
Logic Programming

Georg Moser

Department of Computer Science @ UIBK

Winter 2016

http://cl-informatik.uibk.ac.at

Organisation

Organisation

GM (Department of Computer Science @ UIBK) Logic Programming 2/1

Organisation

Time and Place

Lecture Monday, 10:15–11:45, HS 11 Georg Moser
Proseminar Friday, 15:15–17:00, HS 11 (every other week)

Schedule
week 1 October 3 week 8 November 21
week 2 October 10 week 9 November 28
week 3 October 17 week 10 December 5
week 4 October 24 week 11 December 12
week 5 October 31 week 12 January 9
week 6 November 7 week 13 January 16
week 7 November 14 week 14 January 23

first exam January 30

Office Hours
• Thursday, 9:00–11:00, 1N05, IfI Building

GM (Department of Computer Science @ UIBK) Logic Programming 3/1

Organisation

Time and Place

Lecture Monday, 10:15–11:45, HS 11 Georg Moser
Proseminar Friday, 15:15–17:00, HS 11 (every other week)

Schedule
week 1 October 3 week 8 November 21
week 2 October 10 week 9 November 28
week 3 October 17 week 10 December 5
week 4 October 24 week 11 December 12
week 5 October 31 week 12 January 9
week 6 November 7 week 13 January 16
week 7 November 14 week 14 January 23

first exam January 30

Office Hours
• Thursday, 9:00–11:00, 1N05, IfI Building

GM (Department of Computer Science @ UIBK) Logic Programming 3/1

Organisation

Time and Place

Lecture Monday, 10:15–11:45, HS 11 Georg Moser
Proseminar Friday, 15:15–17:00, HS 11 (every other week)

Schedule
week 1 October 3 week 8 November 21
week 2 October 10 week 9 November 28
week 3 October 17 week 10 December 5
week 4 October 24 week 11 December 12
week 5 October 31 week 12 January 9
week 6 November 7 week 13 January 16
week 7 November 14 week 14 January 23

first exam January 30

Office Hours
• Thursday, 9:00–11:00, 1N05, IfI Building

GM (Department of Computer Science @ UIBK) Logic Programming 3/1

Organisation

Literature

1 Leon Sterling and Ehud Shapiro
The Art of Prolog

Additional Reading

• Patrick Blackburn, Johan Bos and Kristina Striegnitz
Learn Prolog Now!

• William F. Clocksin and Christopher S. Mellish
Programming in Prolog

• Thom Frühwirth et al.
Essentials of Constraint Programming

• Martin Gebser et al.
Answer Set Solving in Practice

GM (Department of Computer Science @ UIBK) Logic Programming 4/1

Organisation

Literature

1 Leon Sterling and Ehud Shapiro
The Art of Prolog

Additional Reading

• Patrick Blackburn, Johan Bos and Kristina Striegnitz
Learn Prolog Now!

• William F. Clocksin and Christopher S. Mellish
Programming in Prolog

• Thom Frühwirth et al.
Essentials of Constraint Programming

• Martin Gebser et al.
Answer Set Solving in Practice

GM (Department of Computer Science @ UIBK) Logic Programming 4/1

Organisation

Evaluations

Exam
• first exam will take place on January 30

• closed-book (no materials, easier questions)

Proseminar
• lecture and proseminar are on Monday and Friday, respectively

• each weak I’ll assign 3 exercises

• selection of exercises will be discussed every other week, starting
October 10

• your mark depends on your level of activity in the laboratory

• exercises will be easy and few, so that everybody can solve all
exercises

GM (Department of Computer Science @ UIBK) Logic Programming 5/1

Organisation

Evaluations

Exam
• first exam will take place on January 30

• closed-book (no materials, easier questions)

Proseminar
• lecture and proseminar are on Monday and Friday, respectively

• each weak I’ll assign 3 exercises

• selection of exercises will be discussed every other week, starting
October 10

• your mark depends on your level of activity in the laboratory

• exercises will be easy and few, so that everybody can solve all
exercises

GM (Department of Computer Science @ UIBK) Logic Programming 5/1

SWI-Prolog

SWI-Prolog

[zid-gpl.uibk.ac.at] swipl

Welcome to SWI-Prolog (Multi-threaded, 64 bits, Version 5.7.11)

Copyright (c) 1990-2009 University of Amsterdam.

SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,

and you are welcome to redistribute it under certain conditions.

Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos(Word).

?-

GM (Department of Computer Science @ UIBK) Logic Programming 6/1

SWI-Prolog

Emacs Mode

Bruda’s Prolog Mode

1 goto http://bruda.ca/emacs/prolog_mode_for_emacs

2 download prolog.el, compile and put into sub-directory site-lisp

3 put the following into .emacs:

(au to l oad ’ run−pro log ” p r o l o g ”
” S t a r t a Pro log sub−process . ” t)

(au to l oad ’ prolog−mode ” p r o l o g ”
”Major mode f o r e d i t i n g Pro log programs . ” t)

(s e t q pro log−system ’ sw i)
(s e t q auto−mode−al i st

(cons (cons ” \\ . p l ” ’ prolog−mode) auto−mode−al i st))

GM (Department of Computer Science @ UIBK) Logic Programming 7/1

http://bruda.ca/emacs/prolog_mode_for_emacs

SWI-Prolog

Outline of the Lecture

Monotone Logic Programs

introduction, basic constructs, logic foundations, unification, semantics,
database and recursive programming, termination, complexity

