

Logic Programming

Georg Moser

Department of Computer Science @ UIBK

Winter 2016

Summary of Last Lecture

Answer Set Programming

- novel approach to modelling and solving search and optimisation problems
- ¬ programming, but a specification language
- ¬ Turing complete
- purely declarative
- restricted to finite models

```
Example ((part of) 8-queens problem)
:- not (1 = count(Y : queen(X,Y))), row(X)
```

- expresses that exactly one queen appears in every row and column
- is read as a rule: "if X is a row, 1 = count(Y : queen(X,Y)) holds"

Outline of the Lecture

Monotone Logic Programs

introduction, basic constructs, logic foundations, unification, semantics, database and recursive programming, termination, complexity

Incomplete Data Structures and Constraints

incomplete data structures, definite clause grammars, constraint logic programming, answer set programming

Full Prolog

semantics (revisited), cuts, correctness proofs, meta-logical predicates, nondeterministic programming, efficient programs, complexity

Outline of the Lecture

Monotone Logic Programs

introduction, basic constructs, logic foundations, unification, semantics, database and recursive programming, termination, complexity

Incomplete Data Structures and Constraints

incomplete data structures, definite clause grammars, constraint logic programming, answer set programming

Full Prolog

semantics (revisited), cuts, correctness proofs, meta-logical predicates, nondeterministic programming, efficient programs, complexity

negative definitions define a relation with the help of negation

negative definitions define a relation with the help of negation

Example

land(X) :- not sea(X).

negative definitions define a relation with the help of negation

Example

```
land(X) := not sea(X).
```

Fact

negative definitions are dangerous as their scope is usually larger than expected and they are difficult to maintain, if underlying definitions get refined

negative definitions define a relation with the help of negation

Example

```
land(X) := not sea(X).
```

Fact

negative definitions are dangerous as their scope is usually larger than expected and they are difficult to maintain, if underlying definitions get refined

- :- land(27).
- :- land(kar_rinne).
- :- land(milka_kuh).

Semantics (revisited)

Definitions

- SLD-derivation of monotone logic program P and goal clause G consists of
 - **1** maximal sequence G_0, G_1, G_2, \ldots of goal clauses
 - **2** sequence C_0, C_1, C_2, \ldots of variants of rules in P
 - sequence $\theta_0, \theta_1, \theta_2, \ldots$ of substitutions

such that

- $G_0 = G$
- G_{i+1} is resolvent of G_i and C_i with mgu θ_i
- C_i has no variables in common with G, C_0, \ldots, C_{i-1}
- ullet SLD refutation is finite SLD derivation ending in \Box
- computed answer substitution of SLD refutation of P and G with substitutions $\theta_0, \theta_1, \ldots, \theta_m$ is restriction of $\theta_0 \theta_1 \cdots \theta_m$ to variables in G

Definition (search tree)

- a search tree (aka SLD tree) of a goal G is a tree T such that
 - the root of T is labelled with G; the nodes of T are labelled with conjunctions of goals, where one goal is selected (wrt a selection function)
 - ∃ edge from node N for each clause, whose head unifies with the selected goal; edges are labelled with (partial) answer substitutions
 - leaves are success nodes, if □ has been reached or failure nodes otherwise

Definition (search tree)

- a search tree (aka SLD tree) of a goal G is a tree T such that
 - the root of T is labelled with G; the nodes of T are labelled with conjunctions of goals, where one goal is selected (wrt a selection function)
 - ∃ edge from node N for each clause, whose head unifies with the selected goal; edges are labelled with (partial) answer substitutions
 - leaves are success nodes, if □ has been reached or failure nodes otherwise

Definition (proof tree)

a proof tree for a program P and a goal G is a tree, whose nodes are goals and whose edges represent reduction of goals such that

- the root is the query *G*
- the edges are labelled with (partial) answer substitutions
- a proof tree for G_1, \ldots, G_n is set of proof trees for G_i

(yet another connection between proofs and programs)

Definitions

• the Herbrand universe for a program *P* is the set of all closed terms built from constants and function symbols appearing in the program

(yet another connection between proofs and programs)

Definitions

- the Herbrand universe for a program *P* is the set of all closed terms built from constants and function symbols appearing in the program
- the Herbrand base is the set of all ground goals formed from predicates in *P* and terms in the Herbrand universe

