
Logic Programming

Cezary Kaliszyk Georg Moser

Institute of Computer Science @ UIBK

Winter 2015

http://cl-informatik.uibk.ac.at

Summary of Last Lecture

Summary of Last Lecture

Definition

• goals (aka formulas) are constants or compound terms

• goals are typically non-ground

Definitions
• a clause or rule is an universally quantified logical formula of the

form
A :− B1 , B2 , . . . , Bn .

where A and the Bi ’s are goals

• A is called the head of the clause; the Bi ’s are called the body

• a rule of the form A :− is called a fact; we write facts simply A.

Definition

a logic program is a finite set of clauses

GM (Institute of Computer Science @ UIBK) Logic Programming 20/1

Outline

Outline of the Lecture

Monotone Logic Programs

introduction, basic constructs, unification, database and recursive pro-
gramming, termination

Incomplete Data Structures and Constraints

incomplete data structures, definite clause grammars, constraint logic pro-
gramming, answer set programming

Full Prolog

semantics, correctness proofs, meta-logical predicates, cuts nondetermin-
istic programming, efficient programs, complexity

GM (Institute of Computer Science @ UIBK) Logic Programming 21/1

Outline

Outline of the Lecture

Monotone Logic Programs

introduction, basic constructs, unification, database and recursive pro-
gramming, termination

Incomplete Data Structures and Constraints

incomplete data structures, definite clause grammars, constraint logic pro-
gramming, answer set programming

Full Prolog

semantics, correctness proofs, meta-logical predicates, cuts nondetermin-
istic programming, efficient programs, complexity

GM (Institute of Computer Science @ UIBK) Logic Programming 21/1

Basic Constructs

Example

c h i l d o f (j o s e p h I , l e o p o l d I) .
c h i l d o f (k a r l V I , l e o p o l d I) .
c h i l d o f (ma r i a t h e r e s i a , k a r l V I) .
c h i l d o f (j o s e p h I I , m a r i a t h e r e s i a) .
c h i l d o f (j o s e p h I I , f r a n z I) .
c h i l d o f (l e o p o l d I I , m a r i a t h e r e s i a) .
c h i l d o f (l e o p o l d I I , f r a n z I) .
c h i l d o f (ma r i a a n t o i n e t t e , m a r i a t h e r e s i a) .
c h i l d o f (f r a n z I I , l e o p o l d I I) .

male (f r a n z I) . f ema l e (m a r i a t h e r e s i a) .
male (f r a n z I I) . f ema l e (ma r i e a n t o i n e t t e) .
male (j o s e p h I) .
male (j o s e p h I I) .
male (k a r V I) .
male (l e o p o l d I) .
male (l e o p o l d I I) .

hu sband w i f e (f r a n z I , m a r i a t h e r e s i a) .

GM (Institute of Computer Science @ UIBK) Logic Programming 22/1

Basic Constructs

Review of Basic Constructs

Definitions

• a fact describes a relation (predicate) between terms

c h i l d o f (j o s e p h I I , m a r i a t h e r e s i a) .

which reads “Joseph II is the child of Maria Theresia.”

• child of is the name of the relation

• the arity denotes the number of arguments

• predicates are also denoted as child of/2

• fact that do not contain variables are ground

Fact

the order of the arguments is essential, hence it is important to choose
meaningful names for predicates

GM (Institute of Computer Science @ UIBK) Logic Programming 23/1

Basic Constructs

Review of Basic Constructs

Definitions

• a fact describes a relation (predicate) between terms

c h i l d o f (j o s e p h I I , m a r i a t h e r e s i a) .

which reads “Joseph II is the child of Maria Theresia.”

• child of is the name of the relation

• the arity denotes the number of arguments

• predicates are also denoted as child of/2

• fact that do not contain variables are ground

Fact

the order of the arguments is essential, hence it is important to choose
meaningful names for predicates

GM (Institute of Computer Science @ UIBK) Logic Programming 23/1

Basic Constructs

Choosing Names

1 describe the arguments

t y p 1 t y p 2 t y p 3 t y p 4 (Arg1 , Arg2 , Arg3 , Arg4)

2 refine the name

p e r s o n p e r s o n (X,Y) . % too coa r s e
c h i l d p e r s o n (Ch i ld , Person) % b e t t e r
c h i l d p a r e n t (Ch i ld , Parent) % p e r f e c t

3 indicate the relation

c h i l d o f p a r e n t (Ch i ld , Parent) % p r e p o s i t i o n
e xp r e s s i on imp rov edp rog r am (Exp , IExp) % p a r t i c i p l e
e xp r imp roved (Exp , IExp)
c o n s i s t s o f (X,Y) % ve rb

4 abbreviations

c oun t r y /8

GM (Institute of Computer Science @ UIBK) Logic Programming 24/1

Basic Constructs

Definition
• a query tests whether a relation holds

:− c h i l d o f (j o s e p h I I , m a r i a t h e r e s i a) .

• queries are equivalent to use cases, as they are checked whenever
the program is safed (in GUPU) or compiled (in general)

Why does a Query fail?