Incomplete Data Structures and Constraints

incomplete data structures, definite clause grammars, constraint logic pro-
gramming, answer set programming

Full Prolog

semantics (revisted), cuts, correctness proofs, meta-logical predicates, ef-
ficient programs, meta programming

GM (Department of Computer Science @ UIBK) Logic Programming 8/1

SWI-Prolog

Outline of the Lecture

Monotone Logic Programs

introduction, basic constructs, logic foundations, unification, semantics,
database and recursive programming, termination, complexity

Incomplete Data Structures and Constraints

incomplete data structures, definite clause grammars, constraint logic pro-
gramming, answer set programming

Full Prolog

semantics (revisted), cuts, correctness proofs, meta-logical predicates, ef-
ficient programs, meta programming

GM (Department of Computer Science @ UIBK) Logic Programming 8/1

SWI-Prolog

Logic Programs

GM (Department of Computer Science @ UIBK) Logic Programming 9/1

Introduction

Attempt at a Definition

logic programming is a declarative programming paradigm, that is, the
specification of a problem is made a first-class citizen; the idea can be
summarised as follows:

program set of judgements
computation proof of a goal statement from the program

Advertisement

In its ultimate and purest form, logic programming suggests that
even explicit instructions for operations not be given, but, rather,
the knowledge about the problem and assumptions that are suf-
ficient to solve it be stated explicitly, as logical axioms.

this is very abstract, over-simplified, and becomes false, when subject to
scrutiny ... still logic programming is a pearl

GM (Department of Computer Science @ UIBK) Logic Programming 10/1

Introduction

Attempt at a Definition

logic programming is a declarative programming paradigm, that is, the
specification of a problem is made a first-class citizen; the idea can be
summarised as follows:

program set of judgements
computation proof of a goal statement from the program

Advertisement

In its ultimate and purest form, logic programming suggests that
even explicit instructions for operations not be given, but, rather,
the knowledge about the problem and assumptions that are suf-
ficient to solve it be stated explicitly, as logical axioms.

this is very abstract, over-simplified, and becomes false, when subject to
scrutiny ... still logic programming is a pearl

GM (Department of Computer Science @ UIBK) Logic Programming 10/1

Introduction

Attempt at a Definition

logic programming is a declarative programming paradigm, that is, the
specification of a problem is made a first-class citizen; the idea can be
summarised as follows:

program set of judgements
computation proof of a goal statement from the program

Advertisement

In its ultimate and purest form, logic programming suggests that
even explicit instructions for operations not be given, but, rather,
the knowledge about the problem and assumptions that are suf-
ficient to solve it be stated explicitly, as logical axioms.

this is very abstract, over-simplified, and becomes false, when subject to
scrutiny ... still logic programming is a pearl

GM (Department of Computer Science @ UIBK) Logic Programming 10/1

History and Applications

Timeline

196? procedural view of (Horn) logic R. Kowalski

1972 Programmation en Logique A. Colmerauer & P. Roussel

1983 Warren abstract machine D. Warren

1987 constraint logic programming Jaffar & Maher

1994 answer set programming Dimopoulos, Nebel & Köhler
...

2015 SWI-Prolog, Version 6.4.1 free

SICStus Prolog, Version 4.3.1 SICS

A Few Applications

• speech recognition: Clarissa

• networks: Ericsson Network Resource Manager

• program analysis: Julia, CoFloCo

GM (Department of Computer Science @ UIBK) Logic Programming 11/1

http://ti.arc.nasa.gov/tech/cas/user-centered-technologies/clarissa/
http://sicstus.sics.se/ericsson_nrm.html
http://www.juliasoft.com/eng
https://www.se.tu-darmstadt.de/se/group-members/antonio-flores-montoya/cofloco/

History and Applications

Timeline

196? procedural view of (Horn) logic R. Kowalski

1972 Programmation en Logique A. Colmerauer & P. Roussel

1983 Warren abstract machine D. Warren

1987 constraint logic programming Jaffar & Maher

1994 answer set programming Dimopoulos, Nebel & Köhler
...

2015 SWI-Prolog, Version 6.4.1 free

SICStus Prolog, Version 4.3.1 SICS

A Few Applications

• speech recognition: Clarissa

• networks: Ericsson Network Resource Manager

• program analysis: Julia, CoFloCo

GM (Department of Computer Science @ UIBK) Logic Programming 11/1

http://ti.arc.nasa.gov/tech/cas/user-centered-technologies/clarissa/
http://sicstus.sics.se/ericsson_nrm.html
http://www.juliasoft.com/eng
https://www.se.tu-darmstadt.de/se/group-members/antonio-flores-montoya/cofloco/

History and Applications

Timeline

196? procedural view of (Horn) logic R. Kowalski

1972 Programmation en Logique A. Colmerauer & P. Roussel

1983 Warren abstract machine D. Warren

1987 constraint logic programming Jaffar & Maher

1994 answer set programming Dimopoulos, Nebel & Köhler
...

