Logic Programming

Cezary Kaliszyk Georg Moser

Institute of Computer Science @ UIBK
Winter 2015

Summary of Last Lecture

Definition

- goals (aka formulas) are constants or compound terms
- goals are typically non-ground

Definitions

- a clause or rule is an universally quantified logical formula of the form A :- B1,B2,..., Bn.
where A and the B_{i} 's are goals
- A is called the head of the clause; the B_{i} 's are called the body
- a rule of the form A :- is called a fact; we write facts simply A.

Definition

a logic program is a finite set of clauses

Outline of the Lecture

Monotone Logic Programs
introduction, basic constructs, unification, database and recursive programming, termination

Incomplete Data Structures and Constraints

incomplete data structures, definite clause grammars, constraint logic programming, answer set programming

Full Prolog

semantics, correctness proofs, meta-logical predicates, cuts nondeterministic programming, efficient programs, complexity

Outline of the Lecture

Monotone Logic Programs
introduction, basic constructs, unification, database and recursive programming, termination

Incomplete Data Structures and Constraints

incomplete data structures, definite clause grammars, constraint logic programming, answer set programming

Full Prolog

semantics, correctness proofs, meta-logical predicates, cuts nondeterministic programming, efficient programs, complexity

Example

child_of(joseph_l, leopold_l).
child_of(karl_VI, leopold_l).
child_of(maria_theresia, karl_VI).
child_of(joseph_ll, maria_theresia).
child_of (joseph_ll, franz_l).
child_of(leopold_ll, maria_theresia).
child_of(leopold_ll, franz_l).
child_of(maria_antoinette, maria_theresia).
child_of(franz_ll, leopold_ll).

```
male(franz_l). female(maria_theresia).
male(franz_ll). female(marie_antoinette).
male(joseph_I).
male(joseph_ll).
male(kar_VI).
male(leopold_l).
male(leopold_II).
```

husband_wife(franz_l, maria_theresia).

Review of Basic Constructs

Definitions

- a fact describes a relation (predicate) between terms
child_of(joseph_ll,maria_theresia).
which reads "Joseph II is the child of Maria Theresia."
- child_of is the name of the relation
- the arity denotes the number of arguments
- predicates are also denoted as child_of/2
- fact that do not contain variables are ground

Review of Basic Constructs

Definitions

- a fact describes a relation (predicate) between terms
child_of(joseph_ll,maria_theresia).
which reads "Joseph II is the child of Maria Theresia."
- child_of is the name of the relation
- the arity denotes the number of arguments
- predicates are also denoted as child_of/2
- fact that do not contain variables are ground

Fact

the order of the arguments is essential, hence it is important to choose meaningful names for predicates

Choosing Names

1 describe the arguments
typ1_typ2_typ3_typ4 (Arg1, Arg2, Arg3, Arg4)

2 refine the name

```
person_person(X,Y). % too coarse
child_person(Child, Person) % better
child_parent(Child, Parent) % perfect
```

3 indicate the relation

```
child_ofparent(Child,Parent) % preposition
expression_improvedprogram(Exp,IExp) % participle
expr_improved(Exp,IExp)
consists_of(X,Y)
% verb
```

4 abbreviations
country_/8

Definition

- a query tests whether a relation holds

$$
:-\quad c h i l d _o f\left(j o s e p h _l l, ~ m a r i a _t h e r e s i a\right) . ~
$$

- queries are equivalent to use cases, as they are checked whenever the program is safed (in GUPU) or compiled (in general)

Definition

- a query tests whether a relation holds
:- child_of(joseph_ll, maria_theresia).
- queries are equivalent to use cases, as they are checked whenever the program is safed (in GUPU) or compiled (in general)

Why does a Query fail?
1 the query doesn't follow from the data represented in the program; the negation of the query does not necessarily hold
2 the program is a complete representation; the negation of the query does hold

Definition

- a query tests whether a relation holds
:- child_of(joseph_ll, maria_theresia).
- queries are equivalent to use cases, as they are checked whenever the program is safed (in GUPU) or compiled (in general)

Why does a Query fail?
1 the query doesn't follow from the data represented in the program; the negation of the query does not necessarily hold
2 the program is a complete representation; the negation of the query does hold

Fact

Horn logic cannot distinguish between these options

Definition

a negative query verifies that the goal fails
:/- child_of(joseph_ll, friedrich_ll).

