

Logic Programming

Cezary Kaliszyk Georg Moser

Institute of Computer Science @ UIBK

Winter 2015

Summary of Last Lecture

Definition

- goals (aka formulas) are constants or compound terms
- goals are typically non-ground

Definitions

• a clause or rule is an universally quantified logical formula of the form

 $A \;\; :- \;\; B1 \, , \, B2 \; , \, \ldots \; , \; Bn \, .$

where A and the B_i 's are goals

- A is called the head of the clause; the B_i's are called the body
- a rule of the form A :- is called a fact; we write facts simply A.

Definition

```
a logic program is a finite set of clauses
```

Outline of the Lecture

Monotone Logic Programs

introduction, basic constructs, unification, database and recursive programming, termination

Incomplete Data Structures and Constraints

incomplete data structures, definite clause grammars, constraint logic programming, answer set programming

Full Prolog

semantics, correctness proofs, meta-logical predicates, cuts nondeterministic programming, efficient programs, complexity

Outline of the Lecture

Monotone Logic Programs introduction, basic constructs, unification, database and recursive programming, termination

Incomplete Data Structures and Constraints

incomplete data structures, definite clause grammars, constraint logic programming, answer set programming

Full Prolog

semantics, correctness proofs, meta-logical predicates, cuts nondeterministic programming, efficient programs, complexity

```
child_of(joseph_I, leopold_I).
child_of(karl_VI, leopold_I).
child_of(maria_theresia, karl_VI).
child_of(joseph_II, maria_theresia).
child_of(joseph_II, franz_I).
child_of(leopold_II, maria_theresia).
child_of(leopold_II, franz_I).
child_of(maria_antoinette, maria_theresia).
child_of(franz_II, leopold_II).
```

```
male(franz_l). female(maria_theresia).
male(franz_II). female(marie_antoinette).
male(joseph_I).
male(kar_VI).
male(leopold_I).
male(leopold_II).
```

husband_wife(franz_l, maria_theresia).

Review of Basic Constructs

Definitions

• a fact describes a relation (predicate) between terms

```
child_of(joseph_ll,maria_theresia).
```

which reads "Joseph II is the child of Maria Theresia."

- child_of is the name of the relation
- the arity denotes the number of arguments
- predicates are also denoted as child_of/2
- fact that do not contain variables are ground

Review of Basic Constructs

Definitions

• a fact describes a relation (predicate) between terms

```
child_of(joseph_ll,maria_theresia).
```

which reads "Joseph II is the child of Maria Theresia."

- child_of is the name of the relation
- the arity denotes the number of arguments
- predicates are also denoted as child_of/2
- fact that do not contain variables are ground

Fact

the order of the arguments is essential, hence it is important to choose meaningful names for predicates

```
Choosing Names
 1 describe the arguments
        typ1_typ2_typ3_typ4 (Arg1, Arg2, Arg3, Arg4)
 2 refine the name
        person_person(X,Y).
                                             % too coarse
        child_person (Child, Person)
                                             % better
        child_parent(Child, Parent)
                                             % perfect
 indicate the relation
        child_ofparent(Child, Parent)
                                                 % preposition
        expression_improvedprogram(Exp, IExp) % participle
        expr_improved (Exp, IExp)
        consists_of(X,Y)
                                                  % verb
 4 abbreviations
        country_{-}/8
```

• a query tests whether a relation holds

```
:- child_of(joseph_ll, maria_theresia).
```

• queries are equivalent to use cases, as they are checked whenever the program is safed (in GUPU) or compiled (in general)

• a query tests whether a relation holds

```
:- child_of(joseph_ll, maria_theresia).
```

• queries are equivalent to use cases, as they are checked whenever the program is safed (in GUPU) or compiled (in general)

Why does a Query fail?

- the query doesn't follow from the data represented in the program; the negation of the query does not necessarily hold
- the program is a complete representation; the negation of the query does hold

• a query tests whether a relation holds

```
:- child_of(joseph_II, maria_theresia).
```

• queries are equivalent to use cases, as they are checked whenever the program is safed (in GUPU) or compiled (in general)

Why does a Query fail?

