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Summary of Last Lecture

Summary of Last Lecture

Definition

• goals (aka formulas) are constants or compound terms

• goals are typically non-ground

Definitions
• a clause or rule is an universally quantified logical formula of the

form
A :− B1 , B2 , . . . , Bn .

where A and the Bi ’s are goals

• A is called the head of the clause; the Bi ’s are called the body

• a rule of the form A :− is called a fact; we write facts simply A.

Definition

a logic program is a finite set of clauses
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Outline

Outline of the Lecture

Monotone Logic Programs

introduction, basic constructs, unification, database and recursive pro-
gramming, termination

Incomplete Data Structures and Constraints

incomplete data structures, definite clause grammars, constraint logic pro-
gramming, answer set programming

Full Prolog

semantics, correctness proofs, meta-logical predicates, cuts nondetermin-
istic programming, efficient programs, complexity
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Basic Constructs

Example

c h i l d o f ( j o s e p h I , l e o p o l d I ) .
c h i l d o f ( k a r l V I , l e o p o l d I ) .
c h i l d o f ( ma r i a t h e r e s i a , k a r l V I ) .
c h i l d o f ( j o s e p h I I , m a r i a t h e r e s i a ) .
c h i l d o f ( j o s e p h I I , f r a n z I ) .
c h i l d o f ( l e o p o l d I I , m a r i a t h e r e s i a ) .
c h i l d o f ( l e o p o l d I I , f r a n z I ) .
c h i l d o f ( ma r i a a n t o i n e t t e , m a r i a t h e r e s i a ) .
c h i l d o f ( f r a n z I I , l e o p o l d I I ) .

male ( f r a n z I ) . f ema l e ( m a r i a t h e r e s i a ) .
male ( f r a n z I I ) . f ema l e ( ma r i e a n t o i n e t t e ) .
male ( j o s e p h I ) .
male ( j o s e p h I I ) .
male ( k a r V I ) .
male ( l e o p o l d I ) .
male ( l e o p o l d I I ) .

hu sband w i f e ( f r a n z I , m a r i a t h e r e s i a ) .
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Basic Constructs

Review of Basic Constructs

Definitions

• a fact describes a relation (predicate) between terms

c h i l d o f ( j o s e p h I I , m a r i a t h e r e s i a ) .

which reads “Joseph II is the child of Maria Theresia.”

• child of is the name of the relation

• the arity denotes the number of arguments

• predicates are also denoted as child of/2

• fact that do not contain variables are ground

Fact

the order of the arguments is essential, hence it is important to choose
meaningful names for predicates
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Basic Constructs

Choosing Names

1 describe the arguments

t y p 1 t y p 2 t y p 3 t y p 4 ( Arg1 , Arg2 , Arg3 , Arg4 )

2 refine the name

p e r s o n p e r s o n (X,Y ) . % too coa r s e
c h i l d p e r s o n ( Ch i ld , Person ) % b e t t e r
c h i l d p a r e n t ( Ch i ld , Parent ) % p e r f e c t

3 indicate the relation

c h i l d o f p a r e n t ( Ch i ld , Parent ) % p r e p o s i t i o n
e xp r e s s i on imp rov edp rog r am (Exp , IExp ) % p a r t i c i p l e
e xp r imp roved (Exp , IExp )
c o n s i s t s o f (X,Y) % ve rb

4 abbreviations

c oun t r y /8
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Basic Constructs

Definition
• a query tests whether a relation holds

:− c h i l d o f ( j o s e p h I I , m a r i a t h e r e s i a ) .

• queries are equivalent to use cases, as they are checked whenever
the program is safed (in GUPU) or compiled (in general)

Why does a Query fail?

1 the query doesn’t follow from the data represented in the program;
the negation of the query does not necessarily hold

2 the program is a complete representation; the negation of the query
does hold

Fact

Horn logic cannot distinguish between these options
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Basic Constructs

Definition

a negative query verifies that the goal fails

:/− c h i l d o f ( j o s e p h I I , f r i e d r i c h I I ) .

NB: occurring variables are existentially quantified

Definition

a general query with variables provide answer substitutions

:− c h i l d o f ( Ch i ld , m a r i a t h e r e s i a ) .
:− c h i l d o f ( Ch i l d , m a r i a t h e r e s i a ) .
:/− c h i l d o f ( Ch i ld , Ch i l d ) .

Definition

a complex query combines several goals and typically make use of shared
variables

:− c h i l d o f ( j o s e p h I I , Mum) , f ema l e (Mum) .
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Basic Constructs

Definition
• a rule consists of a head and a body, separated by “:-”

mothe r o f (Mum, Ch i l d ) :−
c h i l d o f ( Ch i ld , Mum) ,
f ema l e (Mum) .

• a rule is recursive, if the body contains the predicate in the head

Definitions
• we distinguish between the set of solutions of a query and the

sequence of solutions

• the sequence may contain redundant solutions

• redundant solutions may be due to existential variables

GM (Institute of Computer Science @ UIBK) Logic Programming 27/1



Basic Constructs

Definition
• a rule consists of a head and a body, separated by “:-”

mothe r o f (Mum, Ch i l d ) :−
c h i l d o f ( Ch i ld , Mum) ,
f ema l e (Mum) .