(yet another connection between proofs and programs)

Definitions

- the Herbrand universe for a program *P* is the set of all closed terms built from constants and function symbols appearing in the program
- the Herbrand base is the set of all ground goals formed from predicates in *P* and terms in the Herbrand universe
- an interpretation is a subset of the Herbrand base

(yet another connection between proofs and programs)

Definitions

- the Herbrand universe for a program *P* is the set of all closed terms built from constants and function symbols appearing in the program
- the Herbrand base is the set of all ground goals formed from predicates in *P* and terms in the Herbrand universe
- an interpretation is a subset of the Herbrand base
- an interpretation *I* is a model if it is closed under rules:

```
\forall rules A:-B_1,\ldots,B_n: if B_1,\ldots,B_n\in I, then A\in I
```

(yet another connection between proofs and programs)

Definitions

- the Herbrand universe for a program *P* is the set of all closed terms built from constants and function symbols appearing in the program
- the Herbrand base is the set of all ground goals formed from predicates in *P* and terms in the Herbrand universe
- an interpretation is a subset of the Herbrand base
- an interpretation *I* is a model if it is closed under rules:

$$\forall$$
 rules $A: -B_1, \ldots, B_n$: if $B_1, \ldots, B_n \in I$, then $A \in I$

• the minimal model of P is the intersection of all models

(yet another connection between proofs and programs)

Definitions

- the Herbrand universe for a program *P* is the set of all closed terms built from constants and function symbols appearing in the program
- the Herbrand base is the set of all ground goals formed from predicates in *P* and terms in the Herbrand universe
- an interpretation is a subset of the Herbrand base
- an interpretation *I* is a model if it is closed under rules:

$$\forall$$
 rules $A: -B_1, \ldots, B_n$: if $B_1, \ldots, B_n \in I$, then $A \in I$

• the minimal model of P is the intersection of all models

Theorem

the minimal model is unique

Declarative, Operational, and Denotational Semantics

Definition

- the declarative semantics of P (aka its meaning) is the minimal model of P
- we also say that the meaning of a logic program P, is the set of (ground unit) goals deducible from P

Declarative, Operational, and Denotational Semantics

Definition

- the declarative semantics of P (aka its meaning) is the minimal model of P
- we also say that the meaning of a logic program P, is the set of (ground unit) goals deducible from P

Definitions

the operational semantics describes the meaning of a program procedurally

Declarative, Operational, and Denotational Semantics

Definition

- the declarative semantics of P (aka its meaning) is the minimal model of P
- we also say that the meaning of a logic program P, is the set of (ground unit) goals deducible from P

Definitions

the operational semantics describes the meaning of a program procedurally

Definition

the denotational semantics assign meanings to programs based on associating with the program a function over the domain computed by the program

Rule Order

Fact

The rule order determines the order in which solutions are found

Rule Order

Fact

The rule order determines the order in which solutions are found

Example

```
parent(terach,abraham). parent(abraham,isaac).
parent(isaac,jakob). parent(jakob,benjamin).
ancestor1(X,Y) :- parent(X,Y).
ancestor1(X,Z) :- parent(X,Y), ancestor1(Y,Z).
```

```
append1([X|Xs],Ys,[X|Zs]) :- append2([],Ys,Ys).
append1([Xs,Ys,Zs). append2([X|Xs],Ys,[X|Zs]) :- append2([Xs,Ys,Zs).
```

Fact

Goal order determines the SLD tree

Fact

Goal order determines the SLD tree

```
\begin{split} & \text{grandparent1}(X,Z) : - \text{ parent}(X,Y), \text{ parent}(Y,Z).\\ & \text{grandparent2}(X,Z) : - \text{ parent}(Y,Z), \text{ parent}(X,Y). \end{split}
```

Fact

Goal order determines the SLD tree

Example

```
\begin{split} & \text{grandparent1}(X,Z) : - \text{ parent}(X,Y), \text{ parent}(Y,Z).\\ & \text{grandparent2}(X,Z) : - \text{ parent}(Y,Z), \text{ parent}(X,Y). \end{split}
```

```
reverse1([X|Xs],Zs) :- reverse1(Xs,Ys), append1(Ys,[X],Zs).
reverse1([],[]).

reverse2([X|Xs],Zs) :- append1(Ys,[X],Zs), reverse2(Xs,Ys).
reverse2([],[]).

:- reverse1([a,b,c,d],Xs), Xs=[d,c,b,a].
:- reverse2([a,b,c,d],Xs), Xs=[d,c,b,a].
```

