
Interactive Theorem Proving
Lecture 1.5

Cezary Kaliszyk (VO)
Vincent van Oostrom (PS)

October 11, 2016

http://cl-informatik.uibk.ac.at
http://cl-informatik.uibk.ac.at/~cek
http://cl-informatik.uibk.ac.at/~cek


Administration

Grading

• Homeworks + Performance (50%)

• Bigger Proof

• System Implementation

• Presentation

CK Interactive Theorem Proving 2/16



Proseminar content

• HOL Light introduction

• Kernel, rules, subgoal-package, tactics

• Type introduction, quotients, inductive

• Exercises for λP, λ2

• Curry-Howard, BHK

• Logical Frameworks (LF, Pure)

• Proving properties modulo α

• Presentations

CK Interactive Theorem Proving 3/16



HOL Light

• Member of the HOL family of provers
• Mike Gordon’s original HOL system developed in the 80s

• LCF-style proof checker
• Simply typed lambda calculus (polymorphic)
• + Classical higher-order logic

• Simple foundation
• Minimal (uncluttered) implementation

• OCaml

CK Interactive Theorem Proving 4/16



LCF-style theorem proving

• Edinburgh LCF 1979

• Small set of simple inference rules
• All proofs are reduced to this set

• Implemented as functions in a programming language
• The power of the underlying programming language makes the

approach practical

• HOL Light is one of the more radical LCF provers
• Very few simple rules
• Bigger proofs may expand to millions or billions of inferences

CK Interactive Theorem Proving 5/16



The HOL family DAG

HOL88

�
�

�
�

�	
hol90

@
@
@
@
@R

ProofPower

HHHHHHHHHHHj
Isabelle/HOL

?
HOL Light

?
hol98

@
@
@@R

�
�

�
�

�	

?
HOL 4

@
@
@
@
@R

HOL Zero
?

2

(By John Harrison)
CK Interactive Theorem Proving 6/16



Simplicity of HOL Light

Close to the programming language top-level

• Easy to program

• Easy to extend

• Easy to experiment with new ideas
• MMode [Harrison’96, Giero’04, Wiedijk’08]
• Logical Foundations [Voelker’07, Fleuriot’12]
• Architectures [Wiedijk’09]
• Machine Learning Premise Selection [K., Urban]

However:

• Interface is primitive (spartan)

• Not user-friendly

CK Interactive Theorem Proving 7/16



HOL Light’s use

• Analysis and Number Theory
• Multivariate Analysis (for Flyspeck)

• Formal verification of hardware and software
• Intel’s floating point verification
• HOL in HOL

• Algebra is less convenient

• Formalization of algorithms more limited
• Only simple function definitions
• No co-induction

CK Interactive Theorem Proving 8/16



Interesting Results

• Kepler conjecture

• Jordan curve theorem

• Prime number theorem

• Radon’s theorem

• ...

CK Interactive Theorem Proving 9/16



HOL types

• Similar to OCaml types
• (Simply typed lambda calculus with parametric polymorphism)

• A theorem can talk about (α)list
• Inference rules allow instantiating the α to other types

type hol_type =

Tyvar of string

| Tyapp of string * hol_type list;;

Two primitive types:

let the_type_constants = ref ["bool",0; "fun",2];;

Then adding of axiomatic types and typedef.

CK Interactive Theorem Proving 10/16



HOL Terms

Terms of simply typed lambda calculus

type term =

Var of string * hol_type

| Const of string * hol_type

| Comb of term * term

| Abs of term * term;;

Type information only at variables and constants. (Exercise).

• Abstract type and term interface allows only well typed terms

CK Interactive Theorem Proving 11/16



HOL Terms

Terms of simply typed lambda calculus

type term =

Var of string * hol_type

| Const of string * hol_type

| Comb of term * term

| Abs of term * term;;

Type information only at variables and constants. (Exercise).

• Abstract type and term interface allows only well typed terms

CK Interactive Theorem Proving 11/16



Primitive Constants

let the_term_constants =

ref ["=", mk_fun_ty aty (mk_fun_ty aty bool_ty)];;

Again the abstract term interface makes sure that a constant is well
typed.

• Constants can be introduced with definitions or axiomatically
• (Axiom of choice)

• The type of theorems

type thm = Sequent (term list * term)

CK Interactive Theorem Proving 12/16



The basic inference rules (1/2)

` t = t
REFL

Γ ` s = t ∆ ` t = u
Γ ∪∆ ` s = u

TRANS

Γ ` s = t ∆ ` u = v
Γ ∪∆ ` s(u) = t(v)

MK COMB

Γ ` s = t
Γ ` (λx .s) = (λx .t)

ABS

` (λx .t) x = t
BETA

{p} ` p
ASSUME

Γ ` p ⇔ q ∆ ` p

Γ ∪∆ ` q
EQ MP

CK Interactive Theorem Proving 13/16



The basic inference rules (2/2)

Γ ` p ∆ ` q

(Γ− {q}) ∪ (∆− {p}) ` p ⇔ q
DEDUCT ANTISYM RULE

Γ[x1, . . . , xn] ` p[x1, . . . , xn]

Γ[t1, . . . , tn] ` p[t1, . . . , tn]
INST

Γ[α1, . . . , αn] ` p[α1, . . . , αn]

Γ[γ1, . . . , γn] ` p[γ1, . . . , γn]
INST TYPE

CK Interactive Theorem Proving 14/16



Guide to reading the source

• hol.ml: load order

• lib.ml: ML standard library for portability

• fusion.ml: the kernel

• drule.ml: simple derived rules

• bool.ml: basic boolean constants

• tactic.ml: subgoal package

• simp.ml: rewriting

CK Interactive Theorem Proving 15/16



Highlights of HOL Light

1. Open: Readable and higher-level. Close to abstract algorithm
descriptions. Easy to investigate what happens “inside the box”.

2. Sound and Coherent: Thanks to LCF. Logically clean and
comprehensible structure.

3. Extensible: Examples of decision procedures and tools.

4. Easy to connect to other systems. Clean interface. LCF ensures
soundness.

5. Small and lightweight: Few MB of memory sufficient to run some
challenging examples.

6. Different proof styles: Backwards and Mizar-style.

7. Special proof procedures: TAUT, Meson, Metis, ...

CK Interactive Theorem Proving 16/16



Summary

This Lecture
• LCF style

• HOL provers family

• HOL logic

• Proof Assistant Kernel

Next
• Typed λ-calculus

• HOL subgoal package and tactics

CK Interactive Theorem Proving 17/16