1 the query doesn’t follow from the data represented in the program;
the negation of the query does not necessarily hold

2 the program is a complete representation; the negation of the query
does hold

Fact

Horn logic cannot distinguish between these options

GM (Institute of Computer Science @ UIBK) Logic Programming 25/1

Basic Constructs

Definition
• a query tests whether a relation holds

:− c h i l d o f (j o s e p h I I , m a r i a t h e r e s i a) .

• queries are equivalent to use cases, as they are checked whenever
the program is safed (in GUPU) or compiled (in general)

Why does a Query fail?

1 the query doesn’t follow from the data represented in the program;
the negation of the query does not necessarily hold

2 the program is a complete representation; the negation of the query
does hold

Fact

Horn logic cannot distinguish between these options

GM (Institute of Computer Science @ UIBK) Logic Programming 25/1

Basic Constructs

Definition
• a query tests whether a relation holds

:− c h i l d o f (j o s e p h I I , m a r i a t h e r e s i a) .

• queries are equivalent to use cases, as they are checked whenever
the program is safed (in GUPU) or compiled (in general)

Why does a Query fail?

1 the query doesn’t follow from the data represented in the program;
the negation of the query does not necessarily hold

2 the program is a complete representation; the negation of the query
does hold

Fact

Horn logic cannot distinguish between these options

GM (Institute of Computer Science @ UIBK) Logic Programming 25/1

Basic Constructs

Definition

a negative query verifies that the goal fails

:/− c h i l d o f (j o s e p h I I , f r i e d r i c h I I) .

NB: occurring variables are existentially quantified

Definition

a general query with variables provide answer substitutions

:− c h i l d o f (Ch i ld , m a r i a t h e r e s i a) .
:− c h i l d o f (Ch i l d , m a r i a t h e r e s i a) .
:/− c h i l d o f (Ch i ld , Ch i l d) .

Definition

a complex query combines several goals and typically make use of shared
variables

:− c h i l d o f (j o s e p h I I , Mum) , f ema l e (Mum) .

GM (Institute of Computer Science @ UIBK) Logic Programming 26/1

Basic Constructs

Definition

a negative query verifies that the goal fails

:/− c h i l d o f (j o s e p h I I , f r i e d r i c h I I) .

NB: occurring variables are existentially quantified

Definition

a general query with variables provide answer substitutions

:− c h i l d o f (Ch i ld , m a r i a t h e r e s i a) .
:− c h i l d o f (Ch i l d , m a r i a t h e r e s i a) .
:/− c h i l d o f (Ch i ld , Ch i l d) .

Definition

a complex query combines several goals and typically make use of shared
variables

:− c h i l d o f (j o s e p h I I , Mum) , f ema l e (Mum) .

GM (Institute of Computer Science @ UIBK) Logic Programming 26/1

Basic Constructs

Definition

a negative query verifies that the goal fails

:/− c h i l d o f (j o s e p h I I , f r i e d r i c h I I) .

NB: occurring variables are existentially quantified

Definition

a general query with variables provide answer substitutions

:− c h i l d o f (Ch i ld , m a r i a t h e r e s i a) .
:− c h i l d o f (Ch i l d , m a r i a t h e r e s i a) .
:/− c h i l d o f (Ch i ld , Ch i l d) .

Definition

a complex query combines several goals and typically make use of shared
variables

:− c h i l d o f (j o s e p h I I , Mum) , f ema l e (Mum) .

GM (Institute of Computer Science @ UIBK) Logic Programming 26/1

Basic Constructs

Definition
• a rule consists of a head and a body, separated by “:-”

mothe r o f (Mum, Ch i l d) :−
c h i l d o f (Ch i ld , Mum) ,
f ema l e (Mum) .

• a rule is recursive, if the body contains the predicate in the head

Definitions
• we distinguish between the set of solutions of a query and the

sequence of solutions

• the sequence may contain redundant solutions

• redundant solutions may be due to existential variables

GM (Institute of Computer Science @ UIBK) Logic Programming 27/1

Basic Constructs

Definition
• a rule consists of a head and a body, separated by “:-”

mothe r o f (Mum, Ch i l d) :−
c h i l d o f (Ch i ld , Mum) ,
f ema l e (Mum) .

• a rule is recursive, if the body contains the predicate in the head

Definitions
• we distinguish between the set of solutions of a query and the

sequence of solutions

• the sequence may contain redundant solutions

• redundant solutions may be due to existential variables

GM (Institute of Computer Science @ UIBK) Logic Programming 27/1

Basic Constructs

Example

% r e c u r s i v e r u l e
ma r r i e d w i t h (Husband , Wife) :−

husband w i f e (Husband , Wife) .
ma r r i e d w i t h (PersonA , PersonB) :−

mar r i e d w i t h (PersonB , PersonA) .

% non−r e c u r s i v e r u l e
ma r r i e d w i t h (Husband , Wife) :−

husband w i f e (Husband , Wife) .
ma r r i e d w i t h (Wife , Husband) :−

husband w i f e (Husband , Wife) .

