rule
above the line consists of some so called premises. An inference rule where the premises
do not contain new type judgements but just a condition when the rule can be applied
is called axiom.

Hence type checking of a typing judgment E ` e : τ corresponds to building a tree (this
tree is called a proof), where the root is the judgment, branching denotes applications
of inference rules from C and the leaves are applications of ref (since this rule is the only
axiom).

When constructing proof trees we will pursue a goal-directed approach, i.e., start with
the typing judgement under consideration and construct the proof from the root to the
leaves. Consequently we apply the inference rules from bottom to top. Stated differently
in order to prove a type judgement we apply an inference rule and prove its premises.

Now, let us have a closer look at the different inference rules where E, e : τ abbreviates
E ∪ {e : τ}.

(ref) The reflexivity rule states that we can prove the typing judgement E ` e : τ if e : τ
is contained in the type environment E.

75

9. Types

(app) The application rule states that in order to prove that the type τ1 can be derived
for the application e1 e2 we have to show that it is the case that (1) the type
τ2 → τ1 can be derived for e1 and (2) the type τ2 can be derived for e2 (both
from the same environment E). This rule captures the intuition that function
application does only make sense for functions, i.e., expressions of some arrow type
τ → τ ′, and further, the argument of a function has to have the correct type.

(abs) The abstraction rule states that a function λx.e has type τ1 → τ2 if (1) the variable
x has type τ1 and the function body consists of an expression e of type τ2.

(let) The let(-binding) rule states that the expression let x = e1 in e2 has type τ2 if (1)
the type τ1 can be derived for e1 and (2) assuming type τ1 for a variable x, the
type τ2 can be derived for e2.

(ite) The if-then-else rule captures the intuition that the conditional expression e1
of if e1 then e2 else e3 has to be of type bool and the then-branch as well as
the else-branch have to be of the same type.

From the above description we see that rules (app) and (let) require more thoughts to
be applied since the type τ2 of the argument must be guessed in rule (app) and the same
holds for the type τ1 in rule (let).

Example 9.1. Consider the typing environment E = {true : bool,+ : int → int → int}.
Then the judgment E ` (λx.x) true : bool can be proved by

(ref)
E, x : bool ` x : bool

(abs)
E ` λx.x : bool→ bool

(ref)
E ` true : bool

(app)
E ` (λx.x) true : bool

and the judgment E ` λx.x+ x : int→ int by

?
(ref)

E, x : int ` x : int
(app)

E, x : int ` x+ x : int
(abs)

E ` λx.x+ x : int→ int.

where ? is

(ref)
E, x : int ` + : int→ int→ int

(ref)
E, x : int ` x : int

(app)
E, x : int ` (+) x : int→ int

In the second example the ‘+’ is used infix. This is just for convenience. By the
grammar for core ML expressions it would be prefix, which is used as in OCaml, i.e.,
(+) x y instead of x+ y.

9.3. Type Inference

Inferring the most general type of a given expression is known as type inference. It is a
bit more complicated than type checking. Hence some further definitions are needed.

A type substitution σ is very similar to a substitution for λ-terms (see Chapter 5).
Here the mapping is from the set of type variables (α, β, γ, . . .) into the set of types.
The application of a substitution σ to a type τ (written as τσ) is defined by

τσ
def
=

σ(α) if τ = α

τ1σ → τ2σ if τ = τ1 → τ2

g(τ1σ, . . . , τnσ) if τ = g(τ1, . . . , τn).

76

9. Types

A type substitution can also be applied to a typing environment. This is defined by

Eσ
def
= {e : τσ | e : τ ∈ E}.

The application of a type substitution to another type substitution is their functional
composition

σ1σ2
def
= σ2 ◦ σ1.

Note: Recall that σ2 ◦ σ1 is the function defined by x 7→ σ2(σ1(x)).
The set of type variables of a type τ is given by

T Var(τ)
def
=

{α} if τ = α

T Var(τ1) ∪ T Var(τ2) if τ = τ1 → τ2⋃
1≤i≤n T Var(τi) if τ = g(τ1, . . . , τn).

The next example familiarizes the reader with type substitutions.

Example 9.2. Consider the type τ and the type substitutions σ and σ2:

τ = α→ (α1 → α3)

σ = {α/int→ int, α1/list(α2)}
σ2 = {α3/α4, α2/α, α/α1}

Then we have

τσ = (int→ int)→ (list(α2)→ α3)

T Var(τ) = {α, α1, α3}
T Var(τσ) = {α2, α3}

σσ2 = {α/int→ int, α1/list(α), α3/α4, α2/α}

9.3.1. Unification Problems

A unification problem is represented by a (finite) sequence of equations between types
τ1 ≈ τ ′1; . . . ; τn ≈ τ ′n. Here, an empty sequence is represented by �. Unification is
the process of finding a substitution σ such that the types in each equation become
syntactically identical, i.e., τ1σ = τ ′1σ; . . . ; τnσ = τ ′nσ. Such a substitution is then called
a solution to the unification problem or just a unifier . If a unification problem admits a
solution then it can be found by arbitrary applications of rules from the inference system
U (see Table 9.2).

In contrast to the inference rules of the system C we read the rules from system U top
to bottom.

(d) The decomposition rules capture the facts that (d1) two applications of type con-
structors are equal if and only if the type constructors are equal and their respective
parameters are unifiable, and (d2) two arrow types are equal if and only if their
respective components are unifiable.

(v) The variable rules state that as soon as either the lhs (for v1) or the rhs (for v2) of
an equation is a type variable α, the extracted information can be used (in form of
a substitution) to refine the remaining problem, but only if the type variable does
not occur in the other side of the equation. This is called the occur -check.

(t) The trivial equations removal rule does exactly that, it removes trivial equations,
i.e., equations where the lhs is the same as the rhs.

77

9. Types

E1; g(τ1, . . . , τn) ≈ g(τ ′1, . . . , τ
′
n);E2

E1; τ1 ≈ τ ′1; . . . ; τn ≈ τ ′n;E2
(d1)

E1; τ1 → τ2 ≈ τ ′1 → τ ′2;E2

E1; τ1 ≈ τ ′1; τ2 ≈ τ ′2;E2
(d2)

E1;α ≈ τ ;E2 α 6∈ T Var(τ)

(E1;E2){α/τ}
(v1)

E1; τ ≈ α;E2 α 6∈ T Var(τ)

(E1;E2){α/τ}
(v2)

E1; τ ≈ τ ;E2

E1;E2
(t)

Table 9.2.: The inference system U for unification.

Also for constructing proofs we apply the rules from system U top to bottom. Since
rules v1 and v2 modify all equations we do not depict unification proofs as trees but
rather as sequences. If E is the premise and E′ the conclusion of the above inference

rule r (where r ∈ {d1, d2, v1, v2, t}), the application of r is written as E ⇒(r)
σ E′, where σ

indicates a substitution (for r ∈ {d1, d2, t} the substitution ι, i.e., the empty substitution,
with ι(α) = α for all type variables α, is used). To solve a given unification problem E1

the inference rules are applied repeatedly. The inference rules are designed such that
this process stops after finitely many, say n, steps:

E1 ⇒(r1)
σ1 E2 ⇒(r2)

σ2 · · · ⇒
(rn−1)
σn−1

En.

If En = � then E1 has the solution σ = σ1σ2 · · ·σn−1.2 If En 6= � then E1 does not
have a solution.

Example 9.3. The types list(bool) and list(α) are unifiable as can be seen by the deriva-
tion

list(bool) ≈ list(α) ⇒(d1)
ι bool ≈ α
⇒(v2)
{α/bool} �.

The unifier is {α/bool}.

9.3.2. Typing Constraints

A type inference problem is given by E BUI e : α. This reads: “Transform the given
problem into a unification problem using the system I. Afterwards solve the resulting
unification problem (if possible) using the system U .” The corresponding result is a
substitution σ such that Eσ ` e : ασ.

Before unification can be used to implement type inference, a translation from type
inference problems to unification problems is needed. This can be done using the infer-
ence rules of I (which should be easily understandable since they are very close to those
of C) to generate typing constraints. The rules of I can be found in Table 9.3. Usually
U as well as I are omitted from E BUI e : α, resulting in E B e : α.

2The order of applying the inference rules from U to equations in E may have an effect on the unifier.
However, every unifier σ computed by system U is most general. This means that any other unifier τ
can be obtained from σ. Formally this means that there exists a substitution µ such that τ = σµ.

78

9. Types

E, e : τ0 B e : τ1
τ0 ≈ τ1

(con)
E B e1 e2 : τ

E B e1 : α→ τ ;E B e2 : α
(app)

E B λx.e : τ

E, x : α1 B e : α2; τ ≈ α1 → α2
(abs)

E B let x = e1 in e2 : τ

E B e1 : α;E, x : αB e2 : τ
(let)

E B if e1 then e2 else e3 : τ

E B e1 : bool;E B e2 : τ ;E B e3 : τ
(ite)

Table 9.3.: The inference system I for type inference.

Note that in the rules of I, the type variables α, α1 and α2 are required to be fresh,
i.e., they do not occur in the preceding derivations.

To solve the type inference problem EB e : α we apply the rules of system I from top
to bottom, resulting in a proof sequence. If this proof sequence stops before having a
unification problem—none of the rules is applicable but some type inference constraints
are still left—then statement e cannot be typed w.r.t. the type environment E. Otherwise
at some point the given type inference problem is translated into a unification problem.
If the resulting unification problem has a solution, this represents the most general type
of the original type inference problem, otherwise the original type inference problem is
not typable (w.r.t. I and U).

Example 9.4. Consider the primitive environment P as defined above and application
of the identity function as given by let id = λx.x in id 1. The resulting type inference
problem is

P B let id = λx.x in id 1 : α0

where α0 is a fresh type variable. Using I this is transformed into the unification
problem:

P B let id = λx.x in id 1 : α0

let⇒
P B λx.x : α1;P, id : α1 B id 1 : α0

abs⇒
P, x : α2 B x : α3;α1 ≈ α2 → α3;P, id : α1 B id 1 : α0

con⇒
α2 ≈ α3;α1 ≈ α2 → α3;P, id : α1 B id 1 : α0

app⇒
α2 ≈ α3;α1 ≈ α2 → α3;P, id : α1 B id : α4 → α0;P, id : α1 B 1 : α4

con⇒
α2 ≈ α3;α1 ≈ α2 → α3;α1 ≈ α4 → α0;P, id : α1 B 1 : α4

con⇒
α2 ≈ α3;α1 ≈ α2 → α3;α1 ≈ α4 → α0; int ≈ α4.

79

9. Types

Afterwards U is used to get a solution:

α2 ≈ α3;α1 ≈ α2 → α3;α1 ≈ α4 → α0; int ≈ α4

⇒(v1)
{α2/α3} α1 ≈ α3 → α3;α1 ≈ α4 → α0; int ≈ α4

⇒(v1)
{α1/α3→α3} α3 → α3 ≈ α4 → α0; int ≈ α4

⇒(d2)
ι α3 ≈ α4;α3 ≈ α0; int ≈ α4

⇒(v1)
{α3/α4} α4 ≈ α0; int ≈ α4

⇒(v1)
{α4/α0} int ≈ α0

⇒(v2)
{α0/int} �.

The resulting unifier is

σ = {α0/int, α1/int→ int, α2/int, α3/int, α4/int}.

Since the type variable α0 was used for the initial type inference problem and σ(α0) = int,
the most general type for let id = λx.x in id 1 is int.

