
Logic Programming

Cezary Kaliszyk Georg Moser

Institute of Computer Science @ UIBK

Winter 2015

http://cl-informatik.uibk.ac.at

Summary of Last Lecture

Definitions (CLP on finite domains)

• use module(library(clpfd)) loads the clpfd library

• Xs ins N .. M specifies that all values in Xs must be in the given
range

• all different(Xs) specifies that all values in Xs are different

• label(Xs) all variables in Xs are evaluated to become values

• #=, #\=, #>, . . . like the arithmetic comparison operators, but may
contain (constraint) variables

standard approach

• load the library

• specify all constraints

• call label to start efficient computation of solutions

GM (Institute of Computer Science @ UIBK) Logic Programming 118/1

GUPU

Example (constraint logic programming)

• 59, 60 (solution space)

• 61 (termination)

• 66 (core relation)

GM (Institute of Computer Science @ UIBK) Logic Programming 119/1

Overview

Outline of the Lecture

Monotone Logic Programs

introduction, basic constructs, unification, database and recursive pro-
gramming, termination

Incomplete Data Structures and Constraints

incomplete data structures, definite clause grammars, constraint logic pro-
gramming, answer set programming

Full Prolog

semantics, correctness proofs, meta-logical predicates, cuts nondetermin-
istic programming, efficient programs, complexity

GM (Institute of Computer Science @ UIBK) Logic Programming 120/1

Overview

Outline of the Lecture

Monotone Logic Programs

introduction, basic constructs, unification, database and recursive pro-
gramming, termination

Incomplete Data Structures and Constraints

incomplete data structures, definite clause grammars, constraint logic pro-
gramming, answer set programming

Full Prolog

semantics, correctness proofs, meta-logical predicates, cuts nondetermin-
istic programming, efficient programs, complexity

GM (Institute of Computer Science @ UIBK) Logic Programming 120/1

Labeling

Efficient Constraint Logic Programmming

Strategies for Solutions

• take termination seriously
non-termination is a sign of inefficiency

• choose suitable labeling strategies

• use system predicates

:− Zs = [A, B, C] , Zs i n s 1 . . 2 ,
A #\= B, B #\= C , A #\= C .

:/− Zs = [A, B, C] , Zs i n s 1 . . 2 ,
a l l d i f f e r e n t (Zs) .

• make use of redundant constraints
recall the magic square example, where the sums equal
n · (n2 + 1)/2; using this insight redundant constrains are prevented,
and the search is quicker; however, in general a predefined search
strategy doesn’t need to be more efficient

GM (Institute of Computer Science @ UIBK) Logic Programming 121/1

Labeling

Labeling Strategies

Strategies for Solutions (cont’d)

• minimise the solution space
consider the exclusion of rotations and symmetries for magic square

• improve representation of solutions
inefficient/redundant representations increase the solution space
unnecessarily

Definition

labeling (+Options,+Vars) assign a value to each variable in Vars; three
categories of options exist

• variable selection strategy

• value order strategy

• branching strategy

GM (Institute of Computer Science @ UIBK) Logic Programming 122/1

Labeling

Labeling Strategies

Strategies for Solutions (cont’d)

• minimise the solution space
consider the exclusion of rotations and symmetries for magic square

• improve representation of solutions
inefficient/redundant representations increase the solution space
unnecessarily

Definition

labeling (+Options,+Vars) assign a value to each variable in Vars; three
categories of options exist

• variable selection strategy

• value order strategy

• branching strategy

GM (Institute of Computer Science @ UIBK) Logic Programming 122/1

Labeling

Definition (variable selection strategy)

• leftmost, select the variables in the order they occur in Vars (default)

• min, select the leftmost variable with lowest lower bound next

:− X i n 1 . . 2 , Y i n 3 . . 4 , l a b e l i n g ([min] , [X , Y]) .
X = 1 , Y = 3 ;
X = 1 , Y = 4 ;
X = 2 , Y = 3 ;
X = 2 , Y = 4