- the query doesn't follow from the data represented in the program; the negation of the query does not necessarily hold
- the program is a complete representation; the negation of the query does hold

Fact

Horn logic cannot distinguish between these options

a negative query verifies that the goal fails

```
:/- child_of(joseph_II, friedrich_II).
```

NB: occurring variables are existentially quantified

a negative query verifies that the goal fails

```
:/- child_of(joseph_II, friedrich_II).
```

NB: occurring variables are existentially quantified

Definition

a general query with variables provide answer substitutions

```
    :- child_of(Child, maria_theresia).
    :- child_of(_Child, maria_theresia).
    :/- child_of(Child, Child).
```

a negative query verifies that the goal fails

```
:/- child_of(joseph_II, friedrich_II).
```

NB: occurring variables are existentially quantified

Definition

a general query with variables provide answer substitutions

```
:- child_of(Child, maria_theresia).
:- child_of(_Child, maria_theresia).
:/- child_of(Child, Child).
```

Definition

a complex query combines several goals and typically make use of shared variables

```
:- child_of(joseph_II, Mum), female(Mum).
```

• a rule consists of a head and a body, separated by ":-"

```
mother_of(Mum, Child) :-
    child_of(Child, Mum),
    female(Mum).
```

• a rule is recursive, if the body contains the predicate in the head

• a rule consists of a head and a body, separated by ":-"

```
mother_of(Mum, Child) :-
    child_of(Child, Mum),
    female(Mum).
```

• a rule is recursive, if the body contains the predicate in the head

Definitions

- we distinguish between the set of solutions of a query and the sequence of solutions
- the sequence may contain redundant solutions
- redundant solutions may be due to existential variables

```
% recursive rule
married_with(Husband, Wife) :-
husband_wife(Husband, Wife).
married_with(PersonA, PersonB) :-
married_with(PersonB, PersonA).
```

```
% non-recursive rule
married_with(Husband, Wife) :-
husband_wife(Husband, Wife).
married_with(Wife, Husband) :-
husband_wife(Husband, Wife).
```

```
:/- ancestor_of(X,X).
```

```
ancestor_of(Ancestor, Predecessor) :-
    child_of(Predecessor, Ancestor).
ancestor_of(Ancestor, Predecessor) :-
    child_of(Person, Ancestor),
    ancestor_of(Person, Predecessor).
```

```
:/- ancestor_of(X,X).
```

```
ancestor_of(Ancestor, Predecessor) :-
    child_of(Predecessor, Ancestor).
ancestor_of(Ancestor, Predecessor) :-
    child_of(Person, Ancestor),
    ancestor_of(Person, Predecessor).
```

```
:/- ancestor_of_2(X,X).
ancestor_of_2(Ancestor, Predecessor) :-
    child_of(Predecessor, Ancestor).
ancestor_of_2(Ancestor, Predecessor) :-
    ancestor_of_2(Person, Predecessor),
    child_of(Person, Ancestor).
```

composition of substitutions

$$\theta = \{X_1 \mapsto t_1, \ldots, X_n \mapsto t_n\}$$

and

$$\sigma = \{Y_1 \mapsto s_1, \ldots, Y_k \mapsto s_k\}$$

is substitution

$$\theta \sigma = \{X_1 \mapsto t_1 \sigma, \dots, X_n \mapsto t_n \sigma\} \cup \{Y_i \mapsto s_i \mid Y_i \notin \{X_1, \dots, X_n\}\}$$

composition of substitutions

$$\theta = \{X_1 \mapsto t_1, \ldots, X_n \mapsto t_n\}$$

and

$$\sigma = \{Y_1 \mapsto s_1, \ldots, Y_k \mapsto s_k\}$$

is substitution

$$\theta\sigma = \{X_1 \mapsto t_1\sigma, \ldots, X_n \mapsto t_n\sigma\} \cup \{Y_i \mapsto s_i \mid Y_i \notin \{X_1, \ldots, X_n\}\}$$

$$\theta = \{X \mapsto g(Y, Z), Y \mapsto a\}$$
$$\sigma = \{X \mapsto f(Y), Z \mapsto f(X)\}$$