Fact

Goal order determines the SLD tree

Example

```
\begin{split} & \text{grandparent1}(X,Z) : - \text{ parent}(X,Y), \text{ parent}(Y,Z).\\ & \text{grandparent2}(X,Z) : - \text{ parent}(Y,Z), \text{ parent}(X,Y). \end{split}
```

```
reverse1([X|Xs],Zs) :- reverse1(Xs,Ys), append1(Ys,[X],Zs).
reverse1([],[]).

reverse2([X|Xs],Zs) :- append1(Ys,[X],Zs), reverse2(Xs,Ys).
reverse2([],[]).

:- reverse1([a,b,c,d],Xs), Xs=[d,c,b,a].
:- reverse2([a,b,c,d],Xs), Xs=[d,c,b,a].
```

Redundant Solutions

```
minimum(N_1, N_2, N_1): - N_1 \le N_2.

minimum(N_1, N_2, N_2): - N_2 \le N_1.

: - minium(2, 2, M)
```

Redundant Solutions

Example

```
minimum(N_1, N_2, N_1): - N_1 \le N_2.

minimum(N_1, N_2, N_2): - N_2 \le N_1.

: - minium(2, 2, M)
```

```
minimum(N_1, N_2, N_1): - N_1 \leq N_2.
minimum(N_1, N_2, N_2): - N_2 < N_1.
```

Redundant Solutions

Example

```
minimum(N_1, N_2, N_1): - N_1 \le N_2.

minimum(N_1, N_2, N_2): - N_2 \le N_1.

: - minium(2, 2, M)
```

Example

```
\label{eq:minimum} \begin{split} & \min \text{minimum} (\text{N}_1, \text{N}_2, \text{N}_1) : - \text{N}_1 \leqslant \text{N}_2. \\ & \min \text{minimum} (\text{N}_1, \text{N}_2, \text{N}_2) : - \text{N}_2 < \text{N}_1. \end{split}
```

Observation

similar care is necessary with the definition of partition, etc.

```
\begin{split} & \texttt{member}(\texttt{X}, [\texttt{X}|\texttt{Xs}]) \, . \\ & \texttt{member}(\texttt{X}, [\texttt{Y}|\texttt{Xs}]) \, :- \, \texttt{member}(\texttt{X}, \texttt{Xs}) \, . \end{split}
```

```
member(X,[X|Xs]).
member(X,[Y|Xs]): - member(X,Xs).
?- member(X,[a,b,a]).
X \mapsto a
```

```
member(X,[X|Xs]).
member(X,[Y|Xs]): - member(X,Xs).

?- member(X,[a,b,a]).

X \mapsto a;
X \mapsto b
```

```
\label{eq:member} \begin{split} & \texttt{member}(\texttt{X}, [\texttt{X}|\texttt{Xs}]) : & - \texttt{member}(\texttt{X}, \texttt{Xs}) : - \texttt{member}(\texttt{X}, \texttt{Xs}) . \\ & ?- \texttt{member}(\texttt{X}, [\texttt{a}, \texttt{b}, \texttt{a}]) . \\ & \texttt{X} \mapsto \texttt{a} \ ; \\ & \texttt{X} \mapsto \texttt{b} \ ; \\ & \texttt{X} \mapsto \texttt{a} \end{split}
```

```
\begin{tabular}{llll} member(X,[X|Xs]). \\ member(X,[Y|Xs]):- member(X,Xs). \\ ?- member(X,[a,b,a]). \\ X &\mapsto a ; \\ X &\mapsto b ; \\ X &\mapsto a ; \\ false \end{tabular}
```

Example

```
member(X,[X|Xs]).
member(X,[Y|Xs]): - member(X,Xs).

?- member(X,[a,b,a]).

X \mapsto a;
X \mapsto b;
X \mapsto a;
false
```

```
member_check(X,[X|Xs]).
member_check(X,[Y|Ys]): -X \neq Y, member_check(X,Ys).
```