Note: To compute the unifier σ we look how the type variables change by applying
all substitutions appearing in the unification proof sequence. For α0 this is easy since
α0 is mapped to int. For α1 this is a bit more involved since α1 is first mapped to
α3 → α3, but afterwards α3 is mapped to α4 and finally α4 is mapped to int. Hence
σ(α1) = int→ int.

Example 9.5. As a second example consider the expression λx.x x and the primitive
environment P . The resulting type inference problem is

P B λx.x x : α0

where α0 is a fresh type variable. This is transformed into the unification problem:

P B λx.x x : α0

abs⇒
P, x : α1 B x x : α2;α0 ≈ α1 → α2

app⇒
P, x : α1 B x : α3 → α2;P, x : α1 B x : α3;α0 ≈ α1 → α2

con⇒
α1 ≈ α3 → α2;P, x : α1 B x : α3;α0 ≈ α1 → α2

con⇒
α1 ≈ α3 → α2;α1 ≈ α3;α0 ≈ α1 → α2

Afterwards use U as follows:

α1 ≈ α3 → α2;α1 ≈ α3;α0 ≈ α1 → α2 ⇒(v1)
{α1/α3→α2}

α3 → α2 ≈ α3;α0 ≈ (α3 → α2)→ α2

where after the first step the occur-check fails and hence the given unification problem
is not unifiable. This means that λx.x x is not typable.

Example 9.6. As a further example consider the Y-combinator and the empty environ-
ment ∅. The type inference problem ∅BY : α0 is transformed into a unification problem
as follows:

80

9. Types

∅B λf.(λx.f (x x)) (λx.f (x x)) : α0

abs⇒
f : α1 B (λx.f (x x)) (λx.f (x x)) : α2;α0 ≈ α1 → α2

app⇒
f : α1 B λx.f (x x) : α3 → α2; f : α1 B λx.f (x x) : α3;α0 ≈ α1 → α2

abs⇒
{f : α1, x : α4}B f (x x) : α5;α3 → α2 ≈ α4 → α5;

f : α1 B λx.f (x x) : α3;α0 ≈ α1 → α2

app⇒

81

9. Types

app⇒
{f : α1, x : α4}B f : α6 → α5; {f : α1, x : α4}B x x : α6;

α3 → α2 ≈ α4 → α5; f : α1 B λx.f (x x) : α3;α0 ≈ α1 → α2

con⇒
α1 ≈ α6 → α5; {f : α1, x : α4}B x x : α6;

α3 → α2 ≈ α4 → α5; f : α1 B λx.f (x x) : α3;α0 ≈ α1 → α2

app⇒
α1 ≈ α6 → α5; {f : α1, x : α4}B x : α7 → α6; {f : α1, x : α4}B x : α7;

α3 → α2 ≈ α4 → α5; f : α1 B λx.f (x x) : α3;α0 ≈ α1 → α2

con⇒
α1 ≈ α6 → α5;α4 ≈ α7 → α6; {f : α1, x : α4}B x : α7;

α3 → α2 ≈ α4 → α5; f : α1 B λx.f (x x) : α3;α0 ≈ α1 → α2

con⇒
α1 ≈ α6 → α5;α4 ≈ α7 → α6;α4 ≈ α7;α3 → α2 ≈ α4 → α5;

f : α1 B λx.f (x x) : α3;α0 ≈ α1 → α2

abs⇒
α1 ≈ α6 → α5;α4 ≈ α7 → α6;α4 ≈ α7;α3 → α2 ≈ α4 → α5;

{f : α1, x : α8}B f (x x) : α9;α3 ≈ α8 → α9;α0 ≈ α1 → α2

app⇒
α1 ≈ α6 → α5;α4 ≈ α7 → α6;α4 ≈ α7;α3 → α2 ≈ α4 → α5;

{f : α1, x : α8}B f : α10 → α9; {f : α1, x : α8}B x x : α10;α3 ≈ α8 → α9;

α0 ≈ α1 → α2

con⇒
α1 ≈ α6 → α5;α4 ≈ α7 → α6;α4 ≈ α7;α3 → α2 ≈ α4 → α5;

α1 ≈ α10 → α9; {f : α1, x : α8}B x x : α10;α3 ≈ α8 → α9;α0 ≈ α1 → α2

app⇒ α1 ≈ α6 → α5;α4 ≈ α7 → α6;α4 ≈ α7;α3 → α2 ≈ α4 → α5;

α1 ≈ α10 → α9; {f : α1, x : α8}B x : α11 → α10;

{f : α1, x : α8}B x : α11;α3 ≈ α8 → α9;α0 ≈ α1 → α2

cons⇒
α1 ≈ α6 → α5;α4 ≈ α7 → α6;α4 ≈ α7;α3 → α2 ≈ α4 → α5;

α1 ≈ α10 → α9;α8 ≈ α11 → α10; {f : α1, x : α8}B x : α11;

α3 ≈ α8 → α9;α0 ≈ α1 → α2

cons⇒
α1 ≈ α6 → α5;α4 ≈ α7 → α6;α4 ≈ α7;α3 → α2 ≈ α4 → α5;

α1 ≈ α10 → α9;α8 ≈ α11 → α10;

α8 ≈ α11;α3 ≈ α8 → α9;α0 ≈ α1 → α2

It is left as an exercise to show that this unification problem is not solvable (cf. Exer-
cise 9.4). Hence Y is not typable.

82

9. Types

9.4. Recursion

An interesting result for the simply typed lambda calculus (that will not be proved in
this course, however), is that every typable λ-term is guaranteed to terminate. This is
also true for core ML. As has been seen in the last section, Y is not typable. That is, of
course, due to the mentioned result. But if Y is not typable, there is no possibility to
define recursive functions (since all other thinkable fixed point combinators are also not
typable). The trick is, to include Y as a primitive constant and just assign a type that
suffices to make applications of Y well-typed.

The idea of the fixed point combinator was that given some function t (expecting
itself as first argument), it replicates this function and applies it to the computed fixed
point Y t, i.e., t (Y t).

Example 9.7. Again, consider the function length. As a first approach for its implemen-
tation consider

length
def
= λx.if null x then 0 else 1 + length (tl x)

where null : list(α) → bool, tl : list(α) → list(α), 0 : int, 1 : int, and + : int → int → int
are constants contained in P . As already mentioned for the corresponding λ-term, this
definition is not well-defined, due to the recursive reference to length.

Again the problem is solved by introducing an additional argument and applying Y
to the resulting expression, i.e.,

length
def
= Y (λfx.if null x then 0 else 1 + f (tl x)).

It can be seen that Y expects some function (i.e., an expression having an arrow type)
as its argument. The function that is supplied to Y in turn expects another function
(namely the one that is about to be defined). This process should be generally applicable,
hence Y does need some not too restricted type. The result after some investigation will
be similar to

Y : (α→ α)→ α.

Now let Pµ denote the primitive typing environment P and the type assignment for Y,
i.e.,

Pµ
def
= P ∪ {Y : (α→ α)→ α}.

9.5. Chapter Notes

The type inference algorithm presented in this chapter follows the Hindley-Milner type
inference algorithm for the simply typed lambda calculus. It was first presented by
Hindley [6] and independently conceived by Milner [11]. Sometimes it is also referred to
as Algorithm W.

9.6. Exercises

Exercise 9.1. Prove the judgment E ` if true then 1 else 0 : int for the typing environ-
ment

E = {true : bool, 0 : int, 1 : int}.

83

9. Types

Exercise 9.2. Prove the judgment E ` e : int for the typing environment

E = {
pair : int→ int→ pair(int, int),

fst : pair(int, int)→ int,

1 : int,

3 : int

}

and the core ML expression

e ≡ let f = λp.fst p in f (pair 1 3).

Exercise 9.3. Transform the type inference problem E B hd (cons 1 nil) : α0 with the
typing environment

E = {
hd : list(β1)→ β1,

cons : β2 → list(β2)→ list(β2),

nil : list(β3),

1 : int

}

into a unification problem.

Exercise 9.4. Show that the unification problem given by the list of equations

α1 ≈ α6 → α5;

α4 ≈ α7 → α6;

α4 ≈ α7;

α3 → α2 ≈ α4 → α5;

α1 ≈ α10 → α9;

α8 ≈ α11 → α10;

α8 ≈ α11;

α3 ≈ α8 → α9;

α0 ≈ α1 → α2

is unsolvable.

Exercise 9.5. Solve the unification problem resulting from Exercise 9.3 and give the
unifier.

Exercise 9.6. Solve the type inference problem Pµ B e : α0 for the core ML expression

e ≡ let o = Y (λf.cons 1 f) in o.

Exercise 9.7. Solve the type inference problem E B e : α0 for the core ML expression

e ≡ let x = cons 0 nil in cons true nil.

and the environment

E = {nil : list(β1), cons : β2 → list(β2)→ list(β2), 0 : int, true : bool}

Can you explain the (surprising) result?

84

10. Lazyness

As discussed in Chapter 5, in principle any OCaml program is equivalent to some λ-term.
Further, computing the result of such a program amounts to the same as β-reducing the
corresponding λ-term to some kind of normal form. However, in general the order in
which to contract redexes is not unique. Hence a certain strategy is used that uniquely
determines the redex at each reduction step.

Two well known evaluation strategies are call-by-value (or strict/eager evaluation) and
call-by-name (or lazy evaluation). Whereas OCaml adopts eager evaluation (by default),
Haskell [1] would be an example of a lazy language.

One nice application of lazy evaluation is the usage of infinite data structures (e.g.,
infinite lists). The advantage compared to strict evaluation is that data can be sepa-
rated from control. In the following we give two implementations of lazy lists and some
examples of programs that use them.

10.1. Motivation

Recall the built-in cons operator ‘(::)’ of OCaml. Since OCaml adopts eager evaluation,
in an expression like e1 :: e2, the arguments e1 and e2 are evaluated—to values x and
xs say—before the resulting list x::xs is constructed and returned.1 Now if e2 contains
some expensive computations (or even not terminate at all), then e1 :: e2 will take at
least as long to compute as e2; even if the only place in the remaining program referring
to e1 :: e2 is hd(e1 :: e2), i.e., the value of e2 is not used.

The idea behind lazy evaluation is that only those parts of a program that are really
needed to compute the final result, should be evaluated at all. Hence, in the above
example only e1 should be reduced. This is enough to give the result of hd(e1 :: e2),
namely x. In this case we will even get the result, if e2 does not terminate at all, since
e2 is never reduced.

In the following we give two possible implementations of lists that only reduce their
tails as soon as they are needed. Usually, such lists are called lazy lists.

10.2. Custom Lazy Lists

Before we give some examples on how to use lazy lists, we need an appropriate type.
Let us start with a type that corresponds to the standard list type and refine it step by
step.

type ’a llist = Nil | Cons of (’a * ’a llist)

Next we want to have some expression that has an llist type but does not terminate.
Consider for example

let rec from n = Cons(n,from(n+1))

which, given an integer n, constructs the (infinite) list of all integers starting with n. A
call to from does not terminate, as can be seen by the example:

1Note that OCaml evaluates parameters in functions from right to left. Hence first e2 is evaluated to
xs, then e1 is evaluated to x, and finally the list x :: xs is constructed.

85

10. Lazyness

from 0;;

Stack overflow during evaluation (looping recursion?).

Consider a head function for our custom llist type.

let hd xs = match xs with Nil -> failwith "empty list"

| Cons(x,_) -> x

Also if the call to from is the argument of a call to hd, there is no result, e.g.,

hd(from 0);;

Stack overflow during evaluation (looping recursion?).