NB: occurring variables are existentially quantified

Definition

a negative query verifies that the goal fails
:/- child_of(joseph_ll, friedrich_ll).

NB: occurring variables are existentially quantified

Definition

a general query with variables provide answer substitutions
:- child_of(Child, maria_theresia).
:- child_of(_Child, maria_theresia).
:/ - child of (Child, Child).

Definition

a negative query verifies that the goal fails
:/- child_of(joseph_ll, friedrich_ll).

NB: occurring variables are existentially quantified

Definition

a general query with variables provide answer substitutions

```
:- child_of(Child, maria_theresia).
:- child_of(_Child, maria_theresia).
:/- child_of(Child,Child).
```


Definition

a complex query combines several goals and typically make use of shared variables
:- child_of(joseph_II, Mum), female(Mum).

Definition

- a rule consists of a head and a body, separated by ":-"

```
mother_of(Mum, Child) :-
child_of(Child, Mum),
female (Mum).
```

- a rule is recursive, if the body contains the predicate in the head

Definition

- a rule consists of a head and a body, separated by ":-"

```
mother_of(Mum, Child) :-
        child_of(Child, Mum),
        female (Mum).
```

- a rule is recursive, if the body contains the predicate in the head

Definitions

- we distinguish between the set of solutions of a query and the sequence of solutions
- the sequence may contain redundant solutions
- redundant solutions may be due to existential variables

Example

\% recursive rule married_with (Husband, Wife) :husband_wife (Husband, Wife). married_with (PersonA, PersonB) :married_with (PersonB, PersonA).
\% non-recursive rule married_with (Husband, Wife) :husband_wife (Husband, Wife). married_with (Wife, Husband) :husband_wife (Husband, Wife).

Example

$$
: /-\quad \text { ancestor_of }(X, X)
$$

ancestor_of(Ancestor, Predecessor) :- child_of(Predecessor, Ancestor). ancestor_of(Ancestor, Predecessor) :child_of(Person, Ancestor), ancestor_of(Person, Predecessor).

Example

:/ - ancestor_of (X, X).
ancestor_of(Ancestor, Predecessor) :child_of(Predecessor, Ancestor).
ancestor_of(Ancestor, Predecessor) :child_of(Person, Ancestor), ancestor_of(Person, Predecessor).

Example

:/- ancestor_of_2 (X,X).
ancestor_of_2(Ancestor, Predecessor) :child_of(Predecessor, Ancestor).
ancestor_of_2 (Ancestor, Predecessor) :ancestor_of_2(Person, Predecessor), child_of(Person, Ancestor).

Definition

composition of substitutions

$$
\theta=\left\{X_{1} \mapsto t_{1}, \ldots, X_{n} \mapsto t_{n}\right\}
$$

and

$$
\sigma=\left\{Y_{1} \mapsto s_{1}, \ldots, Y_{k} \mapsto s_{k}\right\}
$$

is substitution

$$
\theta \sigma=\left\{X_{1} \mapsto t_{1} \sigma, \ldots, X_{n} \mapsto t_{n} \sigma\right\} \cup\left\{Y_{i} \mapsto s_{i} \mid Y_{i} \notin\left\{X_{1}, \ldots, X_{n}\right\}\right\}
$$

Definition

composition of substitutions

$$
\theta=\left\{X_{1} \mapsto t_{1}, \ldots, X_{n} \mapsto t_{n}\right\}
$$

and

$$
\sigma=\left\{Y_{1} \mapsto s_{1}, \ldots, Y_{k} \mapsto s_{k}\right\}
$$

is substitution

$$
\theta \sigma=\left\{X_{1} \mapsto t_{1} \sigma, \ldots, X_{n} \mapsto t_{n} \sigma\right\} \cup\left\{Y_{i} \mapsto s_{i} \mid Y_{i} \notin\left\{X_{1}, \ldots, X_{n}\right\}\right\}
$$