Fact

some care is necessary in pruning the search tree, as this may change the meaning of a program

some care is necessary in pruning the search tree, as this may change the meaning of a program

```
\begin{split} & \texttt{select}(\texttt{X}, [\texttt{X}|\texttt{Xs}], \texttt{Xs}) \; . \\ & \texttt{select}(\texttt{X}, [\texttt{Y}|\texttt{Ys}], [\texttt{Y}|\texttt{Zs}]) \; : - \; \texttt{select}(\texttt{X}, \texttt{Ys}, \texttt{Zs}) \; . \end{split}
```

some care is necessary in pruning the search tree, as this may change the meaning of a program

Example

```
select(X,[X|Xs],Xs).
select(X,[Y|Ys],[Y|Zs]) : - select(X,Ys,Zs).
```

```
\begin{split} & \texttt{select\_fst}(\texttt{X}, \texttt{[X|Xs]}, \texttt{Xs)} \,. \\ & \texttt{select\_fst}(\texttt{X}, \texttt{[Y|Ys]}, \texttt{[Y|Zs]}) \,:-\, \texttt{dif}(\texttt{X}, \texttt{Y}), \,\, \texttt{select\_fst}(\texttt{X}, \texttt{Ys}, \texttt{Zs}) \,. \end{split}
```

some care is necessary in pruning the search tree, as this may change the meaning of a program

Example

```
select(X,[X|Xs],Xs).
select(X,[Y|Ys],[Y|Zs]) :- select(X,Ys,Zs).
```

Example

```
\begin{split} & \texttt{select\_fst}(X, [X|Xs], Xs) \,. \\ & \texttt{select\_fst}(X, [Y|Ys], [Y|Zs]) \,:-\, \mathsf{dif}(X, Y), \,\, \mathsf{select\_fst}(X, Ys, Zs) \,. \end{split}
```

Observation

select(a,[a,b,a,c],[a,b,c]) is in the meaning of the 1st program; select_fst(a,[a,b,a,c],[a,b,c]) is not in the meaning of the 2nd

```
Example (Removal of Duplicates)
no_doubles([],[]).
no_doubles([X|Xs],Ys) : -
    member(X,Xs),
    no_doubles(Xs,Ys).
no_doubles([X|Xs],[X|Ys]) : -
    no_doubles(Xs,Ys).
```

```
no_doubles([],[]).
no_doubles([X|Xs],Ys):-
    member(X,Xs),
    no_doubles(Xs,Ys).
no_doubles([X|Xs],[X|Ys]):-
    no_doubles(Xs,Ys).
:- no_doubles([a,b,a,c,b],X).
X \( \mathrix [a,c,b]
```

```
no_doubles([],[]).
no_doubles([X|Xs],Ys) : -
    member(X,Xs),
    no_doubles(Xs,Ys).
no_doubles([X|Xs],[X|Ys]) : -
    no_doubles(Xs,Ys).
: - no_doubles([a,b,a,c,b],X).
X \( \mathrix [a,c,b] ;
X \( \mathrix [b,a,c,b] )
```

```
no_doubles([],[]).
no_doubles([X|Xs],Ys) : -
    member(X,Xs),
    no_doubles(Xs,Ys).
no_doubles([X|Xs],[X|Ys]) : -
    no_doubles(Xs,Ys).
: - no_doubles([a,b,a,c,b],X).
X \mapsto [a,c,b];
X \mapsto [b,a,c,b];
X \mapsto [a,a,c,b]
```

```
no_doubles([],[]).
no doubles([X|Xs],Ys):-
    member(X,Xs),
    no doubles(Xs,Ys).
no doubles([X|Xs],[X|Ys]): -
    no doubles(Xs,Ys).
: - no doubles([a,b,a,c,b],X).
X \mapsto [a,c,b];
X \mapsto [b,a,c,b];
X \mapsto [a,a,c,b]:
X \mapsto [a,b,a,c,b]
```

Example (Removal of Duplicates) no_doubles([],[]).

```
no doubles([X|Xs],Ys):-
    member(X,Xs),
    no doubles(Xs,Ys).
no doubles([X|Xs],[X|Ys]): -
    no doubles(Xs,Ys).
: - no doubles([a,b,a,c,b],X).
X \mapsto [a,c,b];
X \mapsto [b,a,c,b];
X \mapsto [a,a,c,b]:
X \mapsto [a,b,a,c,b]:
false
```

Example (Removal of Duplicates) no_doubles([],[]). no_doubles([X|Xs],Ys) : member(X,Xs), no_doubles(Xs,Ys). no_doubles([X|Xs],[X|Ys]) : \+ member(X,Xs), no_doubles(Xs,Ys).