The desired behavior is that hd(from 0) should result in 0. Hence, we have to modify
our list type, such that the second argument of a Cons-cell is only evaluated if explicitly
requested to do so. A common trick to achieve this, is to use a function, taking one
(dummy) argument of type unit. The body of this function is only evaluated, if () is
supplied. The first attempt to integrate this trick in our list type could be:

type ’a llist = Nil | Cons of (’a * (unit -> ’a llist))

The next example familiarizes the reader with some values of this new type of lazy
lists.

Example 10.1. In the following table the left column gives some values for the type
’a llist. The right column shows which list is represented by the respective value in
the left column.
Nil []

Cons(1, fun () -> Nil) [1]

Cons(2, fun () -> Cons(1,fun () -> Nil)) [2;1]

Note that we also have to redefine from in order to obtain the correct type.

let rec from n = Cons(n,fun() -> from(n+1))

Now applying hd works:

hd(from 0);;

- : int = 0

At this point we are in the strange situation that the tail of an llist is not an llist

itself (but rather a function from unit to llist). We solve this by using a mutually
recursive type definition.

type ’a cell = Nil | Cons of (’a * ’a llist)

and ’a llist = (unit -> ’a cell)

Again we give some values of this new type of lazy lists.

Example 10.2.
fun () -> Nil []

fun () -> Cons(1,fun () -> Nil) [1]

fun () -> Cons(2, fun () -> Cons(1,fun () -> Nil)) [2;1]

The new definition of ’a llist requires a further modification of from (and this time
also of hd).

let hd xs = match xs() with Nil -> failwith "empty"

| Cons(x,_) -> x

let rec from n = fun() -> Cons(n,from(n+1))

The implementation of the corresponding tl function is left as an exercise (cf. Exer-
cise 10.1). Further consider the version of zip_with for lazy lists

86

10. Lazyness

let rec zip_with f xs ys = fun() -> match (xs(),ys()) with

| (Cons(x,xs),Cons(y,ys)) -> Cons(f x y,zip_with f xs ys)

| _ -> Nil

Note how a call to zip_with f xs ys immediately returns a function waiting for a
() argument, instead of computing something. Only after this () was supplied, any
computation starts.

It is about time for the first example on how to use lazy lists. But before that we need
a function that transforms (part of) a lazy list into a list.

let rec to_list n xs = if n < 1 then [] else match xs() with

| Nil -> []

| Cons(x,xs) -> x :: to_list (n-1) xs

10.2.1. The Fibonacci Numbers

As a first application of lazy lists we consider Fibonacci numbers. Remember that the
ith Fibonacci number Fi is given by the equation

Fi =

0 if i = 0

1 if i = 1

Fi−1 + Fi−2 otherwise

(Note that in contrast to Chapter 7, we do start the sequence with 0 here. Both defini-
tions are used in the literature.) Hence for all but the first two Fibonacci numbers, the
value is determined by its predecessors. This insight can be turned into the following
definition:

let rec fibs =

fun() -> Cons(0,fun() -> Cons(1, zip_with (+) fibs (tl fibs)))

Consider the two occurrences of fibs in the function body. The first one just returns a
list starting with 0, 1, whereas the second one returns a list starting with 1 (since the
call to tl removes the first element). So the call to zip_with is of the form

zip_with (+) [0;1; . . .] [1; . . .]

This is just enough information to compute the first element of the resulting list, leading
to

1 :: zip_with (+) [1; . . .] [. . .]

Now it is clear that the third element of fibs is 1 and hence the ‘. . . ’ in above expression
can be replaced by ‘1;. . . ’ yielding:

1 :: zip_with (+) [1;1; . . .] [1; . . .]

Which is equivalent to

1 :: 2 :: zip_with (+) [1; . . .] [. . .]

This can be continued ad infinitum, thereby computing all the Fibonacci Numbers. To
see that this really works, we use to_list to get the first few Fibonacci numbers

to_list 10 fibs;;

- : int list = [0; 1; 1; 2; 3; 5; 8; 13; 21; 34]

87

10. Lazyness

You have seen that it is possible to define your own lazy lists. One problem with
above approach however, is that unnecessary recomputations are done. By measuring
the time of computing ‘to_list n fibs’ for bigger and bigger n, it should be possible
to convince yourself that above implementation has an exponential time-complexity in
n. The problem is that our implementation somehow uses call-by-name evaluation for
lists, but another essential ingredient for lazy evaluation is missing: memoization. It has
already been stated (on page 39; in the footnote) that lazy evaluation corresponds to
call-by-name evaluation together with memoization.

Therefore, OCaml provides means for proper lazy evaluation (i.e., using memoization)
that prohibits unnecessary recomputations. This is discussed in the next section.

10.3. Lazyness in OCaml

The keyword lazy is reserved to indicate that some expression should be evaluated lazily.
It works as a function that lifts an arbitrary expression to its lazy equivalent, i.e., of
type ’a -> ’a Lazy.t. Consider for example the function

let one _ = 1

that ignores its argument and returns 1. When called eagerly, as for example in the
call one(print_string "test"), first the argument print_string "test" is evaluated
(printing “test”), and then 1 is returned. If the same function call is done lazily however,
the result differs. Namely, the function call one(lazy(print_string "test")) just
returns 1 without printing “test”, since the argument is never used within the function
body.

Together with lazy comes the function force : ’a Lazy.t -> ’a from the module
Lazy that provides a way to force the evaluation of some lazy expression, i.e., a lazy
expression will not evaluate until forced to do so.

The above mechanism can also be used to implement lazy lists. Let us first have a
look at the type definition:

type ’a t = ’a cell Lazy.t

and ’a cell = Nil | Cons of (’a * ’a t)

Hence a lazy list is a lazy cell that is either empty (Nil) or contains an element together
with a lazy list (Cons of ’a * ’a t).

The next example lists some further values of this new type.

Example 10.3.
lazy Nil []

lazy (Cons(1,lazy Nil)) [1]

lazy (Cons(2,lazy (Cons(1,lazy Nil)))) [2;1]

For convenience the function fc is installed as an abbreviation for Lazy.force.

let fc = Lazy.force

Consider from: int -> int t as a first example of a function on this kind of lazy
lists.

let rec from n = lazy(Cons(n,from(n+1)))

Next consider filter : (’a -> bool) -> ’a t -> ’a t which removes all elements
from a lazy list that do not satisfy a given predicate.

let rec filter p xs = lazy(match fc xs with

| Nil -> Nil

| Cons(x,xs) -> if p x then Cons(x,filter p xs)

else fc(filter p xs)

)

88

10. Lazyness

The function to_list : int -> ’a t -> ’a list is used to translate a lazy list
into a ‘normal’ list:

let rec to_list n xs = if n < 1 then [] else match fc xs with

| Nil -> []

| Cons(x,xs) -> x :: to_list (n-1) xs

10.3.1. The Sieve of Eratosthenes

The Sieve of Eratosthenes is a simple algorithm to compute all prime numbers. The
idea is to start at the sequence of all natural numbers from 2 on, i.e.,

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Then repeatedly apply the following steps to the sequence:

a) mark the first element h of the sequence as prime

b) remove all multiples of h (including h itself) from the sequence

c) goto step 1

Here are the first few iterations:

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 . . .

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 . . .

5 7 11 13 17 19 23 25 29 31 35 37 41 43 47 . . .

7 11 13 17 19 23 29 31 37 41 43 47 49 53 59 . . .

11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 . . .
...

. . .

The Sieve in OCaml Using lazy lists the Sieve of Eratosthenes can easily be imple-
mented in OCaml. First some code is needed that generates the (infinite) list of all
natural numbers from 2 on. This is done by

from 2

using the function from from page 88. Then the sieve itself is specified by:

let rec sieve xs = lazy(match fc xs with

| Nil -> Nil

| Cons(x,xs) ->

Cons(x,sieve(filter (fun y -> y mod x <> 0) xs))

)

Using this, the list of all primes can be computed by

let primes = sieve(from 2)

To get concrete results the function to_list from above is used. E.g., the first 100
prime numbers are computed by:

to_list 100 primes;;

- : int list =

[2; 3; 5; 7; 11; 13; 17; 19; 23; 29; 31; 37; 41; 43;

47; 53; 59; 61; 67; 71; 73; 79; 83; 89; 97; 101; 103;

107; 109; 113; 127; 131; 137; 139; 149; 151; 157; 163;

167; 173; 179; 181; 191; 193; 197; 199; 211; 223; 227;

89

10. Lazyness

229; 233; 239; 241; 251; 257; 263; 269; 271; 277; 281;

283; 293; 307; 311; 313; 317; 331; 337; 347; 349; 353;

359; 367; 373; 379; 383; 389; 397; 401; 409; 419; 421;

431; 433; 439; 443; 449; 457; 461; 463; 467; 479; 487;

491; 499; 503; 509; 521; 523; 541]

These are 18 lines in total (including the type of lazy lists) to compute arbitrarily many
prime numbers! (In a language that has built-in lazy lists, this would be a two-liner.)

10.4. Exercises

Exercise 10.1. Consider the following type for lazy lists (from Section 10.2)

type ’a cell = Nil | Cons of (’a * ’a llist)

and ’a llist = (unit -> ’a cell)

Implement the functions

• tl: ’a llist -> ’a llist that returns the tail of a lazy list

• append : ’a llist -> ’a llist -> ’a llist that concatenates two lazy lists

• and map : (’a -> ’b) -> ’a llist -> ’b llist that maps a function over a
lazy list.

Exercise 10.2. Implement the Sieve of Eratosthenes using the type of Exercise 10.1.

Exercise 10.3. Use the type of Section 10.3 to implement a function fibs : int t,
which computes the infinite list of Fibonacci numbers.

Exercise 10.4. Use the type of Section 10.3 to implement a function merge that combines
two sorted lazy lists, i.e.,

merge [1;4;6;7;8; . . .] [1;2;3;4;10; . . .] = [1;1;2;3;4;4;6;7;8;10; . . .]

Exercise 10.5. Use the type of Section 10.3 to implement a function sunique that drops
duplicates in a sorted lazy list, i.e.,

sunique [1;1;2;3;4;4;6;7;8;10; . . .] = [1;2;3;4;6;7;8;10; . . .]

Exercise 10.6. Use the type of Section 10.3 to implement a function hamming : int t

that lazily computes the infinite sequence of Hamming numbers (i.e., all natural numbers
whose only prime factors are 2, 3, and 5), e.g.,

hamming = [1;2;3;4;5;6;8;9;10;12;15;16;18;20; . . .]

Hint: Use map, merge, and sunique.

Exercise 10.7. Consider the function filter from Section 10.3, defined as

let rec filter p xs = lazy(match fc xs with

| Nil -> Nil

| Cons(x,xs) -> if p x then Cons(x,filter p xs)

else fc(filter p xs)

)

Does it differ (and if how) from the following function?

let rec filter2 p xs = match fc xs with

| Nil -> lazy Nil

| Cons(x,xs) -> if p x then lazy(Cons(x,filter2 p xs))

else filter2 p xs

90

10. Lazyness

Hint: Via #remove_printer LazyList.toplevel_printer_int;; you can remove
the pretty printer.

Exercise 10.8. Consider the function zip_with from Section 10.2, defined as

let rec zip_with f xs ys = fun() -> match (xs(),ys()) with

| (Cons(x,xs),Cons(y,ys)) -> Cons(f x y,zip_with f xs ys)

| _ -> Nil

Does it differ (and if how) from the following function?

let rec zip_with2 f xs ys = match (xs (),ys ()) with

| Cons(x,xs),Cons(y,ys) -> fun () -> Cons(f x y,zip_with2 f xs ys)

| _ -> fun () -> Nil

Hint: Try to implement the Fibonacci numbers via zip_with2.

