

Interactive Theorem Proving

Lecture 1.5

Cezary Kaliszyk (VO) Vincent van Oostrom (PS)

October 11, 2016

Administration

Grading

- Homeworks + Performance (50%)
- Bigger Proof
- System Implementation
- Presentation

Proseminar content

- HOL Light introduction
- Kernel, rules, subgoal-package, tactics
- Type introduction, quotients, inductive
- Exercises for λP , $\lambda 2$
- Curry-Howard, BHK
- Logical Frameworks (LF, Pure)
- ullet Proving properties modulo lpha
- Presentations

HOL Light

- Member of the HOL family of provers
 - Mike Gordon's original HOL system developed in the 80s
- LCF-style proof checker
 - Simply typed lambda calculus (polymorphic)
 - + Classical higher-order logic
- Simple foundation
 - Minimal (uncluttered) implementation
- OCaml

LCF-style theorem proving

- Edinburgh LCF 1979
- Small set of simple inference rules
 - All proofs are reduced to this set
- Implemented as functions in a programming language
 - The power of the underlying programming language makes the approach practical
- HOL Light is one of the more radical LCF provers
 - Very few simple rules
 - Bigger proofs may expand to millions or billions of inferences

The HOL family DAG

2

Simplicity of HOL Light

Close to the programming language top-level

- Easy to program
- Easy to extend
- Easy to experiment with new ideas
 - MMode [Harrison'96, Giero'04, Wiedijk'08]
 - Logical Foundations [Voelker'07, Fleuriot'12]
 - Architectures [Wiedijk'09]
 - Machine Learning Premise Selection [K., Urban]

However:

- Interface is primitive (spartan)
- Not user-friendly

HOL Light's use

- Analysis and Number Theory
 - Multivariate Analysis (for Flyspeck)
- Formal verification of hardware and software
 - Intel's floating point verification
 - HOL in HOL
- · Algebra is less convenient
- · Formalization of algorithms more limited
 - · Only simple function definitions
 - No co-induction

Interesting Results

- Kepler conjecture
- Jordan curve theorem
- Prime number theorem
- Radon's theorem
- .

HOL types

- Similar to OCaml types
 - (Simply typed lambda calculus with parametric polymorphism)
- A theorem can talk about (α) list
 - Inference rules allow instantiating the α to other types

```
type hol_type =
   Tyvar of string
| Tyapp of string * hol_type list;;

Two primitive types:
let the_type_constants = ref ["bool",0; "fun",2];;
Then adding of axiomatic types and typedef.
```

HOL Terms

Terms of simply typed lambda calculus

```
type term =
   Var of string * hol_type
| Const of string * hol_type
| Comb of term * term
| Abs of term * term;;
```

Type information only at variables and constants. (Exercise).

HOL Terms

Terms of simply typed lambda calculus

```
type term =
   Var of string * hol_type
| Const of string * hol_type
| Comb of term * term
| Abs of term * term;;
```

Type information only at variables and constants. (Exercise).

Abstract type and term interface allows only well typed terms

Primitive Constants

```
let the_term_constants =
  ref ["=", mk_fun_ty aty (mk_fun_ty aty bool_ty)];;
```

Again the abstract term interface makes sure that a constant is well typed.

- · Constants can be introduced with definitions or axiomatically
 - (Axiom of choice)
- The type of theorems

```
type thm = Sequent (term list * term)
```

The basic inference rules (1/2)

The basic inference rules (2/2)

$$\frac{\Gamma \vdash \rho \quad \Delta \vdash q}{(\Gamma - \{q\}) \cup (\Delta - \{p\}) \vdash \rho \Leftrightarrow q} \text{ DEDUCT_ANTISYM_RULE}$$

$$\frac{\Gamma[x_1, \dots, x_n] \vdash \rho[x_1, \dots, x_n]}{\Gamma[t_1, \dots, t_n] \vdash \rho[t_1, \dots, t_n]} \text{ INST}$$

$$\frac{\Gamma[\alpha_1, \dots, \alpha_n] \vdash \rho[\alpha_1, \dots, \alpha_n]}{\Gamma[\gamma_1, \dots, \gamma_n] \vdash \rho[\gamma_1, \dots, \gamma_n]} \text{ INST_TYPE}$$

Guide to reading the source

- hol.ml: load order
- lib.ml: ML standard library for portability
- fusion.ml: the kernel
- drule.ml: simple derived rules
- bool.ml: basic boolean constants
- tactic.ml: subgoal package
- simp.ml: rewriting

Highlights of HOL Light

- 1. Open: Readable and higher-level. Close to abstract algorithm descriptions. Easy to investigate what happens "inside the box".
- 2. Sound and Coherent: Thanks to LCF. Logically clean and comprehensible structure.
- 3. Extensible: Examples of decision procedures and tools.
- 4. Easy to connect to other systems. Clean interface. LCF ensures soundness.
- 5. Small and lightweight: Few MB of memory sufficient to run some challenging examples.
- 6. Different proof styles: Backwards and Mizar-style.
- 7. Special proof procedures: TAUT, Meson, Metis, ...

Summary

This Lecture

- LCF style
- · HOL provers family
- HOL logic
- Proof Assistant Kernel

Next

- Typed λ -calculus
- HOL subgoal package and tactics