• max, select the leftmost variable with highest upper bound next

:− X i n 1 . . 2 , Y i n 3 . . 4 , l a b e l i n g ([min] , [X , Y]) .
X = 1 , Y = 3 ;
X = 2 , Y = 3 ;
X = 1 , Y = 4 ;
X = 2 , Y = 4

• ff, first fail, select the leftmost variable with smallest domain next,
in order to detect infeasibility early

GM (Institute of Computer Science @ UIBK) Logic Programming 123/1

Labeling

Definition (variable selection strategy (cont’d))

• ffc, from the variables with smallest domain, select the one
occurring most often in constraints

Definition (value order strategy)

• up, try the elements of the domain in ascending order

• down, in descending order

Definition (branching strategy)

• step, for each variable X , the choice is between X = V and X #\=
V (V determined by value order)

• enum, enumerate the domain of X according to the value order

• bisect, choice is between X \#=< M and X \#> M (M the
midpoint of the domain)

GM (Institute of Computer Science @ UIBK) Logic Programming 124/1

Labeling

Definition (variable selection strategy (cont’d))

• ffc, from the variables with smallest domain, select the one
occurring most often in constraints

Definition (value order strategy)

• up, try the elements of the domain in ascending order

• down, in descending order

Definition (branching strategy)

• step, for each variable X , the choice is between X = V and X #\=
V (V determined by value order)

• enum, enumerate the domain of X according to the value order

• bisect, choice is between X \#=< M and X \#> M (M the
midpoint of the domain)

GM (Institute of Computer Science @ UIBK) Logic Programming 124/1

Labeling

Definition (variable selection strategy (cont’d))

• ffc, from the variables with smallest domain, select the one
occurring most often in constraints

Definition (value order strategy)

• up, try the elements of the domain in ascending order

• down, in descending order

Definition (branching strategy)

• step, for each variable X , the choice is between X = V and X #\=
V (V determined by value order)

• enum, enumerate the domain of X according to the value order

• bisect, choice is between X \#=< M and X \#> M (M the
midpoint of the domain)

GM (Institute of Computer Science @ UIBK) Logic Programming 124/1

Answer Set Programming

The New Kid on the Block

Answer Set Programming

• novel approach to modelling and solving search and optimisation
problems

• ¬ programming, but a specification language

• ¬ Turing complete

• purely declarative

• restricted to finite models

Success Stories

• team building for cargo at Gioia Tauro Seaport

• expert system in space shuttle

• natural language processing

• . . .

GM (Institute of Computer Science @ UIBK) Logic Programming 125/1

http://peace.eas.asu.edu/aaai12tutorial

Answer Set Programming

The New Kid on the Block

Answer Set Programming

• novel approach to modelling and solving search and optimisation
problems

• ¬ programming, but a specification language

• ¬ Turing complete

• purely declarative

• restricted to finite models

Success Stories
• team building for cargo at Gioia Tauro Seaport

• expert system in space shuttle

• natural language processing

• . . .

GM (Institute of Computer Science @ UIBK) Logic Programming 125/1

http://peace.eas.asu.edu/aaai12tutorial

Answer Set Programming

The New Kid on the Block

Answer Set Programming

• novel approach to modelling and solving search and optimisation
problems

• ¬ programming, but a specification language

• ¬ Turing complete

• purely declarative

• restricted to finite models

Success Stories
• team building for cargo at Gioia Tauro Seaport

• expert system in space shuttle

• natural language processing

• . . .

GM (Institute of Computer Science @ UIBK) Logic Programming 125/1

http://peace.eas.asu.edu/aaai12tutorial

Answer Set Programming

The New Kid on the Block

Answer Set Programming

• novel approach to modelling and solving search and optimisation
problems

• ¬ programming, but a specification language

• ¬ Turing complete

• purely declarative

• restricted to finite models

Success Stories
• team building for cargo at Gioia Tauro Seaport

• expert system in space shuttle

• natural language processing

• . . .