Exercise 10.9. Read the following article (available from UIBK network):
Melissa E. O’Neill, The Genuine Sieve of Eratosthenes, Journal of Functional Program-
ming, 19(1), 95–106 (2009), doi:10.1017/S0956796808007004.

91

http://dx.doi.org/10.1017/S0956796808007004

The whole is of necessity prior to
the part.

Aristotle

11. Divide and Conquer

11.1. Divide and Conquer

Many recursive algorithms follow the divide and conquer philosophy. They divide the
problem into smaller subproblems (of the same shape) and then conquer these subprob-
lems (either because they are trivial or they are further divided). Finally the solutions
of the subproblems are combined into a solution for the original problem.1

In the sequel we will demonstrate the divide and conquer principle by discussing
mergesort, which works as follows: To sort a list zs we distinguish two cases. In the
base case zs contains at most one element and is already sorted. In the step case we
divide zs into two sublists xs and ys (such that zs = xs@ys). After sorting xs and ys

we merge the result, such that the obtained list is also sorted. In OCaml, mergesort can
be implemented as follows:

let rec merge xs ys = match (xs,ys) with

| ([],ys) -> ys

| (xs,[]) -> xs

| (x::xs,y::ys) -> if x < y then x::(merge xs (y::ys))

else y::(merge (x::xs) ys)

let rec msort = function

| [] -> []

| [z] -> [z]

| zs -> let (xs,ys) = Lst.split_at (Lst.length zs / 2) zs in

merge (msort xs) (msort ys)

The above implementation divides the list which should be sorted (approximately)
at the middle (using split_at) and sorts the first half and the second half separately.
Finally the obtained lists are merged into the resulting list. The execution of msort can
be visualized by the trees in Figure 11.1. First the recursive calls to msort decompose
the list until all lists are singleton. This phase is top to bottom (cf. Figure 11.1(a)). In
a second phase the resulting list is built by merging the already sorted ones. This phase
is executed bottom to top (cf. Figure 11.1(b)).

Next we will investigate the runtime of msort. Note that the runtime of msort is
mainly depending on the length of the list to sort. The actual list contents are of minor
importance. Hence the runtime of msort is a function T : N→ N where n is the length
of the list zs we want to sort and T (n) is the number of instructions that are executed
when calling msort zs. To simplify matters we will consider a worst case analysis and
study the asymptotic runtime only.2 We will use standard O-notation for this. Hence we
are looking for a function f : N → N such that T ∈ O(f). Sometimes we are interested
in tight upper bounds on T (n) and then write T ∈ Θ(f).

The runtime of a divide and conquer algorithm can always be computed by summing
up the runtime for each of the steps to divide the problem, to conquer the subprob-
lems, and to combine the solutions. We investigate each of the steps below for our
implementation of msort:

1Consequently the concept should be named divide and conquer and combine but since this sounds
worse (and is more work to write) we prefer the shorter name.

2Here asymptotic means that we are not interested in the exact number of operations msort executes
but in the order of the performed operations.

92

11. Divide and Conquer

[3;1;2;4;3]

[3;1]

[3] [1]

[2;4;3]

[2] [4;3]

[4] [3]

ms
or
t msort

ms
or
t msort ms

or
t msort

m
s
o
r
t

m
s
o
r
t

(a) Divide

[1;2;3;3;4]

[1;3]

[3] [1]

[2;3;4]

[2] [3;4]

[4] [3]

merge

merge merge

merge

(b) Combine

Figure 11.1.: Evaluation of msort [3;1;2;4;3].

cn

cn2

cn4 cn4

c c c c c c c c

cn2

cn4cn4

c c c c c c c c

. .

. . .

cn

cn

cn

cn

n

lg n+ 1

Figure 11.2.: A tree for the recurrence (11.1).

• divide: We divide the original list of length n into two lists. We used the function
split_at for this purpose. Looking at the implementation of split_at we see
that this part can be done in O(n) time. Hence the runtime of divide is O(n).

• conquer : Here we must consider two cases. If we have an empty or a singleton
list, then this list is already sorted and we can just return it. Hence in this case
we have constant runtime, i.e., O(1). In the other case we conquer each of the two
lists (obtained from divide). Note that split_at produced two sublists, each of
length (approximately) n

2 . To sort one of them we need time T (n2) and hence for
both of them we obtain a runtime of 2T (n2). Hence in this case conquer runs in
time 2T (n2).

• combine: Finally we need to combine the two sorted lists into a single sorted list
(using merge). Since both of these lists are of length n

2 and one element of either
list is removed in each recursive call, merge runs in time O(n).

Hence for msort the function T can be given as follows (for some constant c):

T (n) =

{
c if n 6 1

2T (n2) + cn otherwise
(11.1)

The case n 6 1 will be called the base case (in contrast to the step case). Note that
2T (n2) is the time needed for conquer while cn is the accumulated time for divide and

93

11. Divide and Conquer

combine. Equations of the form (11.1) are called recurrence equations or just recurrences.
Note that the recurrence (11.1) does not yet give a bound on the runtime of msort.
However, we can use it to compute such a bound. We unfold recurrence (11.1) recursively
and obtain a binary tree (see Figure 11.2). For ease of discussion we assume that n is a
power of 2, i.e., n = 2k for some k ∈ N, and hence the tree is perfect (see Section 6.1.2).
Each node corresponds to a call to msort and we label the node by the runtime needed
for the phases divide and combine. At the root node we split a list of length n into
two sublists (divide) and then merge the sorted lists, each of length (approximately)
n
2 (combine). Hence this node gives runtime cn. The two recursive calls (on lists of
length n

2) give runtime cn2 each, so together also yield cn. This actually holds for each
level of the tree. Note that the bottom level of the tree has n nodes since we started
with a list of length n. So how many levels are there? Or stated differently: What is
the height of the tree? From Exercise 11.1 we obtain that there are lg n + 1 levels and
hence T (n) 6 cn× (lg n+ 1) ∈ O(n lg n).3

There are several ways to solve recurrence equations, but for the ones we meet in this
course unfolding the tree will suffice. In general the runtime of a divide and conquer
algorithm can be given as

T (n) =

{
c base case

aT (nb) +D(n) + C(n) step case
(11.2)

Here a is the number of subproblems that must be conquered in the step case and n
b is

the size of each of these problems. Furthermore the time needed to divide (D(n)) the
problems and to combine (C(n)) the solutions must be added. For msort above we have
a = b = 2, but there exist many other problems where a and b are different from two
(and even different from each other). Note that D(n) +C(n) tells us how costly a single
function call is, whereas aT (nb) gives us the number of recursive function calls we have
to consider. However, the problems treated recursively are smaller (nb), which we must
take into account.

To get an even simpler form of recurrence equations we often collapse the cases for
dividing problems, combining solutions, and the base case. Then a recurrence equation
reads as follows:

T (n) = aT (
n

b
) + f(n) (11.3)

Here a, b ∈ N and f : N → N is an asymptotically positive function. Often we do not
need to solve recurrence equations on our own, but we can use the Master Theorem,
which tells us how the solutions look like in many cases. Basically, we compare the cost
for a single function call (f(n)) with the number of nodes in the last level of the tree
(nlogb a, which estimates the number of recursive calls needed if b > 1). If the cost for a
single call is significantly smaller than the number of recursive calls (f(n) ∈ O(nlogb a−ε),
then the latter determines the overall complexity. This corresponds to the first case in
the theorem. The reasoning for the third case is analogous. In the second case the cost
of one function call approximately equals the number of recursive calls and hence the
reasoning is similar as in Figure 11.2, explaining the additional factor lg n.

Theorem 11.1 (Master Theorem). Let a > 1, b > 1, and T (n) as in (11.3). Then

a) T (n) ∈ Θ(nlogb a) if f(n) ∈ O(nlogb a−ε) for some ε > 0.

b) T (n) ∈ Θ(nlogb a lg n) if f(n) ∈ Θ(nlogb a).

c) T (n) ∈ Θ(f(n)) if f(n) ∈ Ω(nlogb a+ε) for ε > 0 and af(nb) 6 cf(n) for some c < 1
and sufficiently large n.

3By lgn we abbreviate log2 n.

94

11. Divide and Conquer

Since for msort we have a = b = 2 and f(n) ∈ Θ(n), the Master Theorem (case 2)
applies and yields T (n) = Θ(n lg n).

We have seen that for many divide and conquer algorithms we can easily conclude
their runtime by just checking if the Master Theorem applies. But this is far from being
the only benefit. Another nice fact about recursive algorithms is that proving their
correctness is usually easier than when considering loops since induction can be applied.
In the exercises you are asked to prove the correctness of msort (see Exercise 11.3). Have
you ever tried to prove bubblesort correct?

11.2. Dynamic Programming

Dynamic programming is a technique that prefers recalling over recomputing. To this end
it stores the results of subproblems and just looks the result up instead of recomputing
it. Clearly, storing the results for subproblems will need additional memory. Not all
divide and conquer problems are equally well-suited for dynamic programming. Those
where it is necessary to solve many (identical) subproblems frequently will benefit more
than problems where all subproblems look (fairly) different. Another important issue
is that the lookup of a result should be drastically cheaper than the recomputation of a
result. In practice one typically uses data structures that allow a lookup in constant or
logarithmic time. In the imperative world this property holds for hash tables (lookup is
possible in constant time if there is at most one element in each bucket) whereas in the
functional setting often binary search trees (lookup is possible in logarithmic time if the
tree is balanced) are used. Since theory is pretty independent from such implementation
matters we will refer to it in the sequel just as (lookup) table and assume that operations
such as insertion (add) and lookup (find) are sufficiently efficient. We will use the
interface to a lookup table shown in Listing 11.1.

(** Lookup Tables *)

type (’a,’b) t

(** the type of a lookup table *)

val empty: (’a,’b) t

(** [empty] constructs empty [t] *)

val mem: (’a,’b) t -> ’a -> bool

(** [mem t k] tests if there is a value associated with key [k] in [t] *)

val find : (’a,’b) t -> ’a -> ’b

(** [find t k] returns value [v] associated with key [k] in [t]

@raise Not_Found if [t] has no binding for [k] *)

val add : (’a,’b) t -> ’a -> ’b -> (’a,’b) t

(** [add t k v] adds key-value pair [(k,v)] to [t] if [k] is not in [t] *)

val size : (’a,’b) t -> int

(** [size t] returns the size, i.e., number of bindings in [t] *)

Listing 11.1: Lookup.mli

The type of a lookup table is (’a,’b) t where ’a is the type for the keys and ’b

the type for the values associated with the keys. The constant empty returns an empty
table. The function mem t k checks if table t contains a binding for the key k. If so,
then find t k returns the value v associated to k in table t. Finally, add t k v adds
a new binding (k,v) to table t and returns the new table.

