
Logic Programming

Cezary Kaliszyk Georg Moser

Institute of Computer Science @ UIBK

Winter 2015

Summary of Last Lecture

Summary of Last Lecture

Definition

• functor(Term,F ,Arity) is true, if Term is a compound term, whose
principal functor is F with arity Arity

• arg(N,Term,Arg) is true, if Arg is the Nth argument of Term

Definition
• Term =.. List is true if List is a list whose head is the principal

functor of Term, and whose tail is the list of arguments of Term

• the operator =.. is also called univ

GM (Institute of Computer Science @ UIBK) Logic Programming 69/1

Summary of Last Lecture

Composing Recursive Programs

Example

d e l e t e ([] , X , []) .
d e l e t e ([X | Xs] ,X, Ys) :−
d e l e t e (Xs ,X, Ys) .
d e l e t e ([X | Xs] , Z , [X | Ys]) :−

d i f (X, Z) ,
d e l e t e (Xs , Z , Ys) .

Example

d e l e t e 2 ([] , X , []) .
d e l e t e 2 ([X | Xs] ,X, Ys) :−

d e l e t e 2 (Xs ,X, Ys) .
d e l e t e 2 ([X | Xs] , Z , [X | Ys]) :−

d e l e t e 2 (Xs , Z , Ys) .

GM (Institute of Computer Science @ UIBK) Logic Programming 70/1

Overview

Outline of the Lecture

Monotone Logic Programs

introduction, basic constructs, unification, database and recursive pro-
gramming, termination

Incomplete Data Structures and Constraints

incomplete data structures, definite clause grammars, constraint logic pro-
gramming, answer set programming

Full Prolog

semantics, correctness proofs, meta-logical predicates, cuts nondetermin-
istic programming, efficient programs, complexity

GM (Institute of Computer Science @ UIBK) Logic Programming 71/1

http://cl-informatik.uibk.ac.at

Termination Revisited

Termination Revisited

Example

is list([]). is list([X|Xs]) : − is list(Xs).

Definitions
• a list is complete if every instances satisfies the above type for lists

• otherwise it is incomplete

Example

the lists [a,b,c] and [a,X,c] are complete; the list [a,b|Xs] is not

Definition

a domain is a set of goals closed under the instance relation

GM (Institute of Computer Science @ UIBK) Logic Programming 72/1

Termination Revisited

Observation

Prolog may fail to find a solution to a goal, even though the goal has a
finite computation

Definition

a termination domain of a program P is a domain D such that P
terminates on all goals in D

Example

consider adding married/2 to the family database, and the following
“obvious” closure under commutativity:

married(X,Y) : − married(Y,X).

GM (Institute of Computer Science @ UIBK) Logic Programming 73/1

Termination Revisited

Definition

recursive (grammar) rules which have the recursive goal as the first goal
in the body are called left recursive

Example

are married(X,Y) : − married(X,Y).

are married(X,Y) : − married(Y,X).

Example

consider append/3, where the fact comes after the rule

1 append terminates if the first argument is a complete list

2 append terminates if the third argument is complete

3 append terminates iff the first or third argument is complete

GM (Institute of Computer Science @ UIBK) Logic Programming 74/1

Termination Revisited

Efficiency of Programs

Observations
• as soon as we know the termination domain of a program, we can

ask about the complexity (= efficiency) of the program

• in general resource analysis is even more difficult than termination
analysis

• in particular this holds for automatable techniques

Definition

suitable complexity measures are

• cardinality of the set of solutions space/time

• number of inferences time

• number of resolution steps time

• size of terms space

GM (Institute of Computer Science @ UIBK) Logic Programming 75/1

Termination Revisited

Example (specialised ancestor of/2)

a n c e s t o r o f (Ancestor , Descendant) :− f a l s e ,
c h i l d o f (Descendant , Ances to r) .

a n c e s t o r o f (Ancestor , Descendant) :−
c h i l d o f (Person , Ances to r) ,
a n c e s t o r o f (Person , Descendant) .

:− a n c e s t o r o f (j o s e p h I I , Descendant) .
:− a n c e s t o r o f (Ancestor , j o s e p h I I) .

Example (cont’d)

a n c e s t o r o f ’ (Ances to r) :−
c h i l d o f (Person , Ance s to r) ,
a n c e s t o r o f ’ (Person) .

GM (Institute of Computer Science @ UIBK) Logic Programming 76/1

Termination Revisited

Analysis

• in goal ancestor of (joseph II) we know the first argument: number of
inferences bounded by number of descendants of Joseph II

• consider goal ancestor of (Ancestor, joseph II); here the 2nd argument is
irrelevant for the complexity of the program

• child of /2 is called with free variables, hence the solution space is
given by the whole database

• all ancestors of all persons are computed

Example

:− a n c e s t o r o f (Ancestor , j o s e p h I I) .

a n c e s t o r o f 3 (Ancestor , Descendant) :−
c h i l d o f (Descendant , Ances to r) .

a n c e s t o r o f 3 (Ancestor , Descendant) :−
c h i l d o f (Descendant , Person) ,
a n c e s t o r o f 3 (Person , Descendant) .