GM (Institute of Computer Science @ UIBK) Logic Programming 125/1

http://peace.eas.asu.edu/aaai12tutorial

Answer Set Programming

Propositional Setting

Definitions
• atoms, facts, rules are defined as before

• only constants (= propositions) are allowed as atoms

• negation is negation as failure

• disjunctions may appear in the head

• an answer set is a set of atoms corresponding to the minimal model
of the program

Example (Negation as Failure)

l i g h t o n :− power on , not broken .
power on .

answer set: {power on, light on}

GM (Institute of Computer Science @ UIBK) Logic Programming 126/1

Answer Set Programming

Propositional Setting

Definitions
• atoms, facts, rules are defined as before

• only constants (= propositions) are allowed as atoms

• negation is negation as failure

• disjunctions may appear in the head

• an answer set is a set of atoms corresponding to the minimal model
of the program

Example (Negation as Failure)

l i g h t o n :− power on , not broken .
power on .

answer set: {power on, light on}

GM (Institute of Computer Science @ UIBK) Logic Programming 126/1

Answer Set Programming

Propositional Setting

Definitions
• atoms, facts, rules are defined as before

• only constants (= propositions) are allowed as atoms

• negation is negation as failure

• disjunctions may appear in the head

• an answer set is a set of atoms corresponding to the minimal model
of the program

Example (Negation as Failure)

l i g h t o n :− power on , not broken .
power on .

answer set: {power on, light on}

GM (Institute of Computer Science @ UIBK) Logic Programming 126/1

Answer Set Programming

Propositional Setting

Definitions
• atoms, facts, rules are defined as before

• only constants (= propositions) are allowed as atoms

• negation is negation as failure

• disjunctions may appear in the head

• an answer set is a set of atoms corresponding to the minimal model
of the program

Example (Negation as Failure)

l i g h t o n :− power on , not broken .
power on .

answer set: {power on, light on}

GM (Institute of Computer Science @ UIBK) Logic Programming 126/1

Answer Set Programming

Propositional Setting

Definitions
• atoms, facts, rules are defined as before

• only constants (= propositions) are allowed as atoms

• negation is negation as failure

• disjunctions may appear in the head

• an answer set is a set of atoms corresponding to the minimal model
of the program

Example (Negation as Failure)

l i g h t o n :− power on , not broken .
power on .

answer set: {power on, light on}

GM (Institute of Computer Science @ UIBK) Logic Programming 126/1

Answer Set Programming

Propositional Setting

Definitions
• atoms, facts, rules are defined as before

• only constants (= propositions) are allowed as atoms

• negation is negation as failure

• disjunctions may appear in the head

• an answer set is a set of atoms corresponding to the minimal model
of the program

Example (Negation as Failure)

l i g h t o n :− power on , not broken .
power on .

answer set: {power on, light on}

GM (Institute of Computer Science @ UIBK) Logic Programming 126/1

Answer Set Programming

Example (Disjunctive Heads)

open | c l o s e d :− door .

answer sets: {open}, {closed}

Example

a | b .
a | c .

answer sets: {a} and {b, c}
a | b .
a :− b .

answer set: {a}, but not {b} nor {a, b}

GM (Institute of Computer Science @ UIBK) Logic Programming 127/1

Answer Set Programming

Example (Disjunctive Heads)

open | c l o s e d :− door .

answer sets: {open}, {closed}

Example

a | b .
a | c .

answer sets: {a} and {b, c}

a | b .
a :− b .

answer set: {a}, but not {b} nor {a, b}

GM (Institute of Computer Science @ UIBK) Logic Programming 127/1

Answer Set Programming

Example (Disjunctive Heads)

open | c l o s e d :− door .

answer sets: {open}, {closed}

Example

a | b .
a | c .

answer sets: {a} and {b, c}
a | b .
a :− b .

answer set: {a}, but not {b} nor {a, b}

GM (Institute of Computer Science @ UIBK) Logic Programming 127/1

Answer Set Programming

Definition

constraints are negative assertions, representing fact that must not occur
in any model of the program

Example

a :− not a , b .

any answer set must not contain b and simplifies to

:− b .

