

Interactive Theorem Proving Week 11

Cezary Kaliszyk (VO) Vincent van Oostrom (PS)

December 16, 2016

So far

Proof Assistants, HOL Light, λ_{\rightarrow} , λ_{P} , λ_{2} , paradoxes, set theory

- ZF(C) Axiomatization
- Bootstrapping Mathematics in set theory

Today

Mizar

Mizar History

Project started in 1973

- Attempt to reconstruct the mathematical vernacular
- In a computer environment

Today

- Formal language for writing proofs
 - Designed to be close to mathematical vernacular
 - Subset of standard English
 - Declarative style
 - Highly structured
 - rigorous and semantically unambiguous
- System for verifying the proofs
- Mizar Mathematical Library (MML)

Systematic collection

- Started 1989
- Based on Tarski-Grothendieck axiomatization
- Incremental Revisions

Biggest library of formal mathematics

- 1177 articles
- 52775 theorems
- 10670 definitions
- 820 schemes
- 11333 registrations

Mizar Foundations

Logic

- classical first order logic
- second order free variables
 - for recursive definitions or induction
- natural deduction
 - · usually forward reasoning

independent of the axioms of set theory

- First article: defining set and element
- Second article: axiomatization of set theory

Mizar article

- A .miz file (optionally .voc and .abs)
- Environment
- Theorems (local lemmas)
- Definitions
- Schemes
- Justifications
 - Simple justification
 - Proof
 - Schematization

Justifications and proofs

Local justification

A: statement_1;

...
statement_2 by A;

External justification

x in { x } by TARSKI:def 1;

Proof structure

statement

proof

• • •

thus statement;

end;

Natural deduction (1/3)

onjunction	
& B	
roof	
thus A;	
••••	
thus B;	
nd;	

Implication

A implies B
proof
assume A;
thus B;
end;

Natural deduction (2/3)

Disjunction
A or B
proof
assume not A;
•••
thus B;
end;

Comment

:: this is a comment

Natural deduction (3/3)

Equivalence

```
A iff B
proof
   thus A implies B
   proof
      assume A;
       . . .
      thus B;
   end;
   thus B implies A
   proof
      assume B;
       . . .
      thus A;
   end;
end;
```

Predicate logic

Universal Quantification

```
for x being T holds P[x]
proof
    let x be T;
    ...
    thus P[x];
end;
```

Existential Quantification

ex x being T st P[x]
proof

```
...
take x = expression;
...
thus P[x];
end;
```

```
scheme
Ind { P[Nat] } : for k being Element of NAT holds P[k]
provided
A1: P[0] and
A2: for k being Element of NAT st P[k] holds P[k + 1]
proof
...
```

end;

```
2 divides n * (n+1)
proof
    :: local predicate
    defpred P[Nat] means 2 divides $1 * ($1 + 1);
    a1: P[0];
    a2: for k being Nat st P[k] holds P[k + 1];
    :: refering to the scheme
    for k being Nat holds P[k] from NAT_1:sch 2(a1,a2);
    hence 2 divides n * (n + 1);
end;
```

Implementation

- Separate processes
- Parser
 - Environment
 - Operator syntax
- Analyzer
 - Disambiguation
 - Types! (adjectives)
- Checker
 - Disprover processes all disjuncts
 - Forms of a term
 - Congruence closure
- Post-processing
 - Relprem, Relinfer, ...

27 special symbols

&

c=

110 reserved words

contradiction

not or

implies

iff

for x holds a(x)

ex x st a(x)

Mizar Types

A type hierarchy

- Function of X,Y
- PartFunc of X,Y
- Relation of X,Y
- Subset of [:X,Y:]
- set

Adjectives

- Examples
 - one-to-one Function of X,Y
 - finite non-empty proper Subset of X
- Automatic deriving of type information using registrations
- Overloading of notations
- Types must be non-empty

No set of inference rules

"obviousness w.r.t. an algorithm" by M. Davis

de Bruijn criterion is not preserved

- new computation mechanisms (CAS, DS)
- more automation in the equality calculus
- more general statements in an inference

- Is x = y a consequence of y = z, f(y) = z, and f(z) = x?
 - Monotonicity
 - Transitivity
 - Symmetry

Today

- Mizar project
- Foundations
- Natural deduction
- Checker and verifier

Next time

- Program extraction
- Logical frameworks