95

11. Divide and Conquer

11.2.1. Fibonacci Numbers

We have already seen that the straightforward implementation of the Fibonacci function
is inefficient, since fib n results in approximately 2n recursive calls. To overcome this
exponential growth we will dynamically program (hence the name) a table, where for
each m (here 1 6 m 6 n) we have two cases. If we did not yet consider m we compute
fib m and add as a binding for m the value of fib m to the table. If m has already been
considered, then we just look up the binding, i.e., fib m, in the table. To store the table
linear space is needed but now it is possible to compute fib m with linearly many re-
cursive calls. An implementation of the Fibonacci numbers using dynamic programming
can be done as follows:

let fib_dp n =

let rec fib t n =

if Lookup.mem t n then t

else if n < 2 then Lookup.add t n 1

else

let t = fib t (n-1) in

let t = fib t (n-2) in

let r = Lookup.find t (n-1) + Lookup.find t (n-2) in

let t = Lookup.add t n r in

t

in Lookup.find (fib Lookup.empty n) n

The differences to the original implementation are as follows: The (inner) fib function
now has an additional parameter t, which is a lookup table that will finally contain all
Fibonacci numbers as bindings. Hence fib now returns a lookup table instead of a single
Fibonacci number. The first thing fib checks is if it has already computed the Fibonacci
number for the current parameter n. In this case the binding is already in the table and
it can be returned without changes. If there is no binding yet for n then we have to add
it. This is easy in the base case (n < 2). In the step case we first get the (updated)
tables for the recursive calls to n− 1 and n− 2. Now the table contains bindings for the
(n−1)-st and the (n−2)-nd Fibonacci numbers which we can just lookup in the table to
compute the n-th Fibonacci number, which we finally add to the table before we return
it. Since fib Lookup.empty n returns a table containing the first n Fibonacci numbers
the last line then looks up the n-th Fibonacci number.

We have seen that dynamic programming allows to reduce exponential runtime to
polynomial runtime while the additional memory needed is only linear (in the size of the
input).

11.2.2. Beans and Bowls

Consider a bowl containing black and white beans. We may replace beans by the fol-
lowing laws:

a) Replace two black beans by a single white bean.

b) Replace two white beans by a single black bean.

c) Replace a black and a white bean by a single white bean.

These laws can be written more concisely as rewrite rules4

•• → ◦ ◦◦ → • •◦ → ◦ ◦• → ◦

4Here we use two rewrite rules for the last law to show that the order of the beans does not matter.

96

11. Divide and Conquer

150/75

148/76 151/73 149/75

146/77 149/74 147/76 149/74 152/71 150/73 147/76 150/73 148/75

...
...

...
...

...
...

...
...

...

∑
225

224

223

...

Figure 11.3.: Naive algorithm starting with 150 black and 75 white beans.

Now we face the following question: Starting with a bowl containing 150 black and 75
white beans can the color of the last bean be predicted? In other words the question
is if we always end up with either a white or a black bean (independent from how we
replace the beans).

First we tackle the problem with a naive algorithm that just tries all possibilities.
Starting with 150 black and 75 white beans we consider each of the three rules separately.
Figure 11.3 visualizes this strategy. Note that the naive algorithm terminates since
the (total) number of beans decreases by one in each step (see the right column in
Figure 11.3). To compute the number of recursive calls we recall that a (non-empty)
ternary tree of height n has (more than) 3n−1 nodes. For n = 225 we get 3224 = (32)112 =
9112 ≈ 10100, which is intractable for a computer (which we will see soon).

For the naive approach we write a function beans : int -> int -> (bool * bool)

which takes two integers (number of black and white beans, respectively) and returns
a pair of booleans. Here the first component is true if and only if it is possible to end
up with a black bean and the second component indicates if we can end up with a
white bean (it might be that both possibilities come true). The function can then be
implemented as follows:

let rec beans b w =

if b = 1 && w = 0 then (true,false)

else if b = 0 && w = 1 then (false,true)

else if b < 0 || w < 0 then (false, false)

else

(beans (b-2) (w+1)) <||>

(beans (b+1) (w-2)) <||>

(beans (b-1) w)

Here the operator <||> is a logical or on pairs, defined as

let (<||>) (b1,w1) (b2,w2) = (b1 || b2,w1 || w2)

However, while e.g., beans 5 5 shows that for some starting configurations it is pos-
sible to end up with a black or a white bean the call beans 150 75 does not terminate
within reasonable time. The reason is that similar instances of the problem are con-
sidered over and over again (see Figure 11.3 and Exercise 11.11). To overcome this
bottleneck we use dynamic programming. In the function beans_dp we first fill the
table (with the inner beans function) and then we can access the result for a concrete
configuration.

module L = Lookup

let beans_dp b w =

let rec beans t b w =

97

11. Divide and Conquer

if L.mem t (b,w) then t else

if b = 1 && w = 0 then L.add t (b,w) (true,false)

else if b = 0 && w = 1 then L.add t (b,w) (false,true)

else if b < 0 || w < 0 then L.add t (b,w) (false, false)

else

let t = beans t (b-2) (w+1) in

let t = beans t (b+1) (w-2) in

let t = beans t (b-1) w in

let r = L.find t (b-2,w+1) <||> L.find t (b+1,w-2) <||> L.find t (b-1,w) in

L.add t (b,w) r

in L.find (beans L.empty b w) (b,w)

And indeed, if we start with 150 black and 75 white beans the outcome can either be a
black or a white bean. Note that the call beans_dp 150 75 does not return immediately
(On a contemporary laptop it takes about a second). To understand this (shockingly
slow) execution we first take a look at the search space. The call beans_dp 150 75

requires 19,138 entries in the lookup table and from Exercise 11.13 we obtain that in
general the lookup table (computed for the call beans_dp m n) is quadratic in m + n.
Hence the runtime of beans_dp will be (at least) quadratic. The overall runtime also
depends on the implementation of the Lookup module. Ours is based on binary search
trees, where mem and find have logarithmic runtime (if the tree is balanced, otherwise the
runtime is linear). Hence the overall runtime of beans_dp will be between O(n2 · log n)
and O(n3).

11.2.3. Optimal Rod Cutting

Another example demonstrating the benefit of dynamic programming is the Optimal
Rod Cutting problem. This problem comes as an optimization problem. We are given
a rod of length n and a table of prices pi for 1 6 i 6 n where pi is the price for a rod
of length i. The question is to maximize the profit when cutting a rod of length n into
pieces. Consider the following example.

Example 11.1. Given the following table
length i 1 2 3 4 5 6 7 8 9 10
price pi 2 3 5 5 8 12 12 15 15 17

What is the maximum price that can be obtained when cutting a rod of length 10? If
we do not cut at all the price is 17. If we cut the rod in two pieces of lengthes 8 and
2 the price is 15 + 3 = 18, etc. Later we will see that the maximal price is 20 for this
instance. Note that for simplicity we are currently not interested in how to cut the rods
to obtain this answer.

We will solve the optimal rod cutting problem recursively. Let ri (for 0 6 i < n) be
the optimal solution for a rod of length i. Then

rn = max
06i<n

{pn, pi + rn−i} (11.4)

This formula considers a rod of length n and says that for an optimal solution (rn) we
either do not cut at all (pn) or take the maximum sum of pi (which is not cut further)
and rn−i (which is an optimal solution for a smaller problem). We can implement the
above formula as follows:5

let price ps i = if i <= Lst.length ps then Lst.nth ps (i-1) else 0

5Note that the original problem is restricted to rods for which a price is specified. The implementation
is slightly more general by assigning a price of zero to rods which are too long, i.e., ones that we
cannot sell.

98

11. Divide and Conquer

let rec cut ps n =

if n = 0 then 0

else

let f i q = max q (price ps i + cut ps (n-i)) in

Lst.foldr f (price ps n) (IntLst.range 1 n)

let ps = [2;3;5;5;8;12;12;15;15;17]

Here price ps i returns the price for a rod of length i and cut implements the for-
mula (11.4) for a price list ps. Now cut ps 10 = 20 can be computed in almost no
time but the call cut ps 30 already seems to take forever. The reason is that the same
problems are solved again and again. We can remove the bottleneck similar as for the
Fibonacci numbers by dynamic programming. The result looks as follows:

let cut_dp ps n =

let rec cut t ps n =

if Lookup.mem t n then t

else if n = 0 then Lookup.add t n 0

else

let t = Lst.foldr (fun i t -> cut t ps (n-i)) t (IntLst.range 1 n) in

let f i q = max q (price ps i + Lookup.find t (n-i)) in

let r = Lst.foldr f (price ps n) (IntLst.range 1 n) in

Lookup.add t n r

in Lookup.find (cut Lookup.empty ps n) n

The (inner) cut function is almost the same as before. The main difference is that we
first update the lookup table before computing the optimal value r for a rod of length n.

We observe that rod_dp 30 = 60 is now computed almost instantaneously. While
rod_dp is significantly faster than rod it might not be satisfactory because an optimal
solution does not yet tell us how the rod should be cut. Adding this information is the
task of Exercise 11.10.

11.3. Chapter Notes

This chapter builds on Chapter 4 (divide and conquer) and Chapter 15 (dynamic pro-
gramming) from [4].

While divide and conquer techniques are not restricted to functional programming
they often appear in this programming paradigm due to the heavy use of recursion. The
principle itself is much older, however. Already in 1805 Carl Friedrich Gauss presented
a fast Fourier transformation algorithm where the problem is divided into smaller sub-
problems whose solutions are combined. Recurrence equations have already been studied
by Fibonacci in the 13th century.

While dynamic programming is a simple idea itself, it took until the 1950’s to properly
study the underlying mathematics. The idea of dynamic programming sometimes is also
referred to by the name memoization. Note that some other (functional) programming
languages have memoization already built in (e.g. Haskell).

There are many other real world problems where an efficient implementation is possible
using dynamic programming. We mention an important one which is finding longest
common subsequences of two strings. This is used in DNA analysis to determine the
similarity of two genes. Other problems that benefit from dynamic programming are
discussed in the exercises.

99

11. Divide and Conquer

11.4. Exercises

Exercise 11.1. Consider a perfect binary tree where the last level has n nodes. Show
that the tree has lg n+ 1 levels, i.e., height lg n+ 1.

Hint: How many nodes does the tree have? Lemma 6.5 might be helpful.

Exercise 11.2. Prove the following claim by induction:

If xs and ys are sorted lists then merge xs ys is a sorted list.

Hint: Which kind of induction is useful?

Exercise 11.3. Show by structural induction on lists that for all lists zs the result of
msort zs is a sorted list.

Hint: You can assume the claim in Exercise 11.2.

Exercise 11.4. Consider a different implementation of msort where the list zs is split dif-
ferently, i.e., (xs,ys) = (Lst.hd zs, Lst.tl zs). Is the (worst case) runtime affected
by this change?

Exercise 11.5. Write a function qsort, which implements quicksort.
Hint: For a non-empty list select the head element as pivot.

Exercise 11.6. Consider the Fibonacci numbers (see Definition 7.1).

a) Compute a recurrence equation for the Fibonacci numbers.

b) Does the Master Theorem apply to the recurrence from item 1?

Exercise 11.7. Consider the following implementation of insert sort.

let rec insert x = function

| [] -> [x]

| y::ys -> if x < y then x::y::ys else y::(insert x ys)

let rec isort = function

| [] -> []

| x::xs -> insert x (isort xs)

a) Compute the recurrence equation for isort.

b) Solve the recurrence by unfolding it into a tree. Conclude an upper bound for the
runtime of isort.

c) Does the Master Theorem apply to the recurrence from item 1?

Exercise 11.8. Give a recurrence where the Master Theorem does not apply.
Hint: Find (un)suitable values for a, b, and f(n).

Exercise 11.9. Consider the Optimal Rod Cutting problem. A greedy strategy chooses
a j such that pj + pn−j is maximal. Then it performs the recursive calls on the shorter
rods (of lengths j and n− j) such as in the following function:

let rec cut_greedy ps n =

if n = 0 then 0

else

let f i (l,q) =

let p = price ps i + price ps (n-i) in

if p > q then (i,p) else (l,q)

in

let (j,_) = Lst.foldr f (n,price ps n) (IntLst.range 1 n) in

if j = n then price ps n else cut_greedy ps j + cut_greedy ps (n-j)

100

11. Divide and Conquer

a) Show that the greedy strategy does not necessarily yield an optimal solution.

b) What is the runtime of cut_greedy?