2015 SWI-Prolog, Version 6.4.1 free

SICStus Prolog, Version 4.3.1 SICS

A Few Applications

• speech recognition: Clarissa

• networks: Ericsson Network Resource Manager

• program analysis: Julia, CoFloCo

GM (Department of Computer Science @ UIBK) Logic Programming 11/1

http://ti.arc.nasa.gov/tech/cas/user-centered-technologies/clarissa/
http://sicstus.sics.se/ericsson_nrm.html
http://www.juliasoft.com/eng
https://www.se.tu-darmstadt.de/se/group-members/antonio-flores-montoya/cofloco/

History and Applications

Timeline

196? procedural view of (Horn) logic R. Kowalski

1972 Programmation en Logique A. Colmerauer & P. Roussel

1983 Warren abstract machine D. Warren

1987 constraint logic programming Jaffar & Maher

1994 answer set programming Dimopoulos, Nebel & Köhler
...

2015 SWI-Prolog, Version 6.4.1 free

SICStus Prolog, Version 4.3.1 SICS

A Few Applications

• speech recognition: Clarissa

• networks: Ericsson Network Resource Manager

• program analysis: Julia, CoFloCo

GM (Department of Computer Science @ UIBK) Logic Programming 11/1

http://ti.arc.nasa.gov/tech/cas/user-centered-technologies/clarissa/
http://sicstus.sics.se/ericsson_nrm.html
http://www.juliasoft.com/eng
https://www.se.tu-darmstadt.de/se/group-members/antonio-flores-montoya/cofloco/

History and Applications

Timeline

196? procedural view of (Horn) logic R. Kowalski

1972 Programmation en Logique A. Colmerauer & P. Roussel

1983 Warren abstract machine D. Warren

1987 constraint logic programming Jaffar & Maher

1994 answer set programming Dimopoulos, Nebel & Köhler

...
2015 SWI-Prolog, Version 6.4.1 free

SICStus Prolog, Version 4.3.1 SICS

A Few Applications

• speech recognition: Clarissa

• networks: Ericsson Network Resource Manager

• program analysis: Julia, CoFloCo

GM (Department of Computer Science @ UIBK) Logic Programming 11/1

http://ti.arc.nasa.gov/tech/cas/user-centered-technologies/clarissa/
http://sicstus.sics.se/ericsson_nrm.html
http://www.juliasoft.com/eng
https://www.se.tu-darmstadt.de/se/group-members/antonio-flores-montoya/cofloco/

History and Applications

Timeline

196? procedural view of (Horn) logic R. Kowalski

1972 Programmation en Logique A. Colmerauer & P. Roussel

1983 Warren abstract machine D. Warren

1987 constraint logic programming Jaffar & Maher

1994 answer set programming Dimopoulos, Nebel & Köhler
...

2015 SWI-Prolog, Version 6.4.1 free

SICStus Prolog, Version 4.3.1 SICS

A Few Applications

• speech recognition: Clarissa

• networks: Ericsson Network Resource Manager

• program analysis: Julia, CoFloCo

GM (Department of Computer Science @ UIBK) Logic Programming 11/1

http://ti.arc.nasa.gov/tech/cas/user-centered-technologies/clarissa/
http://sicstus.sics.se/ericsson_nrm.html
http://www.juliasoft.com/eng
https://www.se.tu-darmstadt.de/se/group-members/antonio-flores-montoya/cofloco/

History and Applications

Timeline

196? procedural view of (Horn) logic R. Kowalski

1972 Programmation en Logique A. Colmerauer & P. Roussel

1983 Warren abstract machine D. Warren

1987 constraint logic programming Jaffar & Maher

1994 answer set programming Dimopoulos, Nebel & Köhler
...

2015 SWI-Prolog, Version 6.4.1 free

SICStus Prolog, Version 4.3.1 SICS

A Few Applications

• speech recognition: Clarissa

• networks: Ericsson Network Resource Manager

• program analysis: Julia, CoFloCo

GM (Department of Computer Science @ UIBK) Logic Programming 11/1

http://ti.arc.nasa.gov/tech/cas/user-centered-technologies/clarissa/
http://sicstus.sics.se/ericsson_nrm.html
http://www.juliasoft.com/eng
https://www.se.tu-darmstadt.de/se/group-members/antonio-flores-montoya/cofloco/

History and Applications

Timeline

196? procedural view of (Horn) logic R. Kowalski

1972 Programmation en Logique A. Colmerauer & P. Roussel

1983 Warren abstract machine D. Warren

1987 constraint logic programming Jaffar & Maher

1994 answer set programming Dimopoulos, Nebel & Köhler
...

2015 SWI-Prolog, Version 6.4.1 free

SICStus Prolog, Version 4.3.1 SICS

A Few Applications

• speech recognition: Clarissa

• networks: Ericsson Network Resource Manager

• program analysis: Julia, CoFloCo

GM (Department of Computer Science @ UIBK) Logic Programming 11/1

http://ti.arc.nasa.gov/tech/cas/user-centered-technologies/clarissa/
http://sicstus.sics.se/ericsson_nrm.html
http://www.juliasoft.com/eng
https://www.se.tu-darmstadt.de/se/group-members/antonio-flores-montoya/cofloco/

Basic Constructs

Basic Constructs

Definitions
• terms are built from logical variables, constants and functors

• ground term contains no variables; nonground term contains
variables

Definition

• goals (aka formulas) are constants or compound terms

• goals are typically non-ground

Notation

we confuse function symbols and predicate symbols (= functors) in the
definition of a term; this makes meta-level predicates more natural