GM (Institute of Computer Science @ UIBK) Logic Programming 28/1

Basic Constructs

Example

:/− a n c e s t o r o f (X,X) .

a n c e s t o r o f (Ancestor , P r e d e c e s s o r) :−
c h i l d o f (P r edece s so r , Ances to r) .

a n c e s t o r o f (Ancestor , P r e d e c e s s o r) :−
c h i l d o f (Person , Ances to r) ,
a n c e s t o r o f (Person , P r e d e c e s s o r) .

Example

:/− a n c e s t o r o f 2 (X,X) .

a n c e s t o r o f 2 (Ancestor , P r e d e c e s s o r) :−
c h i l d o f (P r edece s so r , Ances to r) .

a n c e s t o r o f 2 (Ancestor , P r e d e c e s s o r) :−
a n c e s t o r o f 2 (Person , P r e d e c e s s o r) ,
c h i l d o f (Person , Ance s to r) .

GM (Institute of Computer Science @ UIBK) Logic Programming 29/1

Basic Constructs

Example

:/− a n c e s t o r o f (X,X) .

a n c e s t o r o f (Ancestor , P r e d e c e s s o r) :−
c h i l d o f (P r edece s so r , Ances to r) .

a n c e s t o r o f (Ancestor , P r e d e c e s s o r) :−
c h i l d o f (Person , Ances to r) ,
a n c e s t o r o f (Person , P r e d e c e s s o r) .

Example

:/− a n c e s t o r o f 2 (X,X) .

a n c e s t o r o f 2 (Ancestor , P r e d e c e s s o r) :−
c h i l d o f (P r edece s so r , Ances to r) .

a n c e s t o r o f 2 (Ancestor , P r e d e c e s s o r) :−
a n c e s t o r o f 2 (Person , P r e d e c e s s o r) ,
c h i l d o f (Person , Ance s to r) .

GM (Institute of Computer Science @ UIBK) Logic Programming 29/1

Unification

Definition

composition of substitutions

θ = {X1 7→ t1, . . . ,Xn 7→ tn}
and

σ = {Y1 7→ s1, . . . ,Yk 7→ sk}

is substitution

θσ = {X1 7→ t1σ, . . . ,Xn 7→ tnσ} ∪ {Yi 7→ si | Yi /∈ {X1, . . . ,Xn}}

Example

θ = {X 7→ g(Y ,Z),Y 7→ a}

θσ = {X 7→ g(Y , f (X)),Y 7→ a,Z 7→ f (X)}

σ = {X 7→ f (Y),Z 7→ f (X)}

σθ = {X 7→ f (a),Z 7→ f (g(Y ,Z)),Y 7→ a}

GM (Institute of Computer Science @ UIBK) Logic Programming 30/1

Unification

Definition

composition of substitutions

θ = {X1 7→ t1, . . . ,Xn 7→ tn}
and

σ = {Y1 7→ s1, . . . ,Yk 7→ sk}

is substitution

θσ = {X1 7→ t1σ, . . . ,Xn 7→ tnσ} ∪ {Yi 7→ si | Yi /∈ {X1, . . . ,Xn}}

Example

θ = {X 7→ g(Y ,Z),Y 7→ a}

θσ = {X 7→ g(Y , f (X)),Y 7→ a,Z 7→ f (X)}

σ = {X 7→ f (Y),Z 7→ f (X)}

σθ = {X 7→ f (a),Z 7→ f (g(Y ,Z)),Y 7→ a}

GM (Institute of Computer Science @ UIBK) Logic Programming 30/1

Unification

Definition

composition of substitutions

θ = {X1 7→ t1, . . . ,Xn 7→ tn}
and

σ = {Y1 7→ s1, . . . ,Yk 7→ sk}

is substitution

θσ = {X1 7→ t1σ, . . . ,Xn 7→ tnσ} ∪ {Yi 7→ si | Yi /∈ {X1, . . . ,Xn}}

Example

θ = {X 7→ g(Y ,Z),Y 7→ a} θσ = {X 7→ g(Y , f (X)),Y 7→ a,Z 7→ f (X)}

σ = {X 7→ f (Y),Z 7→ f (X)}

σθ = {X 7→ f (a),Z 7→ f (g(Y ,Z)),Y 7→ a}

GM (Institute of Computer Science @ UIBK) Logic Programming 30/1

Unification

Definition

composition of substitutions

θ = {X1 7→ t1, . . . ,Xn 7→ tn}
and

σ = {Y1 7→ s1, . . . ,Yk 7→ sk}

is substitution

θσ = {X1 7→ t1σ, . . . ,Xn 7→ tnσ} ∪ {Yi 7→ si | Yi /∈ {X1, . . . ,Xn}}

Example

θ = {X 7→ g(Y ,Z),Y 7→ a} θσ = {X 7→ g(Y , f (X)),Y 7→ a,Z 7→ f (X)}

σ = {X 7→ f (Y),Z 7→ f (X)} σθ = {X 7→ f (a),Z 7→ f (g(Y ,Z)),Y 7→ a}

GM (Institute of Computer Science @ UIBK) Logic Programming 30/1

Unification

Definition
• substitution θ is at least as general as substitution σ if ∃µ θµ = σ