Exercise 11.10. Extend the function cut_rod such that it also returns how an optimal
solution can be obtained by indicating how the rod must be cut.

Hint: Add this information to the lookup table (it might now contain triples (rn, l, r)
where rn is the optimal solution to a rod of length n and l and r are the lengths of the
left and right rod, respectively).

Exercise 11.11. Consider beans & bowls.

a) Give an upper bound on the number of recursive calls emerging from beans m n
(in terms of m and n).

b) Draw the recursive calls emerging from beans 3 3 as a tree. The nodes are labeled
beansm n for different values of m and n and there is an edge from node beansm n
to node beans m′ n′ if the former recursively calls the latter.

Hint: Share identical nodes in the tree.

c) Use the tree from item 2 to compute the number of (recursive) calls to beans

(starting from beans 3 3). Check your computation by adding a counter to beans.

d) Use the tree from 2 to compute the number of (recursive) calls to beans (starting
from beans_dp 3 3). Check your computation by adding a counter to beans

(inside beans_dp).

Exercise 11.12. Extend beans_dp such that it returns the sequence of choices that yield
a single black/white bean.

Exercise 11.13. Give an upper bound (in terms of m and n) on the size of the lookup
table generated for the call beans_dp m n. Conclude that the size of the lookup table is
quadratic in m+ n. Compare your upper bound with the exact size of the lookup table
for m = 150 and n = 75.

Hint: Note that m× n is not a correct upper bound. Why?

Exercise 11.14. Consider Post’s Correspondence Problem (PCP). Here PCPs are given
as a list of pairs where each pair contains the corresponding words, i.e., the words at the
same indices.

The following implementation tries to determine if a PCP has a solution or not by
testing all possibilities in a breadth first search. To save memory, common prefixes of
two words are removed using the function trim.

let rec trim = function

| (x::xs,y::ys) when x = y -> trim (xs,ys)

| d -> d

let extend (w1,w2) (d1,d2) = trim (w1@d1,w2@d2)

let solve ds =

let rec solve = function

| [] -> false

| ([],[])::_ -> true

| (x::_,y::_)::ws when x <> y -> solve ws

| w::ws -> solve (ws@Lst.map (extend w) ds)

in solve (Lst.map trim ds)

101

11. Divide and Conquer

a) Write a function solve_dp, which uses dynamic programming to avoid considering
the same problems again.

b) Can you give an upper bound on the additional memory needed for the lookup
table?

c) Write a function solve_dps, which returns (the indices of) a solution.

Exercise 11.15. Implement the Towers of Hanoi game using a naive approach which just
tries all (allowed) moves. Towers of which size does a depth-first/breadth-first traversal
manage? How does performance change when using dynamic programming?

Hint: Implement a tower as a list of integers where the value of the integer encodes
the size of the disc.

102

Sometimes, the elegant
implementation is a function. Not a
method. Not a class. Not a
framework. Just a function.

John Carmack

A. OCaml in a Nutshell

As the title of this document suggests, the emphasis is on (purely) functional program-
ming. Hence only a fragment of OCaml is presented. Imperative features are solely used
for I/O, and object orientation is not covered at all. Even of OCaml’s purely functional
fragment, only constructs that are needed during the lecture, are introduced. Conse-
quently this is by no means a full description of OCaml (for such see [9]). The focus is on
techniques that can be used in any functional language (e.g., Erlang, Haskell, Standard
ML etc.).

A.1. Availability

The complete OCaml distribution (either source code or binaries for several platforms)
can be downloaded from the website http://caml.inria.fr. (A lot of additional in-
formation on OCaml can be found there too.)

A.2. The Obligatory “Hello, world!”

let main() = Printf.printf "Hello, world!\n" in main()

Listing A.1: helloWorld.ml

The program in Listing A.1 can be described as follows: first a function by the name
main is defined. Here ‘()’ indicates that the function does not take any arguments and
the body of the function (i.e., everything to the right of ‘=’) is just writing the string
"Hello, world!" on the standard output channel by using the function printf of the
module Printf from the OCaml standard library. This alone would not lead to any
output, since the function was just defined but never used. That is exactly what the
part after ‘in’ takes care of. The function main is called on input ‘()’ (i.e., empty input).

To get a stand-alone program from the source code of Listing A.1, write it to a file
called helloWorld.ml. A bytecode executable is compiled with ocamlc (the OCaml
bytecode compiler) as follows:

> ocamlc -o hello helloWorld.ml

This tells the compiler to produce an executable called hello from the source file
helloWorld.ml. Running this program yields:

> ./hello

Hello, world!

The first line of the executable starts with something like

#!/usr/bin/ocamlrun

indicating that the program ocamlrun is used to interpret the contents of this file. What
follows is platform independent (and human unreadable) bytecode.

There also is a native-code compiler (ocamlopt) for OCaml which is not used in this
lecture. The main differences are that native-code is often much faster than bytecode
but in return not platform independent.

103

http://caml.inria.fr

A. OCaml in a Nutshell

A.3. Types

The first thing to notice is that there are no statements without return value in OCaml.
Every value has a type and hence every single statement in a source file has a type (at
least if the code is syntactically correct). Variables do never change their values (i.e.,
they are mere identifiers/abbreviations of their values and hence the term variable is a
bit misleading). This sounds restrictive. Indeed it is not (as will be seen in the course
of the lecture). In order to build arbitrary types, three ingredients are needed: A set of
basic types, a set of type variables, and a set of type constructors.

A.3.1. Basic Types

OCaml offers the following basic types (sometimes also called primitive types): Boolean,
characters, floating point numbers, integers, strings, and the empty type. These are
denoted by the type constants bool, char, float, int, string, and unit, respectively.

A.3.2. Type Variables

In OCaml every identifier preceded by a single quote (‘’’) is a type variable (e.g., ’a,
’b, ’c, . . . are often used). A type variable is a placeholder for an arbitrary type. Thus
having type ’a (often pronounced “alpha”) for an expression means that it can have
any type. Type variables enable the use of so called polymorphic types, i.e., types whose
structure is free to some extent.

A.3.3. Type Constructors

In addition to some predefined type constructors, OCaml allows (and indeed encourages)
a user to define her own type constructors. The only predefined type constructors that
will be mentioned here are ‘*’ which is used to build tuple types and ‘->’ which denotes
function types.

A tuple is a mathematical structure with a fixed number of components. A tuple
with n components is called an n-tuple. Some special cases are pairs (2-tuples), triples
(3-tuples), quadruples (4-tuples), etc.

A function type denotes the type of a function. Does not help much this description,
does it? Consider the type int -> int. This is the type of all functions that take a
single integer as argument and return a single integer as result.

In Section A.3.5 it is shown how new type constructors can be introduced by the
programmer.

A.3.4. Examples

The best way to get a feeling for this, is to look at some examples.

int

the type of integers (e.g., . . . ,−1, 0, 1, . . .).

int * int

the type of pairs of integers (e.g., (0, 0), (0, 1), . . .).

int -> int -> int

the type of functions that take two integers and return a single integer as result. Some
prominent members having that type are: Addition (+), subtraction (−), multiplica-
tion (·), etc. An important thing to note here, is that ‘->’ associates to the right—
meaning that one starts to insert parentheses from the right—and hence the same type

104

A. OCaml in a Nutshell

can be written as int -> (int -> int) but not as (int -> int) -> int (which would
be the type of functions taking a function of type int -> int as argument and returning
an integer.

And now some polymorphic types:

’a * ’b

the type of pairs over arbitrary types. The only thing that is known, is that there
is a tuple with exactly two components, nothing is known about the types of those
components. Very similar but still different is the type

’a * ’a

which denotes pairs having components of the same type.

A.3.5. User-Defined Types

The type declaration can be used to define new type constructors at will. Type con-
structors can be parametrized by type variables. The general form is

type (’a1,. . .,’an) name = . . .

where name is the name of the newly defined type constructor and its type parameters
’a1 to ’an can be used after ‘=’. Depending on what stands on the right of ‘=’, two kinds
of user-defined types are distinguished: Type abbreviations and algebraic data types.

Type Abbreviations

Type abbreviations are used to give existing types shorter and/or more descriptive
names. Some examples are

type coord = int * int

which merely installs coord as an abbreviation for the type of integer-pairs,

type (’a) eqpair = ’a * ’a

which defines the type of all pairs whose components are of the same type (we can also
drop the parentheses and write type ’a eqpair = ’a * ’a in case of a single type
parameter), and

type (’a,’b) funs = ’a -> ’a -> ’b

which defines (’a,’b) funs to be the type of functions taking two arguments of the
same type and returning a value of some other type.

Algebraic Data Types

Algebraic data types (sometimes called variant types) are defined by listing all possible
shapes of values of that type where each case is identified by a so called (data) constructor
(beginning with an uppercase letter). For example

type direction = East | North | South | West

defines a new type direction which consists of just the four values East, North, South,
and West.

In the example above a variant type was used like an enumeration in other languages
(i.e., listing all possible values a certain type can adopt). Indeed variants can be used
in a more general way since each of the constructors can itself have an argument of
arbitrary type (defined with the keyword of) as in

type number = Int of int | Float of float

105

A. OCaml in a Nutshell

introducing a new type combining the existing types of integers and floating point num-
bers. But there are still more general applications of variants. Consider the type decla-
ration

type ’a mylist = Nil | Cons of (’a * ’a mylist)

stating that a mylist parametrized by an arbitrary type ’a is either empty (Nil) or a
list consisting of an element of type ’a paired with another mylist parametrized with
the same type ’a. The type mylist represents lists of arbitrary type. Note that each
element in such a list must be of the same type.

A.4. Values

The instances of a type are called values. Values are also called members of the spe-
cific type. Since every expression has a type in OCaml, in most cases expressions are
annotated with their type in the following. This is done in the form

e : τ

where e is an expression (for example an instance of some type) and τ is its type.
The available values of type bool are true and false. For characters a single quote

notation is used. Hence the letter ‘A’ is denoted by ’A’. Some examples of floating point
numbers are: 1., 0.0, 1e1, 1E-3. Integers are written as an arbitrary (finite) sequence
of digits with a leading ‘~-’ for negative numbers (no leading ‘+’ is allowed however).
Strings finally, are written in double quote notation (see Listing A.1 for an example).

Note: Everything is a member of type ’a.

A.4.1. Tuples

Values having a tuple type are called tuples. There are two special cases of tuples.
Firstly 0-tuples which have their own type in OCaml (namely unit) and consist of the
single value ‘()’, denoting “nothing” (comparable to the type void of Java). Secondly
1-tuples which coincide with their single component (e.g., (1) is the same as 1). Some
examples are

() : unit

denoting ‘nothing’,

(1,2,3,4) : int * int * int * int

a 4-tuple where every component is an integer,

("Akira",23) : string * int

a pair consisting of a string as first component and an integer as second one.
As has already been seen, the type constructor for tuples is ‘*’. Concrete tuples are

built using parentheses—‘(’ and ‘)’—to enclose all components of a tuple and com-
mas (‘,’) to separate consecutive components.

A.4.2. Functions

In OCaml functions are just values. A value denoting a function is called a functional
value. Hence it is possible to write down a function without a name (a so called anony-
mous function or lambda term). This is done using ‘fun’ and ‘->’ as in

fun x -> x + 1

106

A. OCaml in a Nutshell

denoting a function which adds 1 to its argument x. The general form is

fun x1 x2 . . . xn -> b

where x1 to xn are the arguments of the function and b is the so called body (i.e., an
expression describing what the function does). If n = 0, i.e., the function does not take
any arguments, then the special notation fun() -> e is used.