GM (Department of Computer Science @ UIBK) Logic Programming 12/1

Basic Constructs

Basic Constructs

Definitions
• terms are built from logical variables, constants and functors

• ground term contains no variables; nonground term contains
variables

Definition

• goals (aka formulas) are constants or compound terms

• goals are typically non-ground

Notation

we confuse function symbols and predicate symbols (= functors) in the
definition of a term; this makes meta-level predicates more natural

GM (Department of Computer Science @ UIBK) Logic Programming 12/1

Basic Constructs

Basic Constructs

Definitions
• terms are built from logical variables, constants and functors

• ground term contains no variables; nonground term contains
variables

Definition

• goals (aka formulas) are constants or compound terms

• goals are typically non-ground

Notation

we confuse function symbols and predicate symbols (= functors) in the
definition of a term; this makes meta-level predicates more natural

GM (Department of Computer Science @ UIBK) Logic Programming 12/1

Basic Constructs

Example (Goal)

f a t h e r (andreas , b o r i s)

Definitions (Clause)

• a clause or rule is an universally quantified logical formula of the
form

A :− B1 , B2 , . . . , Bn .

where A and the Bi ’s are goals

• A is called the head of the clause; the Bi ’s are called the body

• a rule of the form A :− is called a fact; we write facts simply A.

Definition

a logic program is a finite set of clauses

GM (Department of Computer Science @ UIBK) Logic Programming 13/1

Basic Constructs

Example (Goal)

f a t h e r (andreas , b o r i s)

Definitions (Clause)

• a clause or rule is an universally quantified logical formula of the
form

A :− B1 , B2 , . . . , Bn .

where A and the Bi ’s are goals

• A is called the head of the clause; the Bi ’s are called the body

• a rule of the form A :− is called a fact; we write facts simply A.

Definition

a logic program is a finite set of clauses

GM (Department of Computer Science @ UIBK) Logic Programming 13/1

Basic Constructs

Example (Goal)

f a t h e r (andreas , b o r i s)

Definitions (Clause)

• a clause or rule is an universally quantified logical formula of the
form

A :− B1 , B2 , . . . , Bn .

where A and the Bi ’s are goals

• A is called the head of the clause; the Bi ’s are called the body

• a rule of the form A :− is called a fact; we write facts simply A.

Definition

a logic program is a finite set of clauses

GM (Department of Computer Science @ UIBK) Logic Programming 13/1

Basic Constructs

Example (Facts)

f a t h e r (andreas , b o r i s) . f e m a l e (d o r i s) . male (a n d r e a s) .
f a t h e r (andreas , c h r i s t i a n) . f e m a l e (eva) . male (b o r i s) .
f a t h e r (andreas , d o r i s) . male (c h r i s t i a n) .
f a t h e r (b o r i s , eva) . male (f r a n z) .
f a t h e r (f r a n z , geor g) . male (geor g) .
mother (he lga , d o r i s) .
mother (d o r i s , f r a n z) .
mother (anna , eva) .
mother (eva , geo rg) .

Example (Rules)

d a u g h t e r (X, Y) :− f a t h e r (Y, X) , f e m a l e (X) .
d a u g h t e r (X, Y) :− mother (Y, X) , f e m a l e (X) .
g r a n d f a t h e r (X, Y) :− f a t h e r (X, Z) , f a t h e r (Z , Y) .
g r a n d f a t h e r (X, Y) :− f a t h e r (X, Z) , mother (Z , Y) .

GM (Department of Computer Science @ UIBK) Logic Programming 14/1

Basic Constructs

Example (Facts)

f a t h e r (andreas , b o r i s) . f e m a l e (d o r i s) . male (a n d r e a s) .
f a t h e r (andreas , c h r i s t i a n) . f e m a l e (eva) . male (b o r i s) .
f a t h e r (andreas , d o r i s) . male (c h r i s t i a n) .
f a t h e r (b o r i s , eva) . male (f r a n z) .
f a t h e r (f r a n z , geor g) . male (geor g) .
mother (he lga , d o r i s) .
mother (d o r i s , f r a n z) .
mother (anna , eva) .
mother (eva , geo rg) .

Example (Rules)

d a u g h t e r (X, Y) :− f a t h e r (Y, X) , f e m a l e (X) .
d a u g h t e r (X, Y) :− mother (Y, X) , f e m a l e (X) .
g r a n d f a t h e r (X, Y) :− f a t h e r (X, Z) , f a t h e r (Z , Y) .
g r a n d f a t h e r (X, Y) :− f a t h e r (X, Z) , mother (Z , Y) .

GM (Department of Computer Science @ UIBK) Logic Programming 14/1

Basic Constructs

Definition (Queries and Use Cases)

a complex query is a conjunction of goals of the following form:

:− A1 , A2 , . . . , An

Example (Queries)

:− f a t h e r (andreas , b o r i s) .
:− f a t h e r (andreas , X) .
:/− f a t h e r (X, Y) , f e m a l e (X) .

Observations

1 existential query contains logical variable(s)

2 universal fact contains logical variable(s)

3 conjunctive query is conjunction of goals posed as query

4 it is good style to write use case before the actual program

GM (Department of Computer Science @ UIBK) Logic Programming 15/1

Basic Constructs

Definition (Queries and Use Cases)

a complex query is a conjunction of goals of the following form:

:− A1 , A2 , . . . , An

Example (Queries)

:− f a t h e r (andreas , b o r i s) .
:− f a t h e r (andreas , X) .
:/− f a t h e r (X, Y) , f e m a l e (X) .