Example

$$
\begin{aligned}
\theta & =\{X \mapsto g(Y, Z), Y \mapsto a\} \\
\sigma & =\{X \mapsto f(Y), Z \mapsto f(X)\}
\end{aligned}
$$

Definition

composition of substitutions

$$
\theta=\left\{X_{1} \mapsto t_{1}, \ldots, X_{n} \mapsto t_{n}\right\}
$$

and

$$
\sigma=\left\{Y_{1} \mapsto s_{1}, \ldots, Y_{k} \mapsto s_{k}\right\}
$$

is substitution

$$
\theta \sigma=\left\{X_{1} \mapsto t_{1} \sigma, \ldots, X_{n} \mapsto t_{n} \sigma\right\} \cup\left\{Y_{i} \mapsto s_{i} \mid Y_{i} \notin\left\{X_{1}, \ldots, X_{n}\right\}\right\}
$$

Example

$$
\begin{aligned}
& \theta=\{X \mapsto g(Y, Z), Y \mapsto a\} \quad \theta \sigma=\{X \mapsto g(Y, f(X)), Y \mapsto a, Z \mapsto f(X)\} \\
& \sigma=\{X \mapsto f(Y), Z \mapsto f(X)\}
\end{aligned}
$$

Definition

composition of substitutions

$$
\theta=\left\{X_{1} \mapsto t_{1}, \ldots, X_{n} \mapsto t_{n}\right\}
$$

and

$$
\sigma=\left\{Y_{1} \mapsto s_{1}, \ldots, Y_{k} \mapsto s_{k}\right\}
$$

is substitution

$$
\theta \sigma=\left\{X_{1} \mapsto t_{1} \sigma, \ldots, X_{n} \mapsto t_{n} \sigma\right\} \cup\left\{Y_{i} \mapsto s_{i} \mid Y_{i} \notin\left\{X_{1}, \ldots, X_{n}\right\}\right\}
$$

Example

$$
\begin{aligned}
& \theta=\{X \mapsto g(Y, Z), Y \mapsto a\} \quad \theta \sigma=\{X \mapsto g(Y, f(X)), Y \mapsto a, Z \mapsto f(X)\} \\
& \sigma=\{X \mapsto f(Y), Z \mapsto f(X)\} \quad \sigma \theta=\{X \mapsto f(a), Z \mapsto f(g(Y, Z)), Y \mapsto a\}
\end{aligned}
$$

Definition

- substitution θ is at least as general as substitution σ if $\exists \mu \theta \mu=\sigma$

Definition

- substitution θ is at least as general as substitution σ if $\exists \mu \theta \mu=\sigma$
- unifier of set S of terms is substitution θ such that $\forall s, t \in S s \theta=t \theta$

Definition

- substitution θ is at least as general as substitution σ if $\exists \mu \theta \mu=\sigma$
- unifier of set S of terms is substitution θ such that $\forall s, t \in S s \theta=t \theta$
- most general unifier (mgu) is at least as general as any other unifier

Definition

- substitution θ is at least as general as substitution σ if $\exists \mu \theta \mu=\sigma$
- unifier of set S of terms is substitution θ such that $\forall s, t \in S s \theta=t \theta$
- most general unifier (mgu) is at least as general as any other unifier

Example

terms $f(X, g(Y), X)$ and $f(Z, g(U), h(U))$ are unifiable

Definition

- substitution θ is at least as general as substitution σ if $\exists \mu \theta \mu=\sigma$
- unifier of set S of terms is substitution θ such that $\forall s, t \in S s \theta=t \theta$
- most general unifier (mgu) is at least as general as any other unifier