• a rule is recursive, if the body contains the predicate in the head

Definitions
• we distinguish between the set of solutions of a query and the

sequence of solutions

• the sequence may contain redundant solutions

• redundant solutions may be due to existential variables

GM (Institute of Computer Science @ UIBK) Logic Programming 27/1



Basic Constructs

Example

% r e c u r s i v e r u l e
ma r r i e d w i t h (Husband , Wife ) :−

husband w i f e ( Husband , Wife ) .
ma r r i e d w i t h ( PersonA , PersonB ) :−

mar r i e d w i t h ( PersonB , PersonA ) .

% non−r e c u r s i v e r u l e
ma r r i e d w i t h (Husband , Wife ) :−

husband w i f e ( Husband , Wife ) .
ma r r i e d w i t h (Wife , Husband ) :−

husband w i f e ( Husband , Wife ) .
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Basic Constructs

Example

:/− a n c e s t o r o f (X,X ) .

a n c e s t o r o f ( Ancestor , P r e d e c e s s o r ) :−
c h i l d o f ( P r edece s so r , Ances to r ) .

a n c e s t o r o f ( Ancestor , P r e d e c e s s o r ) :−
c h i l d o f ( Person , Ances to r ) ,
a n c e s t o r o f ( Person , P r e d e c e s s o r ) .

Example

:/− a n c e s t o r o f 2 (X,X ) .

a n c e s t o r o f 2 ( Ancestor , P r e d e c e s s o r ) :−
c h i l d o f ( P r edece s so r , Ances to r ) .

a n c e s t o r o f 2 ( Ancestor , P r e d e c e s s o r ) :−
a n c e s t o r o f 2 ( Person , P r e d e c e s s o r ) ,
c h i l d o f ( Person , Ance s to r ) .
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Unification

Definition

composition of substitutions

θ = {X1 7→ t1, . . . ,Xn 7→ tn}
and

σ = {Y1 7→ s1, . . . ,Yk 7→ sk}

is substitution

θσ = {X1 7→ t1σ, . . . ,Xn 7→ tnσ} ∪ {Yi 7→ si | Yi /∈ {X1, . . . ,Xn}}

Example

θ = {X 7→ g(Y ,Z ),Y 7→ a}

θσ = {X 7→ g(Y , f (X )),Y 7→ a,Z 7→ f (X )}

σ = {X 7→ f (Y ),Z 7→ f (X )}

σθ = {X 7→ f (a),Z 7→ f (g(Y ,Z )),Y 7→ a}
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Unification

Definition
• substitution θ is at least as general as substitution σ if ∃µ θµ = σ

• unifier of set S of terms is substitution θ such that ∀s, t ∈ S sθ = tθ

• most general unifier (mgu) is at least as general as any other unifier

Example

terms f (X , g(Y ),X ) and f (Z , g(U), h(U)) are unifiable

:

{X 7→ h(a),Y 7→ a,Z 7→ h(a),U 7→ a}

{U 7→ a}

{X 7→ h(U),Y 7→ U,Z 7→ h(U)}

mgu

{X 7→ h(g(U)),Y 7→ g(U),Z 7→ h(g(U)),U 7→ g(U)}

{U 7→ g(U)}

Theorem
• unifiable terms have mgu

• ∃ algorithm to compute mgu
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Unification

Definition
• sequence E = u1

?
= v1, . . . , un

?
= vn is called an equality problem

• if E = X1
?
= v1, . . . ,Xn

?
= vn, with Xi pairwise distinct and

Xi 6∈ Var(vj) for all i , j , then E is in solved form

• let E = X1
?
= v1, . . . ,Xn

?
= vn be a equality problem in solved form

E induces substitution σE = {X1 7→ v1, . . . ,Xn 7→ vn}

Unification Algorithm

u
?
= u,E ⇒ E

f (s1, . . . , sn)
?
= f (t1, . . . , tn),E ⇒ s1

?
= t1, . . . , sn

?
= tn,E

f (s1, . . . , sn)
?
= g(t1, . . . , tn),E ⇒ ⊥ f 6= g

X
?
= t,E ⇒ X

?
= t,E{X 7→ t} X ∈ Var(E ),X 6∈ Var(t)

X
?
= t,E ⇒ ⊥ X 6= t,X ∈ Var(t)

t
?
= X ,E ⇒ X

?
= t,E t 6∈ V
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?
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Unification

Theorem

1 equality problems E is unifiable iff the unification algorithm stops
with a solved form

2 if E ⇒∗ E ′ such that E ′ is a solved form, then σE ′ is mgu of E

Example

f (X , g(Y ),X )
?
= f (Z , g(U), h(U))

⇒ X
?
= Z , g(Y )

?
= g(U),X

?
= h(U)

⇒ X
?
= Z , g(Y )

?
= g(U),Z

?
= h(U)

⇒ X
?
= Z ,Y

?
= U,Z

?
= h(U)

⇒ X
?
= h(U),Y

?
= U,Z

?
= h(U) mgu
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