• unifier of set S of terms is substitution θ such that ∀s, t ∈ S sθ = tθ

• most general unifier (mgu) is at least as general as any other unifier

Example

terms f (X , g(Y),X) and f (Z , g(U), h(U)) are unifiable

:

{X 7→ h(a),Y 7→ a,Z 7→ h(a),U 7→ a}

{U 7→ a}

{X 7→ h(U),Y 7→ U,Z 7→ h(U)}

mgu

{X 7→ h(g(U)),Y 7→ g(U),Z 7→ h(g(U)),U 7→ g(U)}

{U 7→ g(U)}

Theorem
• unifiable terms have mgu

• ∃ algorithm to compute mgu

GM (Institute of Computer Science @ UIBK) Logic Programming 31/1

Unification

Definition
• substitution θ is at least as general as substitution σ if ∃µ θµ = σ

• unifier of set S of terms is substitution θ such that ∀s, t ∈ S sθ = tθ

• most general unifier (mgu) is at least as general as any other unifier

Example

terms f (X , g(Y),X) and f (Z , g(U), h(U)) are unifiable

:

{X 7→ h(a),Y 7→ a,Z 7→ h(a),U 7→ a}

{U 7→ a}

{X 7→ h(U),Y 7→ U,Z 7→ h(U)}

mgu

{X 7→ h(g(U)),Y 7→ g(U),Z 7→ h(g(U)),U 7→ g(U)}

{U 7→ g(U)}

Theorem
• unifiable terms have mgu

• ∃ algorithm to compute mgu

GM (Institute of Computer Science @ UIBK) Logic Programming 31/1

Unification

Definition
• substitution θ is at least as general as substitution σ if ∃µ θµ = σ

• unifier of set S of terms is substitution θ such that ∀s, t ∈ S sθ = tθ

• most general unifier (mgu) is at least as general as any other unifier

Example

terms f (X , g(Y),X) and f (Z , g(U), h(U)) are unifiable

:

{X 7→ h(a),Y 7→ a,Z 7→ h(a),U 7→ a}

{U 7→ a}

{X 7→ h(U),Y 7→ U,Z 7→ h(U)}

mgu

{X 7→ h(g(U)),Y 7→ g(U),Z 7→ h(g(U)),U 7→ g(U)}

{U 7→ g(U)}

Theorem
• unifiable terms have mgu

• ∃ algorithm to compute mgu

GM (Institute of Computer Science @ UIBK) Logic Programming 31/1

Unification

Definition
• substitution θ is at least as general as substitution σ if ∃µ θµ = σ

• unifier of set S of terms is substitution θ such that ∀s, t ∈ S sθ = tθ

• most general unifier (mgu) is at least as general as any other unifier

Example

terms f (X , g(Y),X) and f (Z , g(U), h(U)) are unifiable

:

{X 7→ h(a),Y 7→ a,Z 7→ h(a),U 7→ a}

{U 7→ a}

{X 7→ h(U),Y 7→ U,Z 7→ h(U)}

mgu

{X 7→ h(g(U)),Y 7→ g(U),Z 7→ h(g(U)),U 7→ g(U)}

{U 7→ g(U)}

Theorem
• unifiable terms have mgu

• ∃ algorithm to compute mgu

GM (Institute of Computer Science @ UIBK) Logic Programming 31/1

Unification

Definition
• substitution θ is at least as general as substitution σ if ∃µ θµ = σ

• unifier of set S of terms is substitution θ such that ∀s, t ∈ S sθ = tθ

• most general unifier (mgu) is at least as general as any other unifier

Example

terms f (X , g(Y),X) and f (Z , g(U), h(U)) are unifiable:

{X 7→ h(a),Y 7→ a,Z 7→ h(a),U 7→ a}

{U 7→ a}

{X 7→ h(U),Y 7→ U,Z 7→ h(U)}

mgu

{X 7→ h(g(U)),Y 7→ g(U),Z 7→ h(g(U)),U 7→ g(U)}

{U 7→ g(U)}

Theorem
• unifiable terms have mgu

• ∃ algorithm to compute mgu

GM (Institute of Computer Science @ UIBK) Logic Programming 31/1

Unification

Definition
• substitution θ is at least as general as substitution σ if ∃µ θµ = σ

• unifier of set S of terms is substitution θ such that ∀s, t ∈ S sθ = tθ

• most general unifier (mgu) is at least as general as any other unifier

Example

terms f (X , g(Y),X) and f (Z , g(U), h(U)) are unifiable:

{X 7→ h(a),Y 7→ a,Z 7→ h(a),U 7→ a}

{U 7→ a}

{X 7→ h(U),Y 7→ U,Z 7→ h(U)} mgu

{X 7→ h(g(U)),Y 7→ g(U),Z 7→ h(g(U)),U 7→ g(U)}

{U 7→ g(U)}

Theorem
• unifiable terms have mgu

• ∃ algorithm to compute mgu

GM (Institute of Computer Science @ UIBK) Logic Programming 31/1

Unification

Definition
• substitution θ is at least as general as substitution σ if ∃µ θµ = σ