composition of substitutions

$$\theta = \{X_1 \mapsto t_1, \ldots, X_n \mapsto t_n\}$$

and

$$\sigma = \{Y_1 \mapsto s_1, \ldots, Y_k \mapsto s_k\}$$

is substitution

$$\theta\sigma = \{X_1 \mapsto t_1\sigma, \ldots, X_n \mapsto t_n\sigma\} \cup \{Y_i \mapsto s_i \mid Y_i \notin \{X_1, \ldots, X_n\}\}$$

$$\begin{split} \theta &= \{X \mapsto g(Y, Z), Y \mapsto a\} \quad \theta \sigma = \{X \mapsto g(Y, f(X)), Y \mapsto a, Z \mapsto f(X)\} \\ \sigma &= \{X \mapsto f(Y), Z \mapsto f(X)\} \end{split}$$

composition of substitutions

$$\theta = \{X_1 \mapsto t_1, \ldots, X_n \mapsto t_n\}$$

and

$$\sigma = \{Y_1 \mapsto s_1, \ldots, Y_k \mapsto s_k\}$$

is substitution

$$\theta\sigma = \{X_1 \mapsto t_1\sigma, \ldots, X_n \mapsto t_n\sigma\} \cup \{Y_i \mapsto s_i \mid Y_i \notin \{X_1, \ldots, X_n\}\}$$

$$\begin{split} \theta &= \{ X \mapsto g(Y,Z), Y \mapsto a \} \quad \theta \sigma = \{ X \mapsto g(Y,f(X)), Y \mapsto a, Z \mapsto f(X) \} \\ \sigma &= \{ X \mapsto f(Y), Z \mapsto f(X) \} \quad \sigma \theta = \{ X \mapsto f(a), Z \mapsto f(g(Y,Z)), Y \mapsto a \} \end{split}$$

• substitution θ is at least as general as substitution σ if $\exists \mu \ \theta \mu = \sigma$

- substitution θ is at least as general as substitution σ if $\exists \mu \ \theta \mu = \sigma$
- unifier of set S of terms is substitution θ such that $\forall s, t \in S \ s\theta = t\theta$

- substitution θ is at least as general as substitution σ if $\exists \mu \ \theta \mu = \sigma$
- unifier of set S of terms is substitution θ such that $\forall s, t \in S \ s\theta = t\theta$
- most general unifier (mgu) is at least as general as any other unifier

- substitution θ is at least as general as substitution σ if $\exists \mu \ \theta \mu = \sigma$
- unifier of set S of terms is substitution θ such that $\forall s, t \in S \ s\theta = t\theta$
- most general unifier (mgu) is at least as general as any other unifier

Example

terms f(X, g(Y), X) and f(Z, g(U), h(U)) are unifiable

- substitution θ is at least as general as substitution σ if $\exists \mu \ \theta \mu = \sigma$
- unifier of set S of terms is substitution θ such that $\forall s, t \in S \ s\theta = t\theta$
- most general unifier (mgu) is at least as general as any other unifier

Example

terms f(X, g(Y), X) and f(Z, g(U), h(U)) are unifiable: $\{X \mapsto h(a), Y \mapsto a, Z \mapsto h(a), U \mapsto a\}$ $\{X \mapsto h(U), Y \mapsto U, Z \mapsto h(U)\}$ $\{X \mapsto h(g(U)), Y \mapsto g(U), Z \mapsto h(g(U)), U \mapsto g(U)\}$

- substitution θ is at least as general as substitution σ if $\exists \mu \ \theta \mu = \sigma$
- unifier of set S of terms is substitution θ such that $\forall s, t \in S \ s\theta = t\theta$
- most general unifier (mgu) is at least as general as any other unifier

Example

terms f(X, g(Y), X) and f(Z, g(U), h(U)) are unifiable: $\{X \mapsto h(a), Y \mapsto a, Z \mapsto h(a), U \mapsto a\}$

$$\begin{aligned} & \{X \mapsto h(U), Y \mapsto U, Z \mapsto h(U)\} \\ & \{X \mapsto h(g(U)), Y \mapsto g(U), Z \mapsto h(g(U)), U \mapsto g(U)\} \end{aligned}$$