Observations

1 existential query contains logical variable(s)

2 universal fact contains logical variable(s)

3 conjunctive query is conjunction of goals posed as query

4 it is good style to write use case before the actual program

GM (Department of Computer Science @ UIBK) Logic Programming 15/1

Basic Constructs

Definition (Queries and Use Cases)

a complex query is a conjunction of goals of the following form:

:− A1 , A2 , . . . , An

Example (Queries)

:− f a t h e r (andreas , b o r i s) .
:− f a t h e r (andreas , X) .
:/− f a t h e r (X, Y) , f e m a l e (X) .

Observations

1 existential query contains logical variable(s)

2 universal fact contains logical variable(s)

3 conjunctive query is conjunction of goals posed as query

4 it is good style to write use case before the actual program

GM (Department of Computer Science @ UIBK) Logic Programming 15/1

Basic Constructs

Definition (Queries and Use Cases)

a complex query is a conjunction of goals of the following form:

:− A1 , A2 , . . . , An

Example (Queries)

:− f a t h e r (andreas , b o r i s) .
:− f a t h e r (andreas , X) .
:/− f a t h e r (X, Y) , f e m a l e (X) .

Observations

1 existential query contains logical variable(s)

2 universal fact contains logical variable(s)

3 conjunctive query is conjunction of goals posed as query

4 it is good style to write use case before the actual program

GM (Department of Computer Science @ UIBK) Logic Programming 15/1

Basic Constructs

Definition (Queries and Use Cases)

a complex query is a conjunction of goals of the following form:

:− A1 , A2 , . . . , An

Example (Queries)

:− f a t h e r (andreas , b o r i s) .
:− f a t h e r (andreas , X) .
:/− f a t h e r (X, Y) , f e m a l e (X) .

Observations

1 existential query contains logical variable(s)

2 universal fact contains logical variable(s)

3 conjunctive query is conjunction of goals posed as query

4 it is good style to write use case before the actual program

GM (Department of Computer Science @ UIBK) Logic Programming 15/1

Basic Constructs

Definition (Queries and Use Cases)

a complex query is a conjunction of goals of the following form:

:− A1 , A2 , . . . , An

Example (Queries)

:− f a t h e r (andreas , b o r i s) .
:− f a t h e r (andreas , X) .
:/− f a t h e r (X, Y) , f e m a l e (X) .

Observations

1 existential query contains logical variable(s)

2 universal fact contains logical variable(s)

3 conjunctive query is conjunction of goals posed as query

4 it is good style to write use case before the actual program

GM (Department of Computer Science @ UIBK) Logic Programming 15/1

Basic Constructs

Definitions
• substitution is finite set of pairs

{X1 7→ t1, . . . ,Xn 7→ tn}

with terms t1, . . . , tn and pairwise different variables X1, . . . ,Xn

• application of substitution θ to term t is denoted by tθ

• tθ is instance of t

Examples θ1 = {X 7→ boris}
θ2 = {X 7→ boris, Y 7→ eva}
θ3 = {X 7→ s(Y), Y 7→ 0}

father(andreas, X)θ1 = father(andreas, boris)

father(X, Y)θ2 = father(boris, eva)

list(X, list(X, Y))θ3 = list(s(Y), list(s(Y), 0))

GM (Department of Computer Science @ UIBK) Logic Programming 16/1

Basic Constructs

Definitions
• substitution is finite set of pairs

{X1 7→ t1, . . . ,Xn 7→ tn}

with terms t1, . . . , tn and pairwise different variables X1, . . . ,Xn

• application of substitution θ to term t is denoted by tθ

• tθ is instance of t

Examples θ1 = {X 7→ boris}
θ2 = {X 7→ boris, Y 7→ eva}
θ3 = {X 7→ s(Y), Y 7→ 0}

father(andreas, X)θ1 = father(andreas, boris)

father(X, Y)θ2 = father(boris, eva)

list(X, list(X, Y))θ3 = list(s(Y), list(s(Y), 0))

GM (Department of Computer Science @ UIBK) Logic Programming 16/1

Basic Constructs

Definitions
• substitution is finite set of pairs

{X1 7→ t1, . . . ,Xn 7→ tn}

with terms t1, . . . , tn and pairwise different variables X1, . . . ,Xn

• application of substitution θ to term t is denoted by tθ

• tθ is instance of t

Examples θ1 = {X 7→ boris}
θ2 = {X 7→ boris, Y 7→ eva}
θ3 = {X 7→ s(Y), Y 7→ 0}

father(andreas, X)θ1 = father(andreas, boris)

father(X, Y)θ2 = father(boris, eva)

list(X, list(X, Y))θ3 = list(s(Y), list(s(Y), 0))

GM (Department of Computer Science @ UIBK) Logic Programming 16/1

Basic Constructs

Definitions
• substitution is finite set of pairs

{X1 7→ t1, . . . ,Xn 7→ tn}

with terms t1, . . . , tn and pairwise different variables X1, . . . ,Xn

• application of substitution θ to term t is denoted by tθ

• tθ is instance of t

Examples θ1 = {X 7→ boris}
θ2 = {X 7→ boris, Y 7→ eva}
θ3 = {X 7→ s(Y), Y 7→ 0}

father(andreas, X)θ1 = father(andreas, boris)

father(X, Y)θ2 = father(boris, eva)

list(X, list(X, Y))θ3 = list(s(Y), list(s(Y), 0))