Example (Removal of Duplicates) no_doubles([],[]). no_doubles([X|Xs],Ys) : member(X,Xs), no_doubles(Xs,Ys). no_doubles([X|Xs],[X|Ys]) : \+ member(X,Xs), no_doubles(Xs,Ys). : - no_doubles([a,b,a,c,b],X). X \(\mathrix [a,c,b] \)

```
Example (Removal of Duplicates)
no doubles([],[]).
no doubles([X|Xs],Ys): -
    member(X,Xs),
    no doubles(Xs,Ys).
no_doubles([X|Xs],[X|Ys]) : -
    \+ member(X,Xs),
    no doubles(Xs,Ys).
: - no doubles([a,b,a,c,b],X).
X \mapsto [a,c,b];
```

false

```
Example (Removal of Duplicates)
no doubles([],[]).
no doubles([X|Xs],Ys): -
    member(X,Xs),
    no doubles(Xs,Ys).
no_doubles([X|Xs],[X|Ys]) : -
    \+ member(X,Xs),
                                   negation as failure
    no doubles(Xs,Ys).
: - no doubles([a,b,a,c,b],X).
X \mapsto [a,c,b];
false
```

```
Example (Removal of Duplicates)
no doubles([],[]).
no doubles([X|Xs],Ys): -
    member(X,Xs), !,
                                   cut
    no doubles(Xs,Ys).
no_doubles([X|Xs],[X|Ys]) : -
    no doubles(Xs,Ys).
: - no doubles([a,b,a,c,b],X).
X \mapsto [a,c,b];
false
```

```
Example (Removal of Duplicates)
no_doubles([],[]).
no_doubles([X|Xs],Ys) : -
    member(X,Xs), !, cut
    no_doubles(Xs,Ys).
no_doubles([X|Xs],[X|Ys]) : -
    no_doubles(Xs,Ys).
```

Effect of Cut

! succeeds

Example (Removal of Duplicates) no_doubles([],[]). no_doubles([X|Xs],Ys) : member(X,Xs), !, cut no_doubles([X|Xs],[X|Ys]) : -

no doubles(Xs,Ys).

Effect of Cut

- ! succeeds
- ! fixes all choices between (and including) moment of matching rule's head with parent goal and cut

Example (Removal of Duplicates) no_doubles([],[]). no_doubles([X|Xs],Ys) : member(X,Xs), !, cut no_doubles(Xs,Ys). no_doubles([X|Xs],[X|Ys]) : -

```
no_doubles(Xs,Ys).
```

Effect of Cut

- ! succeeds
- ! fixes all choices between (and including) moment of matching rule's head with parent goal and cut
 - if backtracking reaches !, the cut fails and the search continues from the last choice made before the clause containing ! was chosen

```
Example (Removal of Duplicates)
no_doubles([],[]).
no_doubles([X|Xs],Ys) : -
    member(X,Xs), !, cut
    no_doubles(Xs,Ys).
no_doubles([X|Xs],[X|Ys]) : -
    no doubles(Xs,Ys).
```

Effect of Cut

```
p(t_{11},...,t_{1n}) := A_1,...,A_k.
\vdots
p(t_{i1},...,t_{in}) := B_1,...,B_i, !, C_1,...,C_j.
\vdots
p(t_{m1},...,t_{mn}) := D_1,...,D_l.
```

```
Example (Removal of Duplicates)
no_doubles([],[]).
no_doubles([X|Xs],Ys) : -
    member(X,Xs), !, cut
    no_doubles(Xs,Ys).
no_doubles([X|Xs],[X|Ys]) : -
    no doubles(Xs,Ys).
```

Effect of Cut $p(t_{11},...,t_{1n}) := A_1,...,A_k.$ \vdots $p(t_{i1},...,t_{in}) := B_1,...,B_i, !, C_1,...,C_j.$ \vdots $p(t_{m1},...,t_{mn}) := D_1,...,D_l.$

```
Example (Removal of Duplicates)
no_doubles([],[]).
no_doubles([X|Xs],Ys) : -
    member(X,Xs), !, cut
    no_doubles(Xs,Ys).
no_doubles([X|Xs],[X|Ys]) : -
    no doubles(Xs,Ys).
```