- substitution θ is at least as general as substitution σ if $\exists \mu \ \theta \mu = \sigma$
- unifier of set S of terms is substitution θ such that $\forall s, t \in S \ s\theta = t\theta$
- most general unifier (mgu) is at least as general as any other unifier

Example

terms f(X, g(Y), X) and f(Z, g(U), h(U)) are unifiable:

$$\{X \mapsto h(a), Y \mapsto a, Z \mapsto h(a), U \mapsto a\}$$

$$\{U \mapsto a\}$$

$$\{X \mapsto h(U), Y \mapsto U, Z \mapsto h(U)\}$$
 mgu

$$\{X \mapsto h(g(U)), Y \mapsto g(U), Z \mapsto h(g(U)), U \mapsto g(U)\} \qquad \{U \mapsto g(U)\}$$

- substitution θ is at least as general as substitution σ if $\exists \mu \ \theta \mu = \sigma$
- unifier of set S of terms is substitution θ such that $\forall s, t \in S \ s\theta = t\theta$
- most general unifier (mgu) is at least as general as any other unifier

Example

terms f(X, g(Y), X) and f(Z, g(U), h(U)) are unifiable:

$$\{X \mapsto h(a), Y \mapsto a, Z \mapsto h(a), U \mapsto a\}$$
 { $U \mapsto a$ }

$$\{X \mapsto h(U), Y \mapsto U, Z \mapsto h(U)\}$$
 mgu

$$\{X \mapsto h(g(U)), Y \mapsto g(U), Z \mapsto h(g(U)), U \mapsto g(U)\} \qquad \{U \mapsto g(U)\}$$

Theorem

• unifiable terms have mgu

- substitution θ is at least as general as substitution σ if $\exists \mu \ \theta \mu = \sigma$
- unifier of set S of terms is substitution θ such that $\forall s, t \in S \ s\theta = t\theta$
- most general unifier (mgu) is at least as general as any other unifier

Example

terms f(X, g(Y), X) and f(Z, g(U), h(U)) are unifiable:

$$\{X \mapsto h(a), Y \mapsto a, Z \mapsto h(a), U \mapsto a\}$$
 { $U \mapsto a$ }

$$\{X \mapsto h(U), Y \mapsto U, Z \mapsto h(U)\}$$
 mgu

$$\{X \mapsto h(g(U)), Y \mapsto g(U), Z \mapsto h(g(U)), U \mapsto g(U)\} \qquad \{U \mapsto g(U)\}$$

Theorem

- unifiable terms have mgu
- ∃ algorithm to compute mgu

• sequence
$$E = u_1 \stackrel{?}{=} v_1, \ldots, u_n \stackrel{?}{=} v_n$$
 is called an equality problem

• sequence $E = u_1 \stackrel{?}{=} v_1, \ldots, u_n \stackrel{?}{=} v_n$ is called an equality problem

• if $E = X_1 \stackrel{?}{=} v_1, \dots, X_n \stackrel{?}{=} v_n$, with X_i pairwise distinct and $X_i \notin \mathcal{V}ar(v_j)$ for all i, j, then E is in solved form

• sequence $E = u_1 \stackrel{?}{=} v_1, \ldots, u_n \stackrel{?}{=} v_n$ is called an equality problem

- if $E = X_1 \stackrel{?}{=} v_1, \dots, X_n \stackrel{?}{=} v_n$, with X_i pairwise distinct and $X_i \notin \mathcal{V}ar(v_j)$ for all i, j, then E is in solved form
- let $E = X_1 \stackrel{?}{=} v_1, \dots, X_n \stackrel{?}{=} v_n$ be a equality problem in solved form *E* induces substitution $\sigma_E = \{X_1 \mapsto v_1, \dots, X_n \mapsto v_n\}$

• sequence $E = u_1 \stackrel{?}{=} v_1, \ldots, u_n \stackrel{?}{=} v_n$ is called an equality problem