Example

terms $f(X, g(Y), X)$ and $f(Z, g(U), h(U))$ are unifiable:

$$
\begin{aligned}
& \{X \mapsto h(a), Y \mapsto a, Z \mapsto h(a), U \mapsto a\} \\
& \{X \mapsto h(U), Y \mapsto U, Z \mapsto h(U)\} \\
& \{X \mapsto h(g(U)), Y \mapsto g(U), Z \mapsto h(g(U)), U \mapsto g(U)\}
\end{aligned}
$$

Definition

- substitution θ is at least as general as substitution σ if $\exists \mu \theta \mu=\sigma$
- unifier of set S of terms is substitution θ such that $\forall s, t \in S s \theta=t \theta$
- most general unifier (mgu) is at least as general as any other unifier

Example

terms $f(X, g(Y), X)$ and $f(Z, g(U), h(U))$ are unifiable:

$$
\begin{aligned}
& \{X \mapsto h(a), Y \mapsto a, Z \mapsto h(a), U \mapsto a\} \\
& \{X \mapsto h(U), Y \mapsto U, Z \mapsto h(U)\} \\
& \{X \mapsto h(g(U)), Y \mapsto g(U), Z \mapsto h(g(U)), U \mapsto g(U)\}
\end{aligned}
$$

Definition

- substitution θ is at least as general as substitution σ if $\exists \mu \theta \mu=\sigma$
- unifier of set S of terms is substitution θ such that $\forall s, t \in S s \theta=t \theta$
- most general unifier (mgu) is at least as general as any other unifier

Example

terms $f(X, g(Y), X)$ and $f(Z, g(U), h(U))$ are unifiable:

$$
\begin{array}{ll}
\{X \mapsto h(a), Y \mapsto a, Z \mapsto h(a), U \mapsto a\} & \{U \mapsto a\} \\
\{X \mapsto h(U), Y \mapsto U, Z \mapsto h(U)\} & \text { mgu } \\
\{X \mapsto h(g(U)), Y \mapsto g(U), Z \mapsto h(g(U)), U \mapsto g(U)\} & \{U \mapsto g(U)\}
\end{array}
$$

Definition

- substitution θ is at least as general as substitution σ if $\exists \mu \theta \mu=\sigma$
- unifier of set S of terms is substitution θ such that $\forall s, t \in S s \theta=t \theta$
- most general unifier (mgu) is at least as general as any other unifier

Example

terms $f(X, g(Y), X)$ and $f(Z, g(U), h(U))$ are unifiable:

$$
\begin{array}{ll}
\{X \mapsto h(a), Y \mapsto a, Z \mapsto h(a), U \mapsto a\} & \{U \mapsto a\} \\
\{X \mapsto h(U), Y \mapsto U, Z \mapsto h(U)\} & \text { mgu } \\
\{X \mapsto h(g(U)), Y \mapsto g(U), Z \mapsto h(g(U)), U \mapsto g(U)\} & \{U \mapsto g(U)\}
\end{array}
$$

Theorem

- unifiable terms have mgu

Definition

- substitution θ is at least as general as substitution σ if $\exists \mu \theta \mu=\sigma$
- unifier of set S of terms is substitution θ such that $\forall s, t \in S s \theta=t \theta$
- most general unifier (mgu) is at least as general as any other unifier

Example

terms $f(X, g(Y), X)$ and $f(Z, g(U), h(U))$ are unifiable:

$$
\begin{array}{ll}
\{X \mapsto h(a), Y \mapsto a, Z \mapsto h(a), U \mapsto a\} & \{U \mapsto a\} \\
\{X \mapsto h(U), Y \mapsto U, Z \mapsto h(U)\} & \text { mgu } \\
\{X \mapsto h(g(U)), Y \mapsto g(U), Z \mapsto h(g(U)), U \mapsto g(U)\} & \{U \mapsto g(U)\}
\end{array}
$$

Theorem

- unifiable terms have mgu
- \exists algorithm to compute mgu

Definition

- sequence $E=u_{1} \stackrel{?}{=} v_{1}, \ldots, u_{n} \stackrel{?}{=} v_{n}$ is called an equality problem