• unifier of set S of terms is substitution θ such that ∀s, t ∈ S sθ = tθ

• most general unifier (mgu) is at least as general as any other unifier

Example

terms f (X , g(Y),X) and f (Z , g(U), h(U)) are unifiable:

{X 7→ h(a),Y 7→ a,Z 7→ h(a),U 7→ a} {U 7→ a}
{X 7→ h(U),Y 7→ U,Z 7→ h(U)} mgu

{X 7→ h(g(U)),Y 7→ g(U),Z 7→ h(g(U)),U 7→ g(U)} {U 7→ g(U)}

Theorem
• unifiable terms have mgu

• ∃ algorithm to compute mgu

GM (Institute of Computer Science @ UIBK) Logic Programming 31/1

Unification

Definition
• substitution θ is at least as general as substitution σ if ∃µ θµ = σ

• unifier of set S of terms is substitution θ such that ∀s, t ∈ S sθ = tθ

• most general unifier (mgu) is at least as general as any other unifier

Example

terms f (X , g(Y),X) and f (Z , g(U), h(U)) are unifiable:

{X 7→ h(a),Y 7→ a,Z 7→ h(a),U 7→ a} {U 7→ a}
{X 7→ h(U),Y 7→ U,Z 7→ h(U)} mgu

{X 7→ h(g(U)),Y 7→ g(U),Z 7→ h(g(U)),U 7→ g(U)} {U 7→ g(U)}

Theorem
• unifiable terms have mgu

• ∃ algorithm to compute mgu

GM (Institute of Computer Science @ UIBK) Logic Programming 31/1

Unification

Definition
• substitution θ is at least as general as substitution σ if ∃µ θµ = σ

• unifier of set S of terms is substitution θ such that ∀s, t ∈ S sθ = tθ

• most general unifier (mgu) is at least as general as any other unifier

Example

terms f (X , g(Y),X) and f (Z , g(U), h(U)) are unifiable:

{X 7→ h(a),Y 7→ a,Z 7→ h(a),U 7→ a} {U 7→ a}
{X 7→ h(U),Y 7→ U,Z 7→ h(U)} mgu

{X 7→ h(g(U)),Y 7→ g(U),Z 7→ h(g(U)),U 7→ g(U)} {U 7→ g(U)}

Theorem
• unifiable terms have mgu

• ∃ algorithm to compute mgu

GM (Institute of Computer Science @ UIBK) Logic Programming 31/1

Unification

Definition
• sequence E = u1

?
= v1, . . . , un

?
= vn is called an equality problem

• if E = X1
?
= v1, . . . ,Xn

?
= vn, with Xi pairwise distinct and

Xi 6∈ Var(vj) for all i , j , then E is in solved form

• let E = X1
?
= v1, . . . ,Xn

?
= vn be a equality problem in solved form

E induces substitution σE = {X1 7→ v1, . . . ,Xn 7→ vn}

Unification Algorithm

u
?
= u,E ⇒ E

f (s1, . . . , sn)
?
= f (t1, . . . , tn),E ⇒ s1

?
= t1, . . . , sn

?
= tn,E

f (s1, . . . , sn)
?
= g(t1, . . . , tn),E ⇒ ⊥ f 6= g

X
?
= t,E ⇒ X

?
= t,E{X 7→ t} X ∈ Var(E),X 6∈ Var(t)

X
?
= t,E ⇒ ⊥ X 6= t,X ∈ Var(t)

t
?
= X ,E ⇒ X

?
= t,E t 6∈ V

GM (Institute of Computer Science @ UIBK) Logic Programming 32/1

Unification

Definition
• sequence E = u1

?
= v1, . . . , un

?
= vn is called an equality problem

• if E = X1
?
= v1, . . . ,Xn

?
= vn, with Xi pairwise distinct and

Xi 6∈ Var(vj) for all i , j , then E is in solved form

• let E = X1
?
= v1, . . . ,Xn

?
= vn be a equality problem in solved form

E induces substitution σE = {X1 7→ v1, . . . ,Xn 7→ vn}

Unification Algorithm

u
?
= u,E ⇒ E

f (s1, . . . , sn)
?
= f (t1, . . . , tn),E ⇒ s1

?
= t1, . . . , sn

?
= tn,E

f (s1, . . . , sn)
?
= g(t1, . . . , tn),E ⇒ ⊥ f 6= g

X
?
= t,E ⇒ X

?
= t,E{X 7→ t} X ∈ Var(E),X 6∈ Var(t)