The call of a function on an argument is called function application and denoted by
juxtaposition (i.e., writing next to each other, separated by white spaces). Function
application is left associative. Hence f a1 a2 is the same as (f a1) a2 but different from
f (a1 a2). As an example consider the expression

(fun x -> x + 1) 1

i.e., application of the anonymous function fun x -> x + 1 to the argument 1. This
results in 1 + 1 which yields 2.

A.4.3. Variants

The instances of algebraic data types are called variant values (or shorter: variants).
Such values are constructed by using the names of constructors plus parentheses and
commas if the specific constructor has an argument. For example consider an instance
of the type int mylist:

Cons(1,Cons(2,Cons(3,Cons(4,Nil)))) : int mylist

representing the list of integers
1, 2, 3, 4.

A.5. Values and Types

Since OCaml uses type inference (see Chapter 9 for more information on that) in most
cases the user does not have to explicitly assign the type by herself. However it is always
possible to specify a type by hand (where the compiler will issue an error if it is not
compatible with the automatically inferred type). To think about the type of a function
is a good idea since it improves the understanding of this function.

A.5.1. Declaring Values

Almost surely the first thing to do when starting to program, is to give a name to some
value. In OCaml this is done via the let . . . = . . . in . . . declaration. For instance

let x = 1 in e

binds the name x to the value 1 within the expression e. A special case of this—that
can only be used at the top level—is let . . . = It means that from this point in
the program on the bound value is accessible. It is of course possible to name a function
(i.e., bind a function to an identifier) using let. Consider for example the successor
function which just adds one to its argument:

let s = fun x -> x + 1

Because it is tedious to always write the ‘fun’ and ‘->’ there is also a shorter form
available in OCaml. The above function for instance could equivalently be written as

let s x = x + 1

107

A. OCaml in a Nutshell

1 let w = 1

2

3 let x =

4 let y = w in

5 let w = 2 in

6 let z = w in

7 y + z

Listing A.2: Scoping

However, the possibility to write down anonymous functions is sometimes very useful.
Another special case is when you want to refer to a bound name directly in its body.

Writing

let f x = if x < 1 then 0 else x + f(x-1)

where the goal is to define a function that adds the integers x, x− 1, . . . , 0, will result
in an error message complaining about an ‘unbound value f’. Even worse, if the name f

was already bound to another value there will be no error message but the result might
not be as expected.

let f x = x

let f x = if x < 1 then 0 else x + f(x-1)

will result in f being defined as if one had written

let f x = if x < 1 then 0 else x + (x-1)

To achieve the desired goal the modifier rec has to be added after let.

let rec f x = if x = 0 then 0 else x + f(x-1)

A.5.2. Scoping

For the sake of demonstration, consider the rather stupid example of Listing A.2. In
line 1, w is bound to the value 1. In line 3, an expression is started that will finally give
the value for x. In line 4, y is bound to w (and since w is the same as its value to 1).
In line 5, a new variable which has coincidentally the same name as the first declared
variable is bound to the value 2. Hence, in line 6, w refers to the last variable by that
name and therefore z is bound to 2. The y + z in line 7 has value 3. From line 9 on,
x is bound to 3. Notice however that the old w has neither been erased nor changed its
value. As soon as the scope of the new w is left (as would be in line 8) every occurrence
of w corresponds to a value of 1.

A.5.3. Infix Operators

The usual infix (i.e., written between their two arguments) operators are provided by
OCaml. Some examples are ‘&&’ for the logical conjunction of two values of type bool,
‘>’ to check for arbitrary values (of the same type) whether the left one is greater than
the right one, ‘mod’ for computing the remainder of integer division, etc. Every infix
operator can also be used in prefix notation (i.e., in front of its two arguments) provided
that it is enclosed in parentheses. For instance (+) 1 2 can be written instead of 1 + 2

(it has the same effect as if first defining a new function let f x y = x + y and then
calling f 1 2). This notation is also used when presenting the type of an infix operator.
E.g., the type of addition would be given as

(+) : int -> int -> int

108

A. OCaml in a Nutshell

Note that in the special case of ‘*’ (multiplication) it is necessary to put a space between
the opening ‘(’ and the ‘*’ since ‘(*’ starts a comment in OCaml.

A.5.4. Patterns

A very convenient feature in functional programming is pattern matching , i.e., checking
whether a given value matches a certain pattern. A pattern p is defined by the following
BNF:

p ::= x (A.1)

| const (A.2)

| C (p, . . . ,p) (A.3)

| p as x (A.4)

| p, . . . ,p (A.5)

| (p) (A.6)

| p | p (A.7)

where (A.1) is called a variable pattern (matching anything and binding it to the name x),
(A.2) is called a constant pattern (matching the given constant, e.g., true, 42, 3.1415,
(), etc.), (A.3) is called a constructor pattern or variant pattern (matching every con-
structor C if the argument matches the given pattern), (A.4) is called an alias pattern
(matching everything that p would match and binding it to the name x), (A.5) is called a
tuple pattern (matching a tuple where each entry matches p), (A.6) is called a parenthe-
ses pattern (matching exactly the same as p), and (A.7) finally is called a choice pattern
(matching either the first or the second pattern, where the first is tried first). Patterns
can be used in different places of OCaml programs which will be mentioned later.

A.5.5. Control Structures

Several control structures are available in OCaml. The first to mention is the semicolon

(;) : unit -> ’a -> ’a

where e1 ; e2 first evaluates e1 (which has to be of type unit), then evaluates e2, and
returns the value of e2.

The construct if . . . then . . . else . . . (sometimes called conditional) can be seen
as a function

ite : bool -> ’a -> ’a -> ’a

i.e., taking three arguments, the first having type bool and the other two of type ’a, and
returning a value of type ’a. However there is one thing special about the evaluation
order. In ite e1 e2 e3 the expression e2 is only considered if e1 evaluates to true whereas
the expression e3 is only considered if e1 is false. In every user-defined function of the
same shape all three expressions would be reduced to a concrete value before checking
whether e1 is true or false. Particularly useful along with conditionals are Boolean
operators. Those are

(&&) : bool -> bool -> bool

which is true if both arguments are true and false otherwise,

(||) : bool -> bool -> bool

which is true if at least one of the arguments is true and false otherwise, and

not : bool -> bool

109

A. OCaml in a Nutshell

which is true if its argument is false and false otherwise.
Case expressions lastly choose different possibilities in programs by pattern matching.

The syntax is

match e with

| p1 [when cond1] -> e1
...

| pn [when cond2] -> en

meaning that if the expression e matches pattern p1 (and satisfies condition cond1) then
e1 should be chosen, if it matches pattern p2 (and satisfies condition cond2), e2 should
be chosen, etc. At most one branch of a case expression is chosen. OCamls will always
choose the first matching pattern where the condition is satisfied. Note that every of the
expressions e1 to en has to be of same type. The conditions cond1 to condn are called
guards. Most of the time we will not need guards; hence it is allowed to skip them (as
indicated by the square brackets).

The function f from above could alternatively be defined as (except that the new
definition behaves differently on negative input; do you see why?)

let rec f x = match x with 0 -> 0

| n -> n + f(n-1)

and since similar patterns occur that often in function definitions there is even a shorter
possibility, namely:

let rec f = function 0 -> 0

| n -> n + f(n-1)

where function tells the compiler that there is one argument (which does not need a
name since it is only used in pattern matching) that should be matched against the given
patterns.

A.6. The Standard Library

The standard library of OCaml consists of a bunch of modules that are available in every
OCaml program. A function of a module is identified by preceding its name with the
module name followed by a dot. E.g., if you want to use the length function of the
List module, you have to write List.length. A description of the standard library is
contained in [9].

A.7. The Core Library

The OCaml core library consists of declarations for basic types and exceptions, plus the
module Pervasives providing operations on them. The special thing about this ‘core’ is
that it is available in every source file as if open Pervasives would have been the first
line (i.e., unqualified names can be used, e.g., fst p rather than Pervasives.fst p to
extract the first component of the pair p).

A.8. Exercises

Exercise A.1. Give at least one value of each basic type and the types coord, direction,
and number.

110

A. OCaml in a Nutshell

Exercise A.2. Give at least five examples of mathematical functions that would have the
type int -> int -> int in OCaml.

Exercise A.3. Write down the type of ‘let f x = x - 1’ and justify your answer.

Exercise A.4. Explain (in words) what the type string -> char -> bool means. Can
you imagine any meaningful function having this type?

Exercise A.5. Give a function which has type ’a * ’b -> ’a. Give a function which
has type ’a * ’b -> ’b.

Exercise A.6. Write down an arbitrary recursive function in OCaml. (Note that any
function that calls itself in its body is recursive.)

Exercise A.7. Consider the user-defined type for lists

type ’a mylist = Nil | Cons of (’a * ’a mylist)

Which of the following items are patterns?

a) x

b) _

c) 3.14

d) Nil

e) Cons(x,xs)

f) Cons(x,Cons(y,xs))

g) n,Cons(x,xs) as ys

h) (n,Cons(x,xs)) as (_,ys)

i) (n,Cons(x,xs)) when n < 0

j) (n,Cons(x,xs)) | (_,Nil)

k) (n,Cons(x,xs)) when x < 0 | (_,Nil)

Hint: Also try them in the interpreter by replacing the dots in:

let foo = function | . . . -> ()

Exercise A.8. Define the functions

first : ’a * ’b * ’c -> ’a

second : ’a * ’b * ’c -> ’b

third : ’a * ’b * ’c -> ’c

that extract the first, second, and third component of a triple, respectively.

Exercise A.9. Use pattern matching to define a function turn that changes a given
direction to its opposite.

Exercise A.10. Using pattern matching, define a function square that computes the
square of a number.

Exercise A.11. Use pattern matching to define a function add that adds two numbers.
Hint: The function float_of_int : int -> float (of module Pervasives) might

be useful.

111

A. OCaml in a Nutshell

Exercise A.12. Consider the algebraic datatype

type nat = Zero | Succ of nat

for natural numbers. Use pattern matching on the first argument to define a function
add that adds two nats.

Hint: The equations Zero + m = m and (Succ n) + m = Succ (n + m) might be
helpful.

Exercise A.13. Consider the algebraic datatype

type shape = Rect of float * float | Square of float | Circle of float

where Rect(a,b) represents a rectangle of length a and width b, Square a is a square
of side length a, and Circle r denotes a circle with radius r.

Use pattern matching to define the functions circum : shape -> float computing
the circumference and area : shape -> float computing the area of the given geo-
metric shape.

Hint: You may use π = 3.14.

Exercise A.14. Use recursion to define a function gcd : int -> int -> int computing
the greatest common divisor of two integers.

Hint: Use Euclid’s algorithm exploiting that for non-negative integers

gcd m 0 = m, gcd m m = m, and gcd m n = gcd (m - n) n (if m > n).

Exercise A.15. Consider the following recursive definition for computing binomial coef-
ficients: (

n

k

)
=

{
1 if k = 0 or k = n;(
n−1
k−1
)

+
(
n−1
k

)
otherwise;

for n ≥ k ∈ N. Define a recursive function that computes binomial coefficients. Make
sure your function terminates for all possible arguments.

Exercise A.16. List five claims (positive or negative) the following article makes about
OCaml:

Yaron Minsky, OCaml for the masses, Comm. of the ACM 54:11, 2011.

Exercise A.17. Implement a function c : int -> int which computes the following:

c(n) =

n if n 6 1

c(3n+ 1) if n > 1 and n is odd

c(n2) if n > 1 and n is even

At each recursive call print the value of n.
Trivia: This function is known as Collatz’ or Syracuse function.
Bonus: Prove that for n greater 2 this function always ends with the values 4, 2, 1.