Definition

- sequence $E=u_{1} \stackrel{?}{=} v_{1}, \ldots, u_{n} \stackrel{?}{=} v_{n}$ is called an equality problem
- if $E=X_{1} \stackrel{?}{=} v_{1}, \ldots, X_{n} \stackrel{?}{=} v_{n}$, with X_{i} pairwise distinct and $X_{i} \notin \mathcal{V} \operatorname{ar}\left(v_{j}\right)$ for all i, j, then E is in solved form

Definition

- sequence $E=u_{1} \stackrel{?}{=} v_{1}, \ldots, u_{n} \stackrel{?}{=} v_{n}$ is called an equality problem
- if $E=X_{1} \stackrel{?}{=} v_{1}, \ldots, X_{n} \stackrel{?}{=} v_{n}$, with X_{i} pairwise distinct and $X_{i} \notin \operatorname{Var}\left(v_{j}\right)$ for all i, j, then E is in solved form
- let $E=X_{1} \stackrel{?}{=} v_{1}, \ldots, X_{n} \stackrel{?}{=} v_{n}$ be a equality problem in solved form E induces substitution $\sigma_{E}=\left\{X_{1} \mapsto v_{1}, \ldots, X_{n} \mapsto v_{n}\right\}$

Definition

- sequence $E=u_{1} \stackrel{?}{=} v_{1}, \ldots, u_{n} \stackrel{?}{=} v_{n}$ is called an equality problem
- if $E=X_{1} \stackrel{?}{=} v_{1}, \ldots, X_{n} \stackrel{?}{=} v_{n}$, with X_{i} pairwise distinct and $X_{i} \notin \mathcal{V} \operatorname{ar}\left(v_{j}\right)$ for all i, j, then E is in solved form
- let $E=X_{1} \stackrel{?}{=} v_{1}, \ldots, X_{n} \stackrel{?}{=} v_{n}$ be a equality problem in solved form E induces substitution $\sigma_{E}=\left\{X_{1} \mapsto v_{1}, \ldots, X_{n} \mapsto v_{n}\right\}$

Unification Algorithm

Definition

- sequence $E=u_{1} \stackrel{?}{=} v_{1}, \ldots, u_{n} \stackrel{?}{=} v_{n}$ is called an equality problem
- if $E=X_{1} \stackrel{?}{=} v_{1}, \ldots, X_{n} \stackrel{?}{=} v_{n}$, with X_{i} pairwise distinct and $X_{i} \notin \operatorname{Var}\left(v_{j}\right)$ for all i, j, then E is in solved form
- let $E=X_{1} \stackrel{?}{=} v_{1}, \ldots, X_{n} \stackrel{?}{=} v_{n}$ be a equality problem in solved form E induces substitution $\sigma_{E}=\left\{X_{1} \mapsto v_{1}, \ldots, X_{n} \mapsto v_{n}\right\}$

Unification Algorithm

$$
u \stackrel{?}{=} u, E \Rightarrow E
$$

Definition

- sequence $E=u_{1} \stackrel{?}{=} v_{1}, \ldots, u_{n} \stackrel{?}{=} v_{n}$ is called an equality problem
- if $E=X_{1} \stackrel{?}{=} v_{1}, \ldots, X_{n} \stackrel{?}{=} v_{n}$, with X_{i} pairwise distinct and $X_{i} \notin \operatorname{Var}\left(v_{j}\right)$ for all i, j, then E is in solved form
- let $E=X_{1} \stackrel{?}{=} v_{1}, \ldots, X_{n} \stackrel{?}{=} v_{n}$ be a equality problem in solved form E induces substitution $\sigma_{E}=\left\{X_{1} \mapsto v_{1}, \ldots, X_{n} \mapsto v_{n}\right\}$

Unification Algorithm

$$
\begin{aligned}
& u \stackrel{?}{=} u, E \Rightarrow E \\
& f\left(s_{1}, \ldots, s_{n}\right) \stackrel{?}{=} f\left(t_{1}, \ldots, t_{n}\right), E \Rightarrow s_{1} \stackrel{?}{=} t_{1}, \ldots, s_{n} \stackrel{?}{=} t_{n}, E
\end{aligned}
$$