Effect of Cut $p(t_{11},...,t_{1n}) := A_1,...,A_k$. \vdots $p(t_{i1},...,t_{in}) := B_1,...,B_i$, !, $C_1,...,C_j$. \vdots blocked

 $p(t_{m1},...,t_{mn}):-D_1,...,D_l.$

Examples of Cuts

Example (Without Cuts)

```
merge([X|Xs], [Y|Ys],[X|Zs]): -
    X < Y, merge(Xs,[Y|Ys],Zs).
merge([X|Xs],[Y|Ys],[X,Y|Zs]): -
    X = Y, merge(Xs,Ys,Zs).
merge([X|Xs],[Y|Ys],[Y|Zs]): -
    X > Y, merge([X|Xs],Ys,Zs).
merge(Xs,[],Xs).
merge([],Ys,Ys).
```

Examples of Cuts

Example (With Cuts)

```
merge([X|Xs], [Y|Ys],[X|Zs]): -
    X < Y, !, merge(Xs,[Y|Ys],Zs).
merge([X|Xs],[Y|Ys],[X,Y|Zs]): -
    X = Y, !, merge(Xs,Ys,Zs).
merge([X|Xs],[Y|Ys],[Y|Zs]): -
    X > Y, !, merge([X|Xs],Ys,Zs).
merge(Xs,[],Xs): - !.
merge([],Ys,Ys): - !.
```

Examples of Cuts

```
Example (With Cuts)
```

```
merge([X|Xs], [Y|Ys],[X|Zs]) : -
    X < Y, !, merge(Xs,[Y|Ys],Zs).
merge([X|Xs],[Y|Ys],[X,Y|Zs]) : -
    X = Y, !, merge(Xs,Ys,Zs).
merge([X|Xs],[Y|Ys],[Y|Zs]) : -
    X > Y, !, merge([X|Xs],Ys,Zs).
merge(Xs,[],Xs) : - !.
merge([],Ys,Ys) : - !.
```

```
minimum(X,Y,X) :- X \leqslant Y, !. minimum(X,Y,Y) :- X > Y, !.
```

cuts can greatly increase the efficiency by removing redundant computations

cuts can greatly increase the efficiency by removing redundant computations

```
ordered([X]).
ordered([X,Y|Xs]) :- X \leq Y, ordered([Y|Xs]).
bubblesort(Xs,Ys) :-
    append(As,[X,Y|Bs],Xs),
    X > Y,
    append(As,[Y,X|Bs],Xs1),
    bubblesort(Xs1,Ys).
```

cuts can greatly increase the efficiency by removing redundant computations

```
ordered([X]).
ordered([X,Y|Xs]) : - X \leq Y, ordered([Y|Xs]).

bubblesort(Xs,Ys) : -
    append(As,[X,Y|Bs],Xs),
    X > Y,
    append(As,[Y,X|Bs],Xs1),
    bubblesort(Xs1,Ys).

bubblesort(Xs,Xs) : -
    ordered(Xs).
```

cuts can greatly increase the efficiency by removing redundant computations

```
ordered([X]).
ordered([X,Y|Xs]) := X \leq Y, ordered([Y|Xs]).
bubblesort(Xs,Ys) : -
    append(As,[X,Y|Bs],Xs),
    X > Y
    append(As, [Y, X|Bs], Xs1),
    bubblesort(Xs1,Ys).
 bubblesort(Xs,Xs) : -
    ordered(Xs).
 : - bubblesort([3,2,1],Xs)
Xs \mapsto [1,2,3]
```

cuts can greatly increase the efficiency by removing redundant computations

```
ordered([X]).
ordered([X,Y|Xs]) := X \leq Y, ordered([Y|Xs]).
bubblesort(Xs,Ys) : -
    append(As,[X,Y|Bs],Xs),
    X > Y, !,
    append(As,[Y,X|Bs],Xs1),
    bubblesort(Xs1,Ys).
 bubblesort(Xs,Xs) : -
    ordered(Xs), !.
 : - bubblesort([3,2,1],Xs)
Xs \mapsto [1,2,3]
```