Additional Features

• finite choice functions: {fact1, fact2, fact3}.
• choice and counting: 1{fact1, fact2, fact3}2.

“1” or “2” may be missing

GM (Institute of Computer Science @ UIBK) Logic Programming 128/1

Answer Set Programming

Definition

constraints are negative assertions, representing fact that must not occur
in any model of the program

Example

a :− not a , b .

any answer set must not contain b and simplifies to

:− b .

Additional Features

• finite choice functions: {fact1, fact2, fact3}.
• choice and counting: 1{fact1, fact2, fact3}2.

“1” or “2” may be missing

GM (Institute of Computer Science @ UIBK) Logic Programming 128/1

Answer Set Programming

Definition

constraints are negative assertions, representing fact that must not occur
in any model of the program

Example

a :− not a , b .

any answer set must not contain b and simplifies to

:− b .

Additional Features

• finite choice functions: {fact1, fact2, fact3}.
• choice and counting: 1{fact1, fact2, fact3}2.

“1” or “2” may be missing

GM (Institute of Computer Science @ UIBK) Logic Programming 128/1

Answer Set Programming

First-Order Setting

Definition
• extension of first-order language

• no function symbols

Example (3-colouring)

r e d (X) | g r e e n (X) | b l u e (X) .
:− r e d (X) , r e d (Y) , edge (X, Y) .
:− g r e e n (X) , g r e e n (Y) , edge (X, Y) .
:− b l u e (X) , b l u e (Y) , edge (X, Y) .

Example ((part of) 8-queens problem)

:− not (1 = count (Y : queen (X, Y))) , row (X)

expresses that exactly one queen appears in every row and column

GM (Institute of Computer Science @ UIBK) Logic Programming 129/1

Answer Set Programming

First-Order Setting

Definition
• extension of first-order language

• no function symbols

Example (3-colouring)

r e d (X) | g r e e n (X) | b l u e (X) .
:− r e d (X) , r e d (Y) , edge (X, Y) .
:− g r e e n (X) , g r e e n (Y) , edge (X, Y) .
:− b l u e (X) , b l u e (Y) , edge (X, Y) .

Example ((part of) 8-queens problem)

:− not (1 = count (Y : queen (X, Y))) , row (X)

expresses that exactly one queen appears in every row and column

GM (Institute of Computer Science @ UIBK) Logic Programming 129/1

Answer Set Programming

First-Order Setting

Definition
• extension of first-order language

• no function symbols

Example (3-colouring)

r e d (X) | g r e e n (X) | b l u e (X) .
:− r e d (X) , r e d (Y) , edge (X, Y) .
:− g r e e n (X) , g r e e n (Y) , edge (X, Y) .
:− b l u e (X) , b l u e (Y) , edge (X, Y) .

Example ((part of) 8-queens problem)

:− not (1 = count (Y : queen (X, Y))) , row (X)

expresses that exactly one queen appears in every row and column

GM (Institute of Computer Science @ UIBK) Logic Programming 129/1

Answer Set Programming

Grounders and Solvers

Grounder Solver
ASP grounded answer set

Grounders

• DLV (DLV Systems, Calabria)

• Gringo (University of Potsdam)

• lparse (University of Helsinki)

Solvers

• clasp (University of Potsdam)

• cmodels (University of Austin)

• smodels (University of Helsinki)

GM (Institute of Computer Science @ UIBK) Logic Programming 130/1

http://www.dlvsystem.com
http://potassco.sourceforge.net/
http://www.tcs.hut.fi/Software/smodels/
http://potassco.sourceforge.net/
https://www.cs.utexas.edu/users/tag/cmodels/
http://www.tcs.hut.fi/Software/smodels/

Answer Set Programming

Grounders and Solvers

Grounder Solver
ASP grounded answer set

Grounders

• DLV (DLV Systems, Calabria)

• Gringo (University of Potsdam)

• lparse (University of Helsinki)

Solvers

• clasp (University of Potsdam)

• cmodels (University of Austin)

• smodels (University of Helsinki)