Definition

- sequence $E=u_{1} \stackrel{?}{=} v_{1}, \ldots, u_{n} \stackrel{?}{=} v_{n}$ is called an equality problem
- if $E=X_{1} \stackrel{?}{=} v_{1}, \ldots, X_{n} \stackrel{?}{=} v_{n}$, with X_{i} pairwise distinct and $X_{i} \notin \operatorname{Var}\left(v_{j}\right)$ for all i, j, then E is in solved form
- let $E=X_{1} \stackrel{?}{=} v_{1}, \ldots, X_{n} \stackrel{?}{=} v_{n}$ be a equality problem in solved form E induces substitution $\sigma_{E}=\left\{X_{1} \mapsto v_{1}, \ldots, X_{n} \mapsto v_{n}\right\}$

Unification Algorithm

$$
\begin{aligned}
u \stackrel{?}{=} u, E & \Rightarrow E \\
f\left(s_{1}, \ldots, s_{n}\right) \stackrel{?}{=} f\left(t_{1}, \ldots, t_{n}\right), E & \Rightarrow s_{1} \stackrel{?}{=} t_{1}, \ldots, s_{n} \stackrel{?}{=} t_{n}, E \\
f\left(s_{1}, \ldots, s_{n}\right) \stackrel{?}{=} g\left(t_{1}, \ldots, t_{n}\right), E & \Rightarrow \perp \quad f \neq g
\end{aligned}
$$

Definition

- sequence $E=u_{1} \stackrel{?}{=} v_{1}, \ldots, u_{n} \stackrel{?}{=} v_{n}$ is called an equality problem
- if $E=X_{1} \stackrel{?}{=} v_{1}, \ldots, X_{n} \stackrel{?}{=} v_{n}$, with X_{i} pairwise distinct and $X_{i} \notin \operatorname{Var}\left(v_{j}\right)$ for all i, j, then E is in solved form
- let $E=X_{1} \stackrel{?}{=} v_{1}, \ldots, X_{n} \stackrel{?}{=} v_{n}$ be a equality problem in solved form E induces substitution $\sigma_{E}=\left\{X_{1} \mapsto v_{1}, \ldots, X_{n} \mapsto v_{n}\right\}$

Unification Algorithm

$$
\begin{aligned}
u \stackrel{?}{=} u, E & \Rightarrow E \\
f\left(s_{1}, \ldots, s_{n}\right) \stackrel{?}{=} f\left(t_{1}, \ldots, t_{n}\right), E & \Rightarrow s_{1} \stackrel{?}{=} t_{1}, \ldots, s_{n} \stackrel{?}{=} t_{n}, E \\
f\left(s_{1}, \ldots, s_{n}\right) \stackrel{?}{=} g\left(t_{1}, \ldots, t_{n}\right), E & \Rightarrow \perp \quad f \neq g \\
X \stackrel{?}{=} t, E & \Rightarrow X \stackrel{?}{=} t, E\{X \mapsto t\} \quad X \in \mathcal{V} a r(E), X \notin \mathcal{V} \operatorname{ar}(t)
\end{aligned}
$$

Definition

- sequence $E=u_{1} \stackrel{?}{=} v_{1}, \ldots, u_{n} \stackrel{?}{=} v_{n}$ is called an equality problem
- if $E=X_{1} \stackrel{?}{=} v_{1}, \ldots, X_{n} \stackrel{?}{=} v_{n}$, with X_{i} pairwise distinct and $X_{i} \notin \operatorname{Var}\left(v_{j}\right)$ for all i, j, then E is in solved form
- let $E=X_{1} \stackrel{?}{=} v_{1}, \ldots, X_{n} \stackrel{?}{=} v_{n}$ be a equality problem in solved form E induces substitution $\sigma_{E}=\left\{X_{1} \mapsto v_{1}, \ldots, X_{n} \mapsto v_{n}\right\}$