X
?
= t,E ⇒ ⊥ X 6= t,X ∈ Var(t)

t
?
= X ,E ⇒ X

?
= t,E t 6∈ V

GM (Institute of Computer Science @ UIBK) Logic Programming 32/1

Unification

Definition
• sequence E = u1

?
= v1, . . . , un

?
= vn is called an equality problem

• if E = X1
?
= v1, . . . ,Xn

?
= vn, with Xi pairwise distinct and

Xi 6∈ Var(vj) for all i , j , then E is in solved form

• let E = X1
?
= v1, . . . ,Xn

?
= vn be a equality problem in solved form

E induces substitution σE = {X1 7→ v1, . . . ,Xn 7→ vn}

Unification Algorithm

u
?
= u,E ⇒ E

f (s1, . . . , sn)
?
= f (t1, . . . , tn),E ⇒ s1

?
= t1, . . . , sn

?
= tn,E

f (s1, . . . , sn)
?
= g(t1, . . . , tn),E ⇒ ⊥ f 6= g

X
?
= t,E ⇒ X

?
= t,E{X 7→ t} X ∈ Var(E),X 6∈ Var(t)

X
?
= t,E ⇒ ⊥ X 6= t,X ∈ Var(t)

t
?
= X ,E ⇒ X

?
= t,E t 6∈ V

GM (Institute of Computer Science @ UIBK) Logic Programming 32/1

Unification

Definition
• sequence E = u1

?
= v1, . . . , un

?
= vn is called an equality problem

• if E = X1
?
= v1, . . . ,Xn

?
= vn, with Xi pairwise distinct and

Xi 6∈ Var(vj) for all i , j , then E is in solved form

• let E = X1
?
= v1, . . . ,Xn

?
= vn be a equality problem in solved form

E induces substitution σE = {X1 7→ v1, . . . ,Xn 7→ vn}

Unification Algorithm

u
?
= u,E ⇒ E

f (s1, . . . , sn)
?
= f (t1, . . . , tn),E ⇒ s1

?
= t1, . . . , sn

?
= tn,E

f (s1, . . . , sn)
?
= g(t1, . . . , tn),E ⇒ ⊥ f 6= g

X
?
= t,E ⇒ X

?
= t,E{X 7→ t} X ∈ Var(E),X 6∈ Var(t)

X
?
= t,E ⇒ ⊥ X 6= t,X ∈ Var(t)

t
?
= X ,E ⇒ X

?
= t,E t 6∈ V

GM (Institute of Computer Science @ UIBK) Logic Programming 32/1

Unification

Definition
• sequence E = u1

?
= v1, . . . , un

?
= vn is called an equality problem

• if E = X1
?
= v1, . . . ,Xn

?
= vn, with Xi pairwise distinct and

Xi 6∈ Var(vj) for all i , j , then E is in solved form

• let E = X1
?
= v1, . . . ,Xn

?
= vn be a equality problem in solved form

E induces substitution σE = {X1 7→ v1, . . . ,Xn 7→ vn}

Unification Algorithm

u
?
= u,E ⇒ E

f (s1, . . . , sn)
?
= f (t1, . . . , tn),E ⇒ s1

?
= t1, . . . , sn

?
= tn,E

f (s1, . . . , sn)
?
= g(t1, . . . , tn),E ⇒ ⊥ f 6= g

X
?
= t,E ⇒ X

?
= t,E{X 7→ t} X ∈ Var(E),X 6∈ Var(t)

X
?
= t,E ⇒ ⊥ X 6= t,X ∈ Var(t)

t
?
= X ,E ⇒ X

?
= t,E t 6∈ V

GM (Institute of Computer Science @ UIBK) Logic Programming 32/1

Unification

Definition
• sequence E = u1

?
= v1, . . . , un

?
= vn is called an equality problem

• if E = X1
?
= v1, . . . ,Xn

?
= vn, with Xi pairwise distinct and

Xi 6∈ Var(vj) for all i , j , then E is in solved form

• let E = X1
?
= v1, . . . ,Xn

?
= vn be a equality problem in solved form

E induces substitution σE = {X1 7→ v1, . . . ,Xn 7→ vn}

Unification Algorithm

u
?
= u,E ⇒ E

f (s1, . . . , sn)
?
= f (t1, . . . , tn),E ⇒ s1

?
= t1, . . . , sn

?
= tn,E

f (s1, . . . , sn)
?
= g(t1, . . . , tn),E ⇒ ⊥ f 6= g

X
?
= t,E ⇒ X

?
= t,E{X 7→ t} X ∈ Var(E),X 6∈ Var(t)

X
?
= t,E ⇒ ⊥ X 6= t,X ∈ Var(t)

t
?
= X ,E ⇒ X

?
= t,E t 6∈ V

GM (Institute of Computer Science @ UIBK) Logic Programming 32/1

Unification

Definition
• sequence E = u1

?
= v1, . . . , un

?
= vn is called an equality problem

• if E = X1
?
= v1, . . . ,Xn

?
= vn, with Xi pairwise distinct and

Xi 6∈ Var(vj) for all i , j , then E is in solved form

• let E = X1
?
= v1, . . . ,Xn

?
= vn be a equality problem in solved form

E induces substitution σE = {X1 7→ v1, . . . ,Xn 7→ vn}

Unification Algorithm

u
?
= u,E ⇒ E

f (s1, . . . , sn)
?
= f (t1, . . . , tn),E ⇒ s1

?
= t1, . . . , sn

?
= tn,E

f (s1, . . . , sn)
?
= g(t1, . . . , tn),E ⇒ ⊥ f 6= g

X
?
= t,E ⇒ X

?
= t,E{X 7→ t} X ∈ Var(E),X 6∈ Var(t)