GM (Institute of Computer Science @ UIBK) Logic Programming 130/1

http://www.dlvsystem.com
http://potassco.sourceforge.net/
http://www.tcs.hut.fi/Software/smodels/
http://potassco.sourceforge.net/
https://www.cs.utexas.edu/users/tag/cmodels/
http://www.tcs.hut.fi/Software/smodels/

Answer Set Programming

Grounders and Solvers

Grounder Solver
ASP grounded answer set

Grounders

• DLV (DLV Systems, Calabria)

• Gringo (University of Potsdam)

• lparse (University of Helsinki)

Solvers

• clasp (University of Potsdam)

• cmodels (University of Austin)

• smodels (University of Helsinki)

GM (Institute of Computer Science @ UIBK) Logic Programming 130/1

http://www.dlvsystem.com
http://potassco.sourceforge.net/
http://www.tcs.hut.fi/Software/smodels/
http://potassco.sourceforge.net/
https://www.cs.utexas.edu/users/tag/cmodels/
http://www.tcs.hut.fi/Software/smodels/

Answer Set Programming

Prolog and Answer Set Programming

• proof search

• Turing complete

• control

• efficiency

• model search

• finite domain

• specification language

• generality

Example
h a n o i (0 , , , , []) .
h a n o i (N, X, Y, Z , Ls) :−

N > 0 , M i s N − 1 ,
h a n o i (M, X, Z , Y, Ls0) ,
append (Ls0 , [move (N, X, Z)] , Ls1) ,
h a n o i (M, Y, X, Z , Ls2) ,
append (Ls1 , Ls2 , Ls) .

GM (Institute of Computer Science @ UIBK) Logic Programming 131/1

Answer Set Programming

Prolog and Answer Set Programming

• proof search

• Turing complete

• control

• efficiency

• model search

• finite domain

• specification language

• generality

Example
h a n o i (0 , , , , []) .
h a n o i (N, X, Y, Z , Ls) :−

N > 0 , M i s N − 1 ,
h a n o i (M, X, Z , Y, Ls0) ,
append (Ls0 , [move (N, X, Z)] , Ls1) ,
h a n o i (M, Y, X, Z , Ls2) ,
append (Ls1 , Ls2 , Ls) .

GM (Institute of Computer Science @ UIBK) Logic Programming 131/1

Answer Set Programming

Example

d i s k (1 . . n) . peg (a ; b ; c) .
t r a n s i t i o n (0 . . pa th l eng th −1). s i t u a t i o n (0 . . p a t h l e ng t h) .
l o c a t i o n (Peg) :− peg (Peg) . l o c a t i o n (Disk) :− d i s k (Disk) .
#domain d i s k (X ;Y) . #domain peg (P ; P1 ; P2) .
#domain t r a n s i t i o n (T) . #domain s i t u a t i o n (I) .
#domain l o c a t i o n (L ; L1) .

on (X, L ,T+1) :− on (X, L ,T) , not o t h e r l o c (X, L ,T+1).
o t h e r l o c (X, L , I) :− on (X, L1 , I) , L1!=L .
:− on (X, L , I) , on (X, L1 , I) , L!=L1 .
i npeg (X,P , I) :− on (X, L , I) , i npeg (L ,P , I) . i npeg (P ,P , I) .
top (P , L , I) :− i npeg (L ,P , I) , not cove r ed (L , I) .
cove r ed (L , I) :− on (X, L , I) .
:− on (X,Y, I) , X>Y.
on (X, L ,T+1) :− move (P1 , P2 ,T) , top (P1 ,X,T) , top (P2 , L ,T) .
:− move (P1 , P2 ,T) , top (P1 , P1 ,T) . movement (P1 , P2) :− P1 != P2 .
1 {move (A,B,T) : movement (A,B) } 1 .
on (n , a , 0) . on (X,X+1 ,0) :− X<n .
onewrong :− not i npeg (X, c , p a t h l e ng t h) .
:− onewrong .

GM (Institute of Computer Science @ UIBK) Logic Programming 132/1