• negation \+ is implemented using cut

- negation \+ is implemented using cut
- the principle of negation is limited and known as negation as failure

- negation \+ is implemented using cut
- the principle of negation is limited and known as negation as failure

```
not X : -X, !, fail. not X.
```

- negation \+ is implemented using cut
- the principle of negation is limited and known as negation as failure

Example

```
not X : -X, !, fail. not X.
```

Observation

if G does not terminate, not(G) may or may not terminate

- negation \+ is implemented using cut
- the principle of negation is limited and known as negation as failure

Example

```
not X : -X, !, fail. not X.
```

Observation

if G does not terminate, not(G) may or may not terminate

```
married(abraham, sarah).
married(X,Y) : - married(Y,X)
: - not married(abraham, sarah).
```

Cut-Fail Combinations

Example (Implementing \neq)

 $X \neq X \rightarrow !$, fail.

 $X \neq Y$.

Cut-Fail Combinations

```
Example (Implementing \neq) X \neq X \rightarrow !, fail.
```

```
X \neq Y.
```

```
Example (Implementing if_then_else)
```

```
if_{-}then_{-}else(P,Q,R) : - P, !, Q.
```

 $if_{then_else(P,Q,R)} : - R.$

Cut-Fail Combinations

```
Example (Implementing \neq) X \neq X \rightarrow !, fail. X \neq Y.
```

```
Example (Implementing if_then_else) if_then_else(P,Q,R) : - P, !, Q. if_then_else(P,Q,R) : - R.
```

```
Example (Implementing same_vars)
same_vars(foo,Y) : - var(Y), !, fail.
same_vars(X,Y) : - var(X), var(Y).
```

```
and(A,B) : - A, B.
or(A,B) : - A; B.
implies(A,B) : - or(not(A),B).
```

```
Example (Truth Tables for Propositional Formulas)
```

```
and(A,B) :- A, B.
or(A,B) :- A; B.
implies(A,B) :- or(not(A),B).
bind(true).
bind(false).
table(A,B,E) :- bind(A), bind(B), row(A,B,E), fail.
```

```
and(A,B) :- A, B.
or(A,B) :- A; B.
implies(A,B) :- or(not(A),B).
bind(true).
bind(false).
table(A,B,E) :- bind(A), bind(B), row(A,B,E), fail.
table(_,_,_) :- nl.
```

```
and(A,B): - A, B.
or(A.B) : - A: B.
implies(A,B) : - or(not(A),B).
bind(true).
bind(false).
table(A,B,E) := bind(A), bind(B), row(A,B,E), fail.
table(,,):-nl.
row(A,B,):=wr(A), write(','), wr(B), write(','), fail.
row(,,E) := E, !, wr(true), nl.
row(,,):-wr(false), nl.
wr(true) : - write('T').
wr(false) : - write('F').
```

```
and (A.B) : -A.B.
or(A.B) : - A: B.
implies(A,B) : - or(not(A),B).
bind(true).
bind(false).
table(A,B,E) := bind(A), bind(B), row(A,B,E), fail.
table(,,):-nl.
row(A,B,):=wr(A), write(','), wr(B), write(','), fail.
row(,,E) := E, !, wr(true), nl.
row(,,):-wr(false), nl.
wr(true) : - write('T').
wr(false) : - write('F').
: - table(A,B,or(A,implies(B,or(B,and(A,B))))).
```

```
and (A.B) : -A.B.
or(A.B) : - A: B.
implies(A,B) : - or(not(A),B).
bind(true).
bind(false).
table(A,B,E) := bind(A), bind(B), row(A,B,E), fail.
table(,,):-nl.
row(A,B,):=wr(A), write(','), wr(B), write(','), fail.
row(,,E) := E, !, wr(true), nl.
row(,,):-wr(false), nl.
wr(true) : - write('T').
wr(false) : - write('F').
: - table(A,B,or(A,implies(B,or(B,and(A,B))))).
: - table(A,B,false).
```

Cut and Generate and Test

Example (integer division with cut) is_integer (0). $is_integer(N) :$ is_integer(N1), N is N1 + 1. divide (N1, N2, Result) :is_integer (Result), Product1 is Result * N2, Product 2 is (Result+1)*N2, Product1 = < N1.Product2 > N1. /* what happens if removed? */ :- divide (27,6,Res), Res=4.