- if $E = X_1 \stackrel{?}{=} v_1, \dots, X_n \stackrel{?}{=} v_n$, with X_i pairwise distinct and $X_i \notin \mathcal{V}ar(v_j)$ for all i, j, then E is in solved form
- let $E = X_1 \stackrel{?}{=} v_1, \dots, X_n \stackrel{?}{=} v_n$ be a equality problem in solved form *E* induces substitution $\sigma_E = \{X_1 \mapsto v_1, \dots, X_n \mapsto v_n\}$

• sequence $E = u_1 \stackrel{?}{=} v_1, \ldots, u_n \stackrel{?}{=} v_n$ is called an equality problem

- if $E = X_1 \stackrel{?}{=} v_1, \dots, X_n \stackrel{?}{=} v_n$, with X_i pairwise distinct and $X_i \notin \mathcal{V}ar(v_j)$ for all i, j, then E is in solved form
- let $E = X_1 \stackrel{?}{=} v_1, \dots, X_n \stackrel{?}{=} v_n$ be a equality problem in solved form *E* induces substitution $\sigma_E = \{X_1 \mapsto v_1, \dots, X_n \mapsto v_n\}$

$$u \stackrel{?}{=} u, E \Rightarrow E$$

• sequence $E = u_1 \stackrel{?}{=} v_1, \ldots, u_n \stackrel{?}{=} v_n$ is called an equality problem

- if $E = X_1 \stackrel{?}{=} v_1, \dots, X_n \stackrel{?}{=} v_n$, with X_i pairwise distinct and $X_i \notin \mathcal{V}ar(v_j)$ for all i, j, then E is in solved form
- let $E = X_1 \stackrel{?}{=} v_1, \dots, X_n \stackrel{?}{=} v_n$ be a equality problem in solved form *E* induces substitution $\sigma_E = \{X_1 \mapsto v_1, \dots, X_n \mapsto v_n\}$

Unification Algorithm

$$u \stackrel{?}{=} u, E \Rightarrow l$$

 $f(s_1,\ldots,s_n) \stackrel{?}{=} f(t_1,\ldots,t_n), E \Rightarrow s_1 \stackrel{?}{=} t_1,\ldots,s_n \stackrel{?}{=} t_n, E$

• sequence $E = u_1 \stackrel{?}{=} v_1, \ldots, u_n \stackrel{?}{=} v_n$ is called an equality problem

- if $E = X_1 \stackrel{?}{=} v_1, \dots, X_n \stackrel{?}{=} v_n$, with X_i pairwise distinct and $X_i \notin \mathcal{V}ar(v_j)$ for all i, j, then E is in solved form
- let $E = X_1 \stackrel{?}{=} v_1, \dots, X_n \stackrel{?}{=} v_n$ be a equality problem in solved form *E* induces substitution $\sigma_E = \{X_1 \mapsto v_1, \dots, X_n \mapsto v_n\}$

$$u \stackrel{?}{=} u, E \Rightarrow E$$
$$f(s_1, \ldots, s_n) \stackrel{?}{=} f(t_1, \ldots, t_n), E \Rightarrow s_1 \stackrel{?}{=} t_1, \ldots, s_n \stackrel{?}{=} t_n, E$$

$$f(s_1,\ldots,s_n) \stackrel{?}{=} g(t_1,\ldots,t_n), E \Rightarrow \bot \quad f \neq g$$

• sequence $E = u_1 \stackrel{?}{=} v_1, \ldots, u_n \stackrel{?}{=} v_n$ is called an equality problem

- if $E = X_1 \stackrel{?}{=} v_1, \dots, X_n \stackrel{?}{=} v_n$, with X_i pairwise distinct and $X_i \notin \mathcal{V}ar(v_j)$ for all i, j, then E is in solved form
- let $E = X_1 \stackrel{?}{=} v_1, \dots, X_n \stackrel{?}{=} v_n$ be a equality problem in solved form *E* induces substitution $\sigma_E = \{X_1 \mapsto v_1, \dots, X_n \mapsto v_n\}$

$$u \stackrel{?}{=} u, E \Rightarrow E$$

$$f(s_1, \ldots, s_n) \stackrel{?}{=} f(t_1, \ldots, t_n), E \Rightarrow s_1 \stackrel{?}{=} t_1, \ldots, s_n \stackrel{?}{=} t_n, E$$
$$f(s_1, \ldots, s_n) \stackrel{?}{=} g(t_1, \ldots, t_n), E \Rightarrow \bot \quad f \neq g$$
$$X \stackrel{?}{=} t, E \Rightarrow X \stackrel{?}{=} t, E\{X \mapsto t\} \quad X \in Var(E), X \notin Var(t)$$