X
?
= t,E ⇒ ⊥ X 6= t,X ∈ Var(t)

t
?
= X ,E ⇒ X

?
= t,E t 6∈ V

GM (Institute of Computer Science @ UIBK) Logic Programming 32/1

Unification

Definition
• sequence E = u1

?
= v1, . . . , un

?
= vn is called an equality problem

• if E = X1
?
= v1, . . . ,Xn

?
= vn, with Xi pairwise distinct and

Xi 6∈ Var(vj) for all i , j , then E is in solved form

• let E = X1
?
= v1, . . . ,Xn

?
= vn be a equality problem in solved form

E induces substitution σE = {X1 7→ v1, . . . ,Xn 7→ vn}

Unification Algorithm

u
?
= u,E ⇒ E

f (s1, . . . , sn)
?
= f (t1, . . . , tn),E ⇒ s1

?
= t1, . . . , sn

?
= tn,E

f (s1, . . . , sn)
?
= g(t1, . . . , tn),E ⇒ ⊥ f 6= g

X
?
= t,E ⇒ X

?
= t,E{X 7→ t} X ∈ Var(E),X 6∈ Var(t)

X
?
= t,E ⇒ ⊥ X 6= t,X ∈ Var(t)

t
?
= X ,E ⇒ X

?
= t,E t 6∈ V

GM (Institute of Computer Science @ UIBK) Logic Programming 32/1

Unification

Definition
• sequence E = u1

?
= v1, . . . , un

?
= vn is called an equality problem

• if E = X1
?
= v1, . . . ,Xn

?
= vn, with Xi pairwise distinct and

Xi 6∈ Var(vj) for all i , j , then E is in solved form

• let E = X1
?
= v1, . . . ,Xn

?
= vn be a equality problem in solved form

E induces substitution σE = {X1 7→ v1, . . . ,Xn 7→ vn}

Unification Algorithm

u
?
= u,E ⇒ E

f (s1, . . . , sn)
?
= f (t1, . . . , tn),E ⇒ s1

?
= t1, . . . , sn

?
= tn,E

f (s1, . . . , sn)
?
= g(t1, . . . , tn),E ⇒ ⊥ f 6= g

X
?
= t,E ⇒ X

?
= t,E{X 7→ t} X ∈ Var(E),X 6∈ Var(t)

X
?
= t,E ⇒ ⊥ X 6= t,X ∈ Var(t)

t
?
= X ,E ⇒ X

?
= t,E t 6∈ V

GM (Institute of Computer Science @ UIBK) Logic Programming 32/1

Unification

Definition
• sequence E = u1

?
= v1, . . . , un

?
= vn is called an equality problem

• if E = X1
?
= v1, . . . ,Xn

?
= vn, with Xi pairwise distinct and

Xi 6∈ Var(vj) for all i , j , then E is in solved form

• let E = X1
?
= v1, . . . ,Xn

?
= vn be a equality problem in solved form

E induces substitution σE = {X1 7→ v1, . . . ,Xn 7→ vn}

Unification Algorithm

u
?
= u,E ⇒ E

f (s1, . . . , sn)
?
= f (t1, . . . , tn),E ⇒ s1

?
= t1, . . . , sn

?
= tn,E

f (s1, . . . , sn)
?
= g(t1, . . . , tn),E ⇒ ⊥ f 6= g

X
?
= t,E ⇒ X

?
= t,E{X 7→ t} X ∈ Var(E),X 6∈ Var(t)

X
?
= t,E ⇒ ⊥ X 6= t,X ∈ Var(t)

t
?
= X ,E ⇒ X

?
= t,E t 6∈ V

GM (Institute of Computer Science @ UIBK) Logic Programming 32/1

Unification

Theorem

1 equality problems E is unifiable iff the unification algorithm stops
with a solved form

2 if E ⇒∗ E ′ such that E ′ is a solved form, then σE ′ is mgu of E

Example

f (X , g(Y),X)
?
= f (Z , g(U), h(U))

⇒ X
?
= Z , g(Y)

?
= g(U),X

?
= h(U)

⇒ X
?
= Z , g(Y)

?
= g(U),Z

?
= h(U)

⇒ X
?
= Z ,Y

?
= U,Z

?
= h(U)

⇒ X
?
= h(U),Y

?
= U,Z

?
= h(U) mgu

GM (Institute of Computer Science @ UIBK) Logic Programming 33/1

Unification

Theorem

1 equality problems E is unifiable iff the unification algorithm stops
with a solved form

2 if E ⇒∗ E ′ such that E ′ is a solved form, then σE ′ is mgu of E

Example

f (X , g(Y),X)
?
= f (Z , g(U), h(U))

⇒ X
?
= Z , g(Y)

?
= g(U),X

?
= h(U)

⇒ X
?
= Z , g(Y)

?
= g(U),Z

?
= h(U)

⇒ X
?
= Z ,Y

?
= U,Z

?
= h(U)