GM (Department of Computer Science @ UIBK) Logic Programming 16/1

Basic Constructs

Definitions
• substitution is finite set of pairs

{X1 7→ t1, . . . ,Xn 7→ tn}

with terms t1, . . . , tn and pairwise different variables X1, . . . ,Xn

• application of substitution θ to term t is denoted by tθ

• tθ is instance of t

Examples θ1 = {X 7→ boris}
θ2 = {X 7→ boris, Y 7→ eva}
θ3 = {X 7→ s(Y), Y 7→ 0}

father(andreas, X)θ1 = father(andreas, boris)

father(X, Y)θ2 = father(boris, eva)

list(X, list(X, Y))θ3 = list(s(Y), list(s(Y), 0))

GM (Department of Computer Science @ UIBK) Logic Programming 16/1

Basic Constructs

Definitions
• substitution is finite set of pairs

{X1 7→ t1, . . . ,Xn 7→ tn}

with terms t1, . . . , tn and pairwise different variables X1, . . . ,Xn

• application of substitution θ to term t is denoted by tθ

• tθ is instance of t

Examples θ1 = {X 7→ boris}
θ2 = {X 7→ boris, Y 7→ eva}
θ3 = {X 7→ s(Y), Y 7→ 0}

father(andreas, X)θ1 = father(andreas, boris)

father(X, Y)θ2 = father(boris, eva)

list(X, list(X, Y))θ3 = list(s(Y), list(s(Y), 0))

GM (Department of Computer Science @ UIBK) Logic Programming 16/1

Basic Constructs

Example (Addition on Natural Numbers)

n a t u r a l n u m b e r (0) .
n a t u r a l n u m b e r (s (X)) :− n a t u r a l n u m b e r (X) .

p l u s (0 ,X, X) .
p l u s (s (X) ,Y, s (Z)) :− p l u s (X, Y, Z) .
t i m e s (0 ,X , 0) .
t i m e s (s (X) ,Y, Z) :− t i m e s (X, Y,U) , p l u s (U, Y, Z) .

Queries

:- times(X,X,Y).

:- plus(X,s(0),0).

X = 0, Y = 0

;

backtracking to find further solutions

false

true

:- plus(X,s(0),s(s(X))).

X = s(s(0)), Y = s(s(s(s(0)))) ; :- plus(s(0),X,s(s(X))).

Demo

SWI-Prolog

GM (Department of Computer Science @ UIBK) Logic Programming 17/1

Basic Constructs

Example (Addition on Natural Numbers)

n a t u r a l n u m b e r (0) .
n a t u r a l n u m b e r (s (X)) :− n a t u r a l n u m b e r (X) .

p l u s (0 ,X, X) .
p l u s (s (X) ,Y, s (Z)) :− p l u s (X, Y, Z) .
t i m e s (0 ,X , 0) .
t i m e s (s (X) ,Y, Z) :− t i m e s (X, Y,U) , p l u s (U, Y, Z) .

Queries

:- times(X,X,Y).

:- plus(X,s(0),0).

X = 0, Y = 0

;

backtracking to find further solutions

false

true

:- plus(X,s(0),s(s(X))).

X = s(s(0)), Y = s(s(s(s(0)))) ; :- plus(s(0),X,s(s(X))).

Demo

SWI-Prolog

GM (Department of Computer Science @ UIBK) Logic Programming 17/1

Basic Constructs

Example (Addition on Natural Numbers)

n a t u r a l n u m b e r (0) .
n a t u r a l n u m b e r (s (X)) :− n a t u r a l n u m b e r (X) .

p l u s (0 ,X, X) .
p l u s (s (X) ,Y, s (Z)) :− p l u s (X, Y, Z) .
t i m e s (0 ,X , 0) .
t i m e s (s (X) ,Y, Z) :− t i m e s (X, Y,U) , p l u s (U, Y, Z) .

Queries

:- times(X,X,Y).

:- plus(X,s(0),0).

X = 0, Y = 0

;

backtracking to find further solutions

false

true

:- plus(X,s(0),s(s(X))).

X = s(s(0)), Y = s(s(s(s(0)))) ; :- plus(s(0),X,s(s(X))).

Demo

SWI-Prolog

GM (Department of Computer Science @ UIBK) Logic Programming 17/1

Basic Constructs

Example (Addition on Natural Numbers)

n a t u r a l n u m b e r (0) .
n a t u r a l n u m b e r (s (X)) :− n a t u r a l n u m b e r (X) .

p l u s (0 ,X, X) .
p l u s (s (X) ,Y, s (Z)) :− p l u s (X, Y, Z) .
t i m e s (0 ,X , 0) .
t i m e s (s (X) ,Y, Z) :− t i m e s (X, Y,U) , p l u s (U, Y, Z) .

Queries

:- times(X,X,Y).

:- plus(X,s(0),0).

X = 0, Y = 0

;

backtracking to find further solutions

false

true

:- plus(X,s(0),s(s(X))).

X = s(s(0)), Y = s(s(s(s(0)))) ; :- plus(s(0),X,s(s(X))).