• sequence $E = u_1 \stackrel{?}{=} v_1, \ldots, u_n \stackrel{?}{=} v_n$ is called an equality problem

- if $E = X_1 \stackrel{?}{=} v_1, \dots, X_n \stackrel{?}{=} v_n$, with X_i pairwise distinct and $X_i \notin \mathcal{V}ar(v_j)$ for all i, j, then E is in solved form
- let $E = X_1 \stackrel{?}{=} v_1, \dots, X_n \stackrel{?}{=} v_n$ be a equality problem in solved form *E* induces substitution $\sigma_E = \{X_1 \mapsto v_1, \dots, X_n \mapsto v_n\}$

$$u \stackrel{?}{=} u, E \Rightarrow E$$

$$f(s_1, \dots, s_n) \stackrel{?}{=} f(t_1, \dots, t_n), E \Rightarrow s_1 \stackrel{?}{=} t_1, \dots, s_n \stackrel{?}{=} t_n, E$$

$$f(s_1, \dots, s_n) \stackrel{?}{=} g(t_1, \dots, t_n), E \Rightarrow \bot \quad f \neq g$$

$$X \stackrel{?}{=} t, E \Rightarrow X \stackrel{?}{=} t, E\{X \mapsto t\} \quad X \in \mathcal{V}ar(E), X \notin \mathcal{V}ar(t)$$

$$X \stackrel{?}{=} t, E \Rightarrow \bot \quad X \neq t, X \in \mathcal{V}ar(t)$$

• sequence $E = u_1 \stackrel{?}{=} v_1, \ldots, u_n \stackrel{?}{=} v_n$ is called an equality problem

- if $E = X_1 \stackrel{?}{=} v_1, \dots, X_n \stackrel{?}{=} v_n$, with X_i pairwise distinct and $X_i \notin \mathcal{V}ar(v_j)$ for all i, j, then E is in solved form
- let $E = X_1 \stackrel{?}{=} v_1, \dots, X_n \stackrel{?}{=} v_n$ be a equality problem in solved form *E* induces substitution $\sigma_E = \{X_1 \mapsto v_1, \dots, X_n \mapsto v_n\}$

$$u \stackrel{?}{=} u, E \Rightarrow E$$

$$f(s_1, \dots, s_n) \stackrel{?}{=} f(t_1, \dots, t_n), E \Rightarrow s_1 \stackrel{?}{=} t_1, \dots, s_n \stackrel{?}{=} t_n, E$$

$$f(s_1, \dots, s_n) \stackrel{?}{=} g(t_1, \dots, t_n), E \Rightarrow \bot \quad f \neq g$$

$$X \stackrel{?}{=} t, E \Rightarrow X \stackrel{?}{=} t, E\{X \mapsto t\} \quad X \in \mathcal{V}ar(E), X \notin \mathcal{V}ar(t)$$

$$X \stackrel{?}{=} t, E \Rightarrow \bot \quad X \neq t, X \in \mathcal{V}ar(t)$$

$$t \stackrel{?}{=} X, E \Rightarrow X \stackrel{?}{=} t, E \quad t \notin \mathcal{V}$$

1 equality problems *E* is unifiable iff the unification algorithm stops with a solved form

- **1** equality problems *E* is unifiable iff the unification algorithm stops with a solved form
- **2** if $E \Rightarrow^* E'$ such that E' is a solved form, then $\sigma_{E'}$ is mgu of E

- equality problems E is unifiable iff the unification algorithm stops with a solved form
- **2** if $E \Rightarrow^* E'$ such that E' is a solved form, then $\sigma_{E'}$ is mgu of E