GM (Institute of Computer Science @ UIBK) Logic Programming 77/1

Incomplete Data Structures

Incomplete Data Structures

Observation

given a list [1,2,3] it can be represented as the difference of two lists

1 [1,2,3] = [1,2,3] \ []

2 [1,2,3] = [1,2,3,4,5] \ [4,5]

3 [1,2,3] = [1,2,3,8] \ [8]

4 [1,2,3] = [1,2,3|Xs] \ Xs

Definition

the difference of two lists is denotes as As \ Bs and called difference list

Example

append dl(Xs \ Ys, Ys \ Zs, Xs \ Zs).

GM (Institute of Computer Science @ UIBK) Logic Programming 78/1

Incomplete Data Structures

Application of Difference Lists

Example

reverse(Xs,Ys) :- reverse dl(Xs, Ys \ []).

reverse dl([X|Xs], Ys \ Zs) :-

reverse dl(Xs, Ys \ [X | Zs]).

reverse dl([], Xs \ Xs).

Example

quicksort(Xs,Ys) :- quicksort dl(Xs, Ys \ []).

quicksort dl([X|Xs], Ys \ Zs) :-

partition(Xs,X,Littles, Bigs),

quicksort dl(Littles,Ys \ [X|Ys1]),

quicksort dl(Bigs,Ys1 \ Zs).

quicksort dl([],Xs \ Xs).

GM (Institute of Computer Science @ UIBK) Logic Programming 79/1

Incomplete Data Structures

Observations
• difference lists are effective if independently different sections of a

list are built, which are then concatenated

• the separation operator \ simplifies reading, but can be eliminated:
“As \ Bs” → “As , Bs”

• the explicit constructor should be removed, if time or space
efficiency is an issue

More Observations
• the tail Bs of a difference list acts like a pointer to the end of the

first list As

• this works as As is an incomplete list

• thus we represent a concrete list as the difference of two incomplete
data structures

• generalises to other recursive data types

GM (Institute of Computer Science @ UIBK) Logic Programming 80/1

Definite Clause Grammars

Context-Free Grammars

Definition

a grammar G is a tuple G = (V ,Σ,R, S), where

1 V finite set of variables (or nonterminals)

2 Σ alphabet, the terminal symbols, V ∩ Σ = ∅
3 R finite set of rules

4 S ∈ V the start symbol of G

a rule is a pair P → Q of words, such that P,Q ∈ (V ∪ Σ)∗ and there is
at least one variable in P

Definition

grammar G = (V ,Σ,R,S) is context-free, if ∀ rules P → Q:

1 P ∈ V

2 Q ∈ (V ∪ Σ)∗

GM (Institute of Computer Science @ UIBK) Logic Programming 81/1

Definite Clause Grammars

Example

sentence → noun phrase, verb phrase.

noun phrase → determiner, noun phrase2.

noun phrase → noun phrase2.

noun phrase2 → adjective, noun phrase2.

noun phrase2 → noun.

verb phrase → verb, noun phrase.

verb phrase → verb.

determiner → [the].

determiner → [a].

noun → [pie-plate].

noun → [surprise].

adjective → [decorated].

verb → [contains].

sentence
∗⇒ ‘‘the decorated pie-plate contains a surprise’’

GM (Institute of Computer Science @ UIBK) Logic Programming 82/1

Definite Clause Grammars

Example

sentence(S \ S0) :- noun phrase(S \ S1), verb phrase(S1 \ S0).

noun phrase(S \ S0) :-

determiner(S \ S1), noun phrase2(S1 \ S0).

noun phrase(S) :- noun phrase2(S).

noun phrase2(S \ S0) :-

adjective(S \ S1), noun phrase2(S1 \ S0).

noun phrase2(S) :- noun(S).

verb phrase(S \ S0) :- verb(S \ S1), noun phrase(S1 \ S0)

verb phrase(S) :- verb(S).

determiner([the|S] \ S).

determiner([a|S] \ S).

noun([pie-plate|S] \ S).

noun([surprise|S] \ S.

adjective([decorated|S] \ S).

verb([contains|S] \ S).

GM (Institute of Computer Science @ UIBK) Logic Programming 83/1

Definite Clause Grammars

Extension: Add Parsetree

Example

sentence(sentence(N,V), S \ S0) :-

noun phrase(N, S \ S1),

verb phrase(V, S1 \ S0).

Example (Definite Clause Grammars)

sentence(sentence(N,V)) → noun phrase(N), verb phrase(V).

noun phrase(np(D,N)) → determiner(D), noun phrase2(N).

noun phrase(np(N)) → noun phrase2(N).

noun phrase2(np2(A,N)) → adjective(A), noun phrase2(N).

noun phrase2(np2(N)) → noun(N).

verb phrase(vp(V,N)) → verb(V), noun phrase(N).

verb phrase(vp(V)) → verb(V).

GM (Institute of Computer Science @ UIBK) Logic Programming 84/1

Definite Clause Grammars

GUPU

Example (termination and efficiency)

• Example 35

• Example 36

Example (definite clause grammars)

• Example 40

GM (Institute of Computer Science @ UIBK) Logic Programming 85/1