⇒ X
?
= h(U),Y

?
= U,Z

?
= h(U) mgu

GM (Institute of Computer Science @ UIBK) Logic Programming 33/1

Unification

Theorem

1 equality problems E is unifiable iff the unification algorithm stops
with a solved form

2 if E ⇒∗ E ′ such that E ′ is a solved form, then σE ′ is mgu of E

Example

f (X , g(Y),X)
?
= f (Z , g(U), h(U))

⇒ X
?
= Z , g(Y)

?
= g(U),X

?
= h(U)

⇒ X
?
= Z , g(Y)

?
= g(U),Z

?
= h(U)

⇒ X
?
= Z ,Y

?
= U,Z

?
= h(U)

⇒ X
?
= h(U),Y

?
= U,Z

?
= h(U) mgu

GM (Institute of Computer Science @ UIBK) Logic Programming 33/1

Unification

Theorem

1 equality problems E is unifiable iff the unification algorithm stops
with a solved form

2 if E ⇒∗ E ′ such that E ′ is a solved form, then σE ′ is mgu of E

Example

f (X , g(Y),X)
?
= f (Z , g(U), h(U))

⇒ X
?
= Z , g(Y)

?
= g(U),X

?
= h(U)

⇒ X
?
= Z , g(Y)

?
= g(U),Z

?
= h(U)

⇒ X
?
= Z ,Y

?
= U,Z

?
= h(U)

⇒ X
?
= h(U),Y

?
= U,Z

?
= h(U) mgu

GM (Institute of Computer Science @ UIBK) Logic Programming 33/1

Unification

Theorem

1 equality problems E is unifiable iff the unification algorithm stops
with a solved form

2 if E ⇒∗ E ′ such that E ′ is a solved form, then σE ′ is mgu of E

Example

f (X , g(Y),X)
?
= f (Z , g(U), h(U)) ⇒ X

?
= Z , g(Y)

?
= g(U),X

?
= h(U)

⇒ X
?
= Z , g(Y)

?
= g(U),Z

?
= h(U)

⇒ X
?
= Z ,Y

?
= U,Z

?
= h(U)

⇒ X
?
= h(U),Y

?
= U,Z

?
= h(U) mgu

GM (Institute of Computer Science @ UIBK) Logic Programming 33/1

Unification

Theorem

1 equality problems E is unifiable iff the unification algorithm stops
with a solved form

2 if E ⇒∗ E ′ such that E ′ is a solved form, then σE ′ is mgu of E

Example

f (X , g(Y),X)
?
= f (Z , g(U), h(U)) ⇒ X

?
= Z , g(Y)

?
= g(U),X

?
= h(U)

⇒ X
?
= Z , g(Y)

?
= g(U),Z

?
= h(U)

⇒ X
?
= Z ,Y

?
= U,Z

?
= h(U)

⇒ X
?
= h(U),Y

?
= U,Z

?
= h(U) mgu

GM (Institute of Computer Science @ UIBK) Logic Programming 33/1

Unification

Theorem

1 equality problems E is unifiable iff the unification algorithm stops
with a solved form

2 if E ⇒∗ E ′ such that E ′ is a solved form, then σE ′ is mgu of E

Example

f (X , g(Y),X)
?
= f (Z , g(U), h(U)) ⇒ X

?
= Z , g(Y)

?
= g(U),X

?
= h(U)

⇒ X
?
= Z , g(Y)

?
= g(U),Z

?
= h(U)

⇒ X
?
= Z ,Y

?
= U,Z

?
= h(U)

⇒ X
?
= h(U),Y

?
= U,Z

?
= h(U) mgu

GM (Institute of Computer Science @ UIBK) Logic Programming 33/1

Unification

Theorem

1 equality problems E is unifiable iff the unification algorithm stops
with a solved form

2 if E ⇒∗ E ′ such that E ′ is a solved form, then σE ′ is mgu of E

Example

f (X , g(Y),X)
?
= f (Z , g(U), h(U)) ⇒ X

?
= Z , g(Y)

?
= g(U),X

?
= h(U)

⇒ X
?
= Z , g(Y)

?
= g(U),Z

?
= h(U)

⇒ X
?
= Z ,Y

?
= U,Z

?
= h(U)

⇒ X
?
= h(U),Y

?
= U,Z

?
= h(U)

mgu

GM (Institute of Computer Science @ UIBK) Logic Programming 33/1

Unification

Theorem

1 equality problems E is unifiable iff the unification algorithm stops
with a solved form

2 if E ⇒∗ E ′ such that E ′ is a solved form, then σE ′ is mgu of E

Example

f (X , g(Y),X)
?
= f (Z , g(U), h(U)) ⇒ X

?
= Z , g(Y)

?
= g(U),X

?
= h(U)

⇒ X
?
= Z , g(Y)

?
= g(U),Z

?
= h(U)

⇒ X
?
= Z ,Y

?
= U,Z

?
= h(U)

⇒ X
?
= h(U),Y

?
= U,Z

?
= h(U) mgu

GM (Institute of Computer Science @ UIBK) Logic Programming 33/1