Example

 $f(X,g(Y),X) \stackrel{?}{=} f(Z,g(U),h(U))$

- equality problems E is unifiable iff the unification algorithm stops with a solved form
- **2** if $E \Rightarrow^* E'$ such that E' is a solved form, then $\sigma_{E'}$ is mgu of E

Example

 $f(X,g(Y),X) \stackrel{?}{=} f(Z,g(U),h(U))$

- equality problems E is unifiable iff the unification algorithm stops with a solved form
- **2** if $E \Rightarrow^* E'$ such that E' is a solved form, then $\sigma_{E'}$ is mgu of E

Example

 $f(X,g(Y),X) \stackrel{?}{=} f(Z,g(U),h(U)) \Rightarrow X \stackrel{?}{=} Z,g(Y) \stackrel{?}{=} g(U),X \stackrel{?}{=} h(U)$

- equality problems E is unifiable iff the unification algorithm stops with a solved form
- **2** if $E \Rightarrow^* E'$ such that E' is a solved form, then $\sigma_{E'}$ is mgu of E

$$f(X,g(Y),X) \stackrel{?}{=} f(Z,g(U),h(U)) \Rightarrow X \stackrel{?}{=} Z,g(Y) \stackrel{?}{=} g(U),X \stackrel{?}{=} h(U)$$
$$\Rightarrow X \stackrel{?}{=} Z,g(Y) \stackrel{?}{=} g(U),Z \stackrel{?}{=} h(U)$$

- equality problems E is unifiable iff the unification algorithm stops with a solved form
- **2** if $E \Rightarrow^* E'$ such that E' is a solved form, then $\sigma_{E'}$ is mgu of E

$$f(X, g(Y), X) \stackrel{?}{=} f(Z, g(U), h(U)) \Rightarrow X \stackrel{?}{=} Z, g(Y) \stackrel{?}{=} g(U), X \stackrel{?}{=} h(U)$$

$$\Rightarrow X \stackrel{?}{=} Z, g(Y) \stackrel{?}{=} g(U), Z \stackrel{?}{=} h(U)$$

$$\Rightarrow X \stackrel{?}{=} Z, Y \stackrel{?}{=} U, Z \stackrel{?}{=} h(U)$$

- **1** equality problems *E* is unifiable iff the unification algorithm stops with a solved form
- **2** if $E \Rightarrow^* E'$ such that E' is a solved form, then $\sigma_{E'}$ is mgu of E

$$f(X, g(Y), X) \stackrel{?}{=} f(Z, g(U), h(U)) \Rightarrow X \stackrel{?}{=} Z, g(Y) \stackrel{?}{=} g(U), X \stackrel{?}{=} h(U)$$

$$\Rightarrow X \stackrel{?}{=} Z, g(Y) \stackrel{?}{=} g(U), Z \stackrel{?}{=} h(U)$$

$$\Rightarrow X \stackrel{?}{=} Z, Y \stackrel{?}{=} U, Z \stackrel{?}{=} h(U)$$

$$\Rightarrow X \stackrel{?}{=} h(U), Y \stackrel{?}{=} U, Z \stackrel{?}{=} h(U)$$

- equality problems E is unifiable iff the unification algorithm stops with a solved form
- **2** if $E \Rightarrow^* E'$ such that E' is a solved form, then $\sigma_{E'}$ is mgu of E

$$f(X, g(Y), X) \stackrel{?}{=} f(Z, g(U), h(U)) \Rightarrow X \stackrel{?}{=} Z, g(Y) \stackrel{?}{=} g(U), X \stackrel{?}{=} h(U)$$

$$\Rightarrow X \stackrel{?}{=} Z, g(Y) \stackrel{?}{=} g(U), Z \stackrel{?}{=} h(U)$$

$$\Rightarrow X \stackrel{?}{=} Z, Y \stackrel{?}{=} U, Z \stackrel{?}{=} h(U)$$

$$\Rightarrow X \stackrel{?}{=} h(U), Y \stackrel{?}{=} U, Z \stackrel{?}{=} h(U)$$
mgu