112

http://dx.doi.org/10.1145/2018396.2018413

B. Automatic Compilation of OCaml
Projects

This is a very basic introduction to ocamlbuild which should however suffice for the
needs of this lecture. In general ocamlbuild is called as follows

$ ocamlbuild <target>

where the identifier <target> tells ocamlbuild what to do.

B.1. Targets

In the following some of the most common targets are shortly described. Notice that
ocamlbuild creates the directory _build and the file _log in the current directory,
where the former contains all generated files (object files, executables, etc.) and the
latter a transcript of all actions that have been taken.

B.1.1. Bytecode Executables

To generate a bytecode executable whose main function is in the file <main>.ml, the
following command line does the job:

$ ocamlbuild <main>.byte

The result is a link named <main>.byte that points to the bytecode executable by the
same name residing in the _build directory. E.g., the program of Listing A.1 could be
compiled by

$ ocamlbuild helloWorld.byte

By adding .d before .byte (i.e., .d.byte the compiler can be informed to put addi-
tional debugging information into the bytecode executable (to use, e.g., with ocamldebug).
Debugging is also necessary to enable stack backtraces. Additionally the environment
variable OCAMLRUNPARAM has to be set to b (for backtrace). E.g., add the line

export OCAMLRUNPARAM=b

to your .bashrc. To compile above program for debugging use

$ ocamlbuild helloWorld.d.byte

113

Bibliography

[1] Haskell – A purely functional programming language. The Haskell site is available
online at http://www.haskell.org; visited on January 14th 2008.

[2] Henk P. Barendregt and Erik Barendsen. Introduction to lambda calculus. In
Aspenæs Workshop on Implementation of Functional Languages, Göteborg. Pro-
gramming Methodology Group, University of Göteborg and Chalmers University of
Technology, 1988.

[3] Richard Bird. Introduction to Functional Programming using Haskell. Prentice Hall
Europe, second edition, 1998. ISBN 0-13-484346-0.

[4] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms (3. ed.). MIT Press, 2009. ISBN 978-0-262-03384-8.

[5] Anthony J. Field and Peter Harrison. Functional Programming. Addison-Wesley,
1988. ISBN 0201192497.

[6] Roger Hindley. The principal type-scheme of an object in combinatory logic. Trans-
actions of the American Mathematical Society, 146:29–60, 1969.

[7] Daan Leijen. Parsec, a fast combinator parser, October 2001.

[8] Daan Leijen and Erik Meijer. Parsec: Direct style monadic parser combinators for
the real world. Technical Report UU-CS-2001-27, Department of Computer Science,
Universiteit Utrecht, 2001.

[9] Xavier Leroy. The Objective Caml system release 3.12, July 2011. http://caml.

inria.fr/pub/distrib/ocaml-3.12/ocaml-3.12-refman.pdf.

[10] Bruce J. MacLennan. Functional programming: practice and theory. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1990. ISBN 0-201-13744-
5.

[11] Robin Milner. A theory of type polymorphism in programming. Journal of Com-
puter and System Science (JCSS), 17:348–374, 1978.

[12] Chris Okasaki. Purely Functional Data Structures. Cambridge University Press,
1999. ISBN 0521663504.

[13] Larry C. Paulson. ML for the Working Programmer. Cambridge University Press,
second edition, 1996. ISBN 9780521565431.

[14] Fethi Rabhi and Guy Lapalme. Algorithms: A functional programming approach.
Addison-Wesley, 1999. ISBN 0201596040.

[15] Ivan Stojmenovic. Recursive algorithms in computer science courses: Fibonacci
numbers and binomial coefficients. 2000.

[16] Simon Thompson. The Craft of Functional Programming. Addison-Wesley, 1996.
ISBN 0-201-40357-9.

114

http://www.haskell.org
http://caml.inria.fr/pub/distrib/ocaml-3.12/ocaml-3.12-refman.pdf
http://caml.inria.fr/pub/distrib/ocaml-3.12/ocaml-3.12-refman.pdf

Index

P , 75
Pµ, 83
add, 34
BVar(·), 31
cons, 36
C(V), 32
Dom(·), 75
exp, 34
false, 33
ffstfst, 35
fst, 35
FVar(·), 31
hd, 36
if, 33
length, 36
mult, 34
nil, 36
null, 36
pair, 35
pre, 35
snd, 35
sub, 35
Sub(·), 31
tl, 36
true, 33
T (V), 30
Var(·), 31
λ-calculus

simply typed, 74
→β, 32
[], see list, nil
*, 104
->, 104, 106
::, see list, cons
@, 6

abstraction, see lambda abstraction
algebraic data types, 105
application, see function application
arrow type, 76
axiom, 75

basic types, see types, basic

beta-reduction
β-reduction, 32

β-rule, 32
binary search tree, 21
binary trees, 20
BinTree, 20

height, 21
insert, 21
make, 21
of_list, 21
search_tree, 21
size, 20

case expressions, 110
Church numerals, 33
code table, 25
cons-cell, 3
contexts, 32
contractum, 32
control structures, 109
core ML, 74

domain, 75
double quote notation, 106

fun, 106
function

anonymous, 106
arguments, 107
body, 103

function application, 30, 107
functions, 106

polymorphic, 4

hole, 32
Huffman

collate, 24
combine, 24
decode, 25
encode, 25
insert, 24
lookup, 25
mknode, 24
sample, 24

115

Index

singleton, 24
table, 25
tree, 24
weight, 24

Huffman trees, 22

induction, 43
base case, 43
mathematical, 43
step case, 43
structural, 43

induction hypothesis, 43
inference rules, 75
infix notation, 6
Int

pow2, 8

l-strings, 14
lambda abstraction, 30
λ-calculus, 30
λ-expressions, 30
λ-terms, 30
lazy, 88
lazy lists, 85
left recursion, 68
let, 107
lexer, 60
list, 3

cons, 3
head, 3, 4
nil, 3
selectors, 4
tail, 4

Lst

append, 5
concat, 23
drop, 6
drop_while, 23
foldr, 9
foldr1, 15
hd, 4
join, 15
length, 36
map, 8
prod, 8
replicate, 6
span, 23
split_at, 6
sum, 7
take, 6
take_while, 23
tl, 4

until, 23
zip_with, 15

match, 110
modules, 10, 22

nodes, 20
normal forms, 33

ocamlbuild
target, 113

ocamlbuild, 113

pairs, 35
Parser

>>=, 62
>>, 63
any, 61
between, 65
char, 61
digit, 65
letter, 65
many, 65
many1, 65
noneof, 65
oneof, 67
parse, 60
return, 63
sat, 61
sep_by, 67
sep_by1, 67
space, 67
spaces, 67
string, 67
test, 60

parser
bind, 61
character, 60
combinator, 60
combinators, 61
option, 64
primitive, 60
then, 63

parsing, 60
combinator, 60

pattern, 109
alias, 109
choice, 109
constant, 109
constructor, 109
parentheses, 109
tuple, 109
variable, 109

116

Index

variant, 109
pattern matching, 109
Picture, 15

above, 15
beside, 15
empty, 16
height, 16
pixel, 15
row, 15
spread, 15
spread_with, 16
stack, 15
stack_with, 16
tile, 16
tile_with, 16
to_strng, 15
width, 16

prefix notation, 6, 108
premises, 75
program verification, 43
proof, 75
proper subterm, 31

recursion, 36
redex, 32
reduction sequence, 5
rewriting, 4

sample, 23
semicolon, 109
Sieve of Eratosthenes, 89
single quote notation, 106
solution, 77
sort, 21
Strng, 14

of_int, 14
of_string, 14
print, 14
to_string, 14

substitutions, 31
application, 32

subterms, 31

term
lambda, 106

terms
closed, 31

tree
ancestor, 20
child, 20
height, 20
leaf, 20
parent, 20

root, 20
size, 20
successor, 20

trees, 20
binary, 20

tuple, 104
tuples, 106
type

abbreviations, 105
constants, 104
constructors, 104
instances, 106
variables, 104

type, 105
type abbreviations, see type, abbrevia-

tions
type checking, 74
type constructor, 74
type constructors, see type, constructors
type inference, 74, 76, see type, inference
type inference problem, 78
type parameter, 105
type substitution, 76
type variable, 74
type variables, 77, see type, variables
types, 104

basic, 104
function, 104
polymorphic, 4, 104
primitive, see types, basic
tuple, 104
variant, see algebraic data types

typing constraints, 78
typing environment, 75

primitive, 75
typing judgment, 75

unification, 77
unification problems, 77
unifier, 77

value
functional, 106

values, 106
variable capture, 32
variables, 31

bound, 31
free, 31

variant values, 107
variants, see variant values, 107

with, 110

117

	Preface
	Introduction
	Historical Overview
	The Origin of OCaml
	Underlying Theory

	Typographical Conventions
	Overview

	Lists
	Selectors
	Some Other Polymorphic List Functions
	Append
	Replicate
	Take, Drop, and Split At

	Functions on Integer Lists
	Range
	Sum
	Prod

	Higher-Order Functions
	Map
	Fold
	Filter

	Introduction to Modules
	Exercises

	Strings
	The Module Strng
	Example: Printing Strings
	Chapter Notes
	Exercises

	Trees
	Binary Trees
	The Module BinTree

	A Little Bit More on Modules
	Example: Huffman Trees
	Analyzing the Sample
	Building the Huffman Tree
	Encoding and Decoding

	Chapter Notes
	Exercises

	Lambda-Calculus
	Syntax
	Subterms
	Free and Bound Variables

	Evaluation of Lambda Expressions
	Substitutions
	The Beta-Rule
	Normal Forms

	Representing Data Types in the -Calculus
	Booleans and Conditionals
	Natural Numbers
	Pairs
	Lists

	Recursion
	Evaluation Strategy
	Outermost Reduction
	Innermost Reduction
	Call-by-Value vs. Call-by-Name

	Chapter Notes
	Exercises

	Reasoning About Functional Programs
	Structural Induction
	Structural Induction Over Lists
	General Structures

	Exercises

	Efficiency
	The Fibonacci Numbers
	Tupling
	Tail Recursion
	Parameter Accumulation
	Linear vs. Quadratic Complexity
	Chapter Notes
	Exercises

	Combinator Parsing
	Implementation of Parsers
	Applying a Parser
	Lexing
	Some Simple Parsers
	Parser Combinators
	Giving Parsers Work

	The Parser Module
	A Parser for Simplified Arithmetic Expressions
	Chapter Notes
	Exercises

	Types
	Core ML
	Type Checking
	Type Inference
	Unification Problems
	Typing Constraints

	Recursion
	Chapter Notes
	Exercises

	Lazyness
	Motivation
	Custom Lazy Lists
	The Fibonacci Numbers

	Lazyness in OCaml
	The Sieve of Eratosthenes

	Exercises

	Divide and Conquer
	Divide and Conquer
	Dynamic Programming
	Fibonacci Numbers
	Beans and Bowls
	Optimal Rod Cutting

	Chapter Notes
	Exercises

	OCaml in a Nutshell
	Availability
	The Obligatory ``Hello, world!''
	Types
	Basic Types
	Type Variables
	Type Constructors
	Examples
	User-Defined Types

	Values
	Tuples
	Functions
	Variants

	Values and Types
	Declaring Values
	Scoping
	Infix Operators
	Patterns
	Control Structures

	The Standard Library
	The Core Library
	Exercises

	Automatic Compilation of OCaml Projects
	Targets
	Bytecode Executables

	Bibliography
	Index