Unification Algorithm

$$
\begin{aligned}
u \stackrel{?}{=} u, E & \Rightarrow E \\
f\left(s_{1}, \ldots, s_{n}\right) \stackrel{?}{=} f\left(t_{1}, \ldots, t_{n}\right), E & \Rightarrow s_{1} \stackrel{?}{=} t_{1}, \ldots, s_{n} \stackrel{?}{=} t_{n}, E \\
f\left(s_{1}, \ldots, s_{n}\right) \stackrel{?}{=} g\left(t_{1}, \ldots, t_{n}\right), E & \Rightarrow \perp \quad f \neq g \\
X \stackrel{?}{=} t, E & \Rightarrow X \stackrel{?}{=} t, E\{X \mapsto t\} \quad X \in \mathcal{V} a r(E), X \notin \mathcal{V} \operatorname{ar}(t) \\
X \stackrel{?}{=} t, E & \Rightarrow \perp \quad X \neq t, X \in \operatorname{Var}(t)
\end{aligned}
$$

Definition

- sequence $E=u_{1} \stackrel{?}{=} v_{1}, \ldots, u_{n} \stackrel{?}{=} v_{n}$ is called an equality problem
- if $E=X_{1} \stackrel{?}{=} v_{1}, \ldots, X_{n} \stackrel{?}{=} v_{n}$, with X_{i} pairwise distinct and $X_{i} \notin \operatorname{Var}\left(v_{j}\right)$ for all i, j, then E is in solved form
- let $E=X_{1} \stackrel{?}{=} v_{1}, \ldots, X_{n} \stackrel{?}{=} v_{n}$ be a equality problem in solved form E induces substitution $\sigma_{E}=\left\{X_{1} \mapsto v_{1}, \ldots, X_{n} \mapsto v_{n}\right\}$

Unification Algorithm

$$
\begin{aligned}
u \stackrel{?}{=} u, E & \Rightarrow E \\
f\left(s_{1}, \ldots, s_{n}\right) \stackrel{?}{=} f\left(t_{1}, \ldots, t_{n}\right), E & \Rightarrow s_{1} \stackrel{?}{\stackrel{?}{t}} t_{1}, \ldots, s_{n} \stackrel{?}{=} t_{n}, E \\
f\left(s_{1}, \ldots, s_{n}\right) \stackrel{?}{=} g\left(t_{1}, \ldots, t_{n}\right), E & \Rightarrow \perp \quad f \neq g \\
X \stackrel{?}{=} t, E & \Rightarrow X \stackrel{?}{=} t, E\{X \mapsto t\} \quad X \in \operatorname{Var}(E), X \notin \operatorname{Var}(t) \\
X \stackrel{?}{=} t, E & \Rightarrow \perp \quad X \neq t, X \in \operatorname{V} a r(t) \\
t \stackrel{?}{=} X, E & \Rightarrow X \stackrel{?}{=} t, E \quad t \notin \mathcal{V}
\end{aligned}
$$

Theorem

1 equality problems E is unifiable iff the unification algorithm stops with a solved form

Theorem

1 equality problems E is unifiable iff the unification algorithm stops with a solved form
2 if $E \Rightarrow^{*} E^{\prime}$ such that E^{\prime} is a solved form, then $\sigma_{E^{\prime}}$ is mgu of E

Theorem

1 equality problems E is unifiable iff the unification algorithm stops with a solved form
2 if $E \Rightarrow^{*} E^{\prime}$ such that E^{\prime} is a solved form, then $\sigma_{E^{\prime}}$ is mgu of E

Example

$$
f(X, g(Y), X) \stackrel{?}{=} f(Z, g(U), h(U))
$$

Theorem

1 equality problems E is unifiable iff the unification algorithm stops with a solved form
2 if $E \Rightarrow^{*} E^{\prime}$ such that E^{\prime} is a solved form, then $\sigma_{E^{\prime}}$ is mgu of E

Example

$$
f(X, g(Y), X) \stackrel{?}{=} f(Z, g(U), h(U))
$$

Theorem

1 equality problems E is unifiable iff the unification algorithm stops with a solved form
2 if $E \Rightarrow^{*} E^{\prime}$ such that E^{\prime} is a solved form, then $\sigma_{E^{\prime}}$ is mgu of E