Demo

SWI-Prolog

GM (Department of Computer Science @ UIBK) Logic Programming 17/1

Basic Constructs

Example (Addition on Natural Numbers)

n a t u r a l n u m b e r (0) .
n a t u r a l n u m b e r (s (X)) :− n a t u r a l n u m b e r (X) .

p l u s (0 ,X, X) .
p l u s (s (X) ,Y, s (Z)) :− p l u s (X, Y, Z) .
t i m e s (0 ,X , 0) .
t i m e s (s (X) ,Y, Z) :− t i m e s (X, Y,U) , p l u s (U, Y, Z) .

Queries

:- times(X,X,Y).

:- plus(X,s(0),0).

X = 0, Y = 0 ; backtracking to find further solutions

false

true :- plus(X,s(0),s(s(X))).

X = s(s(0)), Y = s(s(s(s(0)))) ; :- plus(s(0),X,s(s(X))).

Demo

SWI-Prolog

GM (Department of Computer Science @ UIBK) Logic Programming 17/1

Basic Constructs

Example (Addition on Natural Numbers)

n a t u r a l n u m b e r (0) .
n a t u r a l n u m b e r (s (X)) :− n a t u r a l n u m b e r (X) .

p l u s (0 ,X, X) .
p l u s (s (X) ,Y, s (Z)) :− p l u s (X, Y, Z) .
t i m e s (0 ,X , 0) .
t i m e s (s (X) ,Y, Z) :− t i m e s (X, Y,U) , p l u s (U, Y, Z) .

Queries

:- times(X,X,Y).

:- plus(X,s(0),0).

X = 0, Y = 0 ; backtracking to find further solutions

false

X = s(0), Y = s(0)

; :- plus(X,s(0),s(s(X))).

X = s(s(0)), Y = s(s(s(s(0)))) ; :- plus(s(0),X,s(s(X))).

Demo

SWI-Prolog

GM (Department of Computer Science @ UIBK) Logic Programming 17/1

Basic Constructs

Example (Addition on Natural Numbers)

n a t u r a l n u m b e r (0) .
n a t u r a l n u m b e r (s (X)) :− n a t u r a l n u m b e r (X) .

p l u s (0 ,X, X) .
p l u s (s (X) ,Y, s (Z)) :− p l u s (X, Y, Z) .
t i m e s (0 ,X , 0) .
t i m e s (s (X) ,Y, Z) :− t i m e s (X, Y,U) , p l u s (U, Y, Z) .

Queries

:- times(X,X,Y).

:- plus(X,s(0),0).

X = 0, Y = 0 ; backtracking to find further solutions

false

X = s(0), Y = s(0) ;

:- plus(X,s(0),s(s(X))).

X = s(s(0)), Y = s(s(s(s(0))))

; :- plus(s(0),X,s(s(X))).

Demo

SWI-Prolog

GM (Department of Computer Science @ UIBK) Logic Programming 17/1

Basic Constructs

Example (Addition on Natural Numbers)

n a t u r a l n u m b e r (0) .
n a t u r a l n u m b e r (s (X)) :− n a t u r a l n u m b e r (X) .

p l u s (0 ,X, X) .
p l u s (s (X) ,Y, s (Z)) :− p l u s (X, Y, Z) .
t i m e s (0 ,X , 0) .
t i m e s (s (X) ,Y, Z) :− t i m e s (X, Y,U) , p l u s (U, Y, Z) .

Queries

:- times(X,X,Y).

:- plus(X,s(0),0).

X = 0, Y = 0 ; backtracking to find further solutions

false

X = s(0), Y = s(0) ;

:- plus(X,s(0),s(s(X))).

X = s(s(0)), Y = s(s(s(s(0)))) ;

:- plus(s(0),X,s(s(X))).

Demo

SWI-Prolog

GM (Department of Computer Science @ UIBK) Logic Programming 17/1

Basic Constructs

Example (Addition on Natural Numbers)

n a t u r a l n u m b e r (0) .
n a t u r a l n u m b e r (s (X)) :− n a t u r a l n u m b e r (X) .

p l u s (0 ,X, X) .
p l u s (s (X) ,Y, s (Z)) :− p l u s (X, Y, Z) .
t i m e s (0 ,X , 0) .
t i m e s (s (X) ,Y, Z) :− t i m e s (X, Y,U) , p l u s (U, Y, Z) .

Queries

:- times(X,X,Y). :- plus(X,s(0),0).

X = 0, Y = 0 ;

false

X = s(0), Y = s(0) ;

:- plus(X,s(0),s(s(X))).

X = s(s(0)), Y = s(s(s(s(0)))) ;

:- plus(s(0),X,s(s(X))).

Demo

SWI-Prolog

GM (Department of Computer Science @ UIBK) Logic Programming 17/1

Basic Constructs

Example (Addition on Natural Numbers)

n a t u r a l n u m b e r (0) .
n a t u r a l n u m b e r (s (X)) :− n a t u r a l n u m b e r (X) .

p l u s (0 ,X, X) .
p l u s (s (X) ,Y, s (Z)) :− p l u s (X, Y, Z) .
t i m e s (0 ,X , 0) .
t i m e s (s (X) ,Y, Z) :− t i m e s (X, Y,U) , p l u s (U, Y, Z) .

Queries

:- times(X,X,Y). :- plus(X,s(0),0).