Example

$$
f(X, g(Y), X) \stackrel{?}{=} f(Z, g(U), h(U)) \Rightarrow X \stackrel{?}{=} Z, g(Y) \stackrel{?}{=} g(U), X \stackrel{?}{=} h(U)
$$

Theorem

1 equality problems E is unifiable iff the unification algorithm stops with a solved form
2 if $E \Rightarrow^{*} E^{\prime}$ such that E^{\prime} is a solved form, then $\sigma_{E^{\prime}}$ is mgu of E

Example

$$
\begin{aligned}
f(X, g(Y), X) \stackrel{?}{=} f(Z, g(U), h(U)) & \Rightarrow X \stackrel{?}{=} Z, g(Y) \stackrel{?}{=} g(U), X \stackrel{?}{=} h(U) \\
& \Rightarrow X \stackrel{?}{=} Z, g(Y) \stackrel{?}{=} g(U), Z \stackrel{?}{=} h(U)
\end{aligned}
$$

Theorem

1 equality problems E is unifiable iff the unification algorithm stops with a solved form
2 if $E \Rightarrow^{*} E^{\prime}$ such that E^{\prime} is a solved form, then $\sigma_{E^{\prime}}$ is mgu of E

Example

$$
\begin{aligned}
f(X, g(Y), X) \stackrel{?}{=} f(Z, g(U), h(U)) & \Rightarrow X \stackrel{?}{=} Z, g(Y) \stackrel{?}{=} g(U), X \stackrel{?}{=} h(U) \\
& \Rightarrow X \stackrel{?}{=} Z, g(Y) \stackrel{?}{=} g(U), Z \stackrel{?}{=} h(U) \\
& \Rightarrow X \stackrel{?}{=} Z, Y \stackrel{?}{=} U, Z \stackrel{?}{=} h(U)
\end{aligned}
$$

Theorem

1 equality problems E is unifiable iff the unification algorithm stops with a solved form
2 if $E \Rightarrow^{*} E^{\prime}$ such that E^{\prime} is a solved form, then $\sigma_{E^{\prime}}$ is mgu of E

Example

$$
\begin{aligned}
f(X, g(Y), X) \stackrel{?}{=} f(Z, g(U), h(U)) & \Rightarrow X \stackrel{?}{=} Z, g(Y) \stackrel{?}{=} g(U), X \stackrel{?}{=} h(U) \\
& \Rightarrow X \stackrel{?}{=} Z, g(Y) \stackrel{?}{=} g(U), Z \stackrel{?}{=} h(U) \\
& \Rightarrow X \stackrel{?}{=} Z, Y \stackrel{?}{=} U, Z \stackrel{?}{=} h(U) \\
& \Rightarrow X \stackrel{?}{=} h(U), Y \stackrel{?}{=} U, Z \stackrel{?}{=} h(U)
\end{aligned}
$$

Theorem

1 equality problems E is unifiable iff the unification algorithm stops with a solved form
2 if $E \Rightarrow^{*} E^{\prime}$ such that E^{\prime} is a solved form, then $\sigma_{E^{\prime}}$ is mgu of E

Example

$$
\begin{aligned}
f(X, g(Y), X) \stackrel{?}{\stackrel{?}{f}} f(Z, g(U), h(U)) & \Rightarrow X \stackrel{?}{=} Z, g(Y) \stackrel{?}{=} g(U), X \stackrel{?}{=} h(U) \\
& \Rightarrow X \stackrel{?}{=} Z, g(Y) \stackrel{?}{=} g(U), Z \stackrel{?}{=} h(U) \\
& \Rightarrow X \stackrel{?}{=} Z, Y \stackrel{?}{=} U, Z \stackrel{?}{=} h(U) \\
& \Rightarrow X \stackrel{?}{=} h(U), Y \stackrel{?}{=} U, Z \stackrel{?}{=} h(U) \text { mgu }
\end{aligned}
$$