X = 0, Y = 0 ; false

X = s(0), Y = s(0) ;

:- plus(X,s(0),s(s(X))).

X = s(s(0)), Y = s(s(s(s(0)))) ;

:- plus(s(0),X,s(s(X))).

Demo

SWI-Prolog

GM (Department of Computer Science @ UIBK) Logic Programming 17/1

Basic Constructs

Example (Addition on Natural Numbers)

n a t u r a l n u m b e r (0) .
n a t u r a l n u m b e r (s (X)) :− n a t u r a l n u m b e r (X) .

p l u s (0 ,X, X) .
p l u s (s (X) ,Y, s (Z)) :− p l u s (X, Y, Z) .
t i m e s (0 ,X , 0) .
t i m e s (s (X) ,Y, Z) :− t i m e s (X, Y,U) , p l u s (U, Y, Z) .

Queries

:- times(X,X,Y). :- plus(X,s(0),0).

X = 0, Y = 0 ; false

X = s(0), Y = s(0) ; :- plus(X,s(0),s(s(X))).

X = s(s(0)), Y = s(s(s(s(0)))) ;

:- plus(s(0),X,s(s(X))).

Demo

SWI-Prolog

GM (Department of Computer Science @ UIBK) Logic Programming 17/1

Basic Constructs

Example (Addition on Natural Numbers)

n a t u r a l n u m b e r (0) .
n a t u r a l n u m b e r (s (X)) :− n a t u r a l n u m b e r (X) .

p l u s (0 ,X, X) .
p l u s (s (X) ,Y, s (Z)) :− p l u s (X, Y, Z) .
t i m e s (0 ,X , 0) .
t i m e s (s (X) ,Y, Z) :− t i m e s (X, Y,U) , p l u s (U, Y, Z) .

Queries

:- times(X,X,Y). :- plus(X,s(0),0).

X = 0, Y = 0 ; false

X = s(0), Y = s(0) ; :- plus(X,s(0),s(s(X))).

X = s(s(0)), Y = s(s(s(s(0)))) ; :- plus(s(0),X,s(s(X))).

Demo

SWI-Prolog

GM (Department of Computer Science @ UIBK) Logic Programming 17/1

Basic Constructs

Example (Addition on Natural Numbers)

n a t u r a l n u m b e r (0) .
n a t u r a l n u m b e r (s (X)) :− n a t u r a l n u m b e r (X) .

p l u s (0 ,X, X) .
p l u s (s (X) ,Y, s (Z)) :− p l u s (X, Y, Z) .
t i m e s (0 ,X , 0) .
t i m e s (s (X) ,Y, Z) :− t i m e s (X, Y,U) , p l u s (U, Y, Z) .

Queries

:- times(X,X,Y). :- plus(X,s(0),0).

X = 0, Y = 0 ; false

X = s(0), Y = s(0) ; :- plus(X,s(0),s(s(X))).

X = s(s(0)), Y = s(s(s(s(0)))) ; :- plus(s(0),X,s(s(X))).

Demo

SWI-Prolog

GM (Department of Computer Science @ UIBK) Logic Programming 17/1

Comparison to Conventional Programming Languages

Comparison to Conventional Programming Languages

Fact

a programming language is characterised by its control and data manipu-
lation mechanisms

Control

A :− B1 , B2 , . . . , Bn

procedure A
call B1
call B2
...
call Bn

end

Observations

1 goal invocation corresponds to procedure invocation

2 differences show when backtracking occurs

GM (Department of Computer Science @ UIBK) Logic Programming 18/1

Comparison to Conventional Programming Languages

Comparison to Conventional Programming Languages

Fact

a programming language is characterised by its control and data manipu-
lation mechanisms

Control

A :− B1 , B2 , . . . , Bn

procedure A
call B1
call B2
...
call Bn

end

Observations

1 goal invocation corresponds to procedure invocation

2 differences show when backtracking occurs

GM (Department of Computer Science @ UIBK) Logic Programming 18/1

Comparison to Conventional Programming Languages

Comparison to Conventional Programming Languages

Fact

a programming language is characterised by its control and data manipu-
lation mechanisms

Control

A :− B1 , B2 , . . . , Bn

procedure A
call B1
call B2
...
call Bn

end

Observations

1 goal invocation corresponds to procedure invocation

2 differences show when backtracking occurs

GM (Department of Computer Science @ UIBK) Logic Programming 18/1

Comparison to Conventional Programming Languages

Data Structures

1 data structures manipulated by logic programs (= terms) correspond
to general record structures

2 like LISP, Prolog is a declaration free, untyped language

3 Prolog does not support destructive assignment where the content
of the initialised variable can change

Data Manipulation

1 data manipulation is achieved via unification

2 unification subsumes
• single assignment
• parameter passing
• record allocation
• read/write-once field access in records

GM (Department of Computer Science @ UIBK) Logic Programming 19/1

Comparison to Conventional Programming Languages

Data Structures

1 data structures manipulated by logic programs (= terms) correspond
to general record structures

2 like LISP, Prolog is a declaration free, untyped language

3 Prolog does not support destructive assignment where the content
of the initialised variable can change

Data Manipulation

1 data manipulation is achieved via unification

2 unification subsumes
• single assignment
• parameter passing
• record allocation
• read/write-once field access in records

GM (Department of Computer Science @ UIBK) Logic Programming 19/1

