
Logic Programming

Georg Moser

Department of Computer Science @ UIBK

Winter 2016

Summary of Last Lecture

Answer Set Programming

• novel approach to modelling and solving search and optimisation
problems

• ¬ programming, but a specification language

• ¬ Turing complete

• purely declarative

• restricted to finite models

Example ((part of) 8-queens problem)

:− not (1 = count (Y : queen (X,Y))) , row (X)

• expresses that exactly one queen appears in every row and column

• is read as a rule: “if X is a row, 1 = count(Y : queen(X,Y)) holds”

GM (Department of Computer Science @ UIBK) Logic Programming 160/1

Qutline

Outline of the Lecture

Monotone Logic Programs

introduction, basic constructs, logic foundations, unification, semantics,
database and recursive programming, termination, complexity

Incomplete Data Structures and Constraints

incomplete data structures, definite clause grammars, constraint logic pro-
gramming, answer set programming

Full Prolog

semantics (revisited), cuts, correctness proofs, meta-logical predicates,
nondeterministic programming, efficient programs, complexity

GM (Department of Computer Science @ UIBK) Logic Programming 161/1

Negative Definitions

Definition

negative definitions define a relation with the help of negation

Example

land(X) :- not sea(X).

Fact

negative definitions are dangerous as their scope is usually larger than
expected and they are difficult to maintain, if underlying definitions get
refined

Example

:- land(27).

:- land(kar rinne).

:- land(milka kuh).

GM (Department of Computer Science @ UIBK) Logic Programming 162/1

http://cl-informatik.uibk.ac.at

Semantics (revisited)

Semantics (revisited)

Definitions
• SLD-derivation of monotone logic program P and goal clause G

consists of

1 maximal sequence G0,G1,G2, . . . of goal clauses

2 sequence C0,C1,C2, . . . of variants of rules in P

3 sequence θ0, θ1, θ2, . . . of substitutions

such that
• G0 = G

• Gi+1 is resolvent of Gi and Ci with mgu θi

• Ci has no variables in common with G ,C0, . . . ,Ci−1

• SLD refutation is finite SLD derivation ending in 2

• computed answer substitution of SLD refutation of P and G with
substitutions θ0, θ1, . . . , θm is restriction of θ0θ1 · · · θm to variables
in G

GM (Department of Computer Science @ UIBK) Logic Programming 163/1

Semantics (revisited)

Definition (search tree)
a search tree (aka SLD tree) of a goal G is a tree T such that

• the root of T is labelled with G ; the nodes of T are labelled with
conjunctions of goals, where one goal is selected (wrt a selection
function)

• ∃ edge from node N for each clause, whose head unifies with the
selected goal; edges are labelled with (partial) answer substitutions

• leaves are success nodes, if 2 has been reached or failure nodes
otherwise

Definition (proof tree)
a proof tree for a program P and a goal G is a tree, whose nodes are
goals and whose edges represent reduction of goals such that

• the root is the query G

• the edges are labelled with (partial) answer substitutions

• a proof tree for G1, . . . ,Gn is set of proof trees for Gi

GM (Department of Computer Science @ UIBK) Logic Programming 164/1

Semantics (revisited)

Monotone Logic Programs and Herbrand Models
(yet another connection between proofs and programs)

Definitions
• the Herbrand universe for a program P is the set of all closed terms

built from constants and function symbols appearing in the program

• the Herbrand base is the set of all ground goals formed from
predicates in P and terms in the Herbrand universe

• an interpretation is a subset of the Herbrand base

• an interpretation I is a model if it is closed under rules:

∀ rules A : −B1, . . . ,Bn: if B1, . . . ,Bn ∈ I , then A ∈ I

• the minimal model of P is the intersection of all models

Theorem

the minimal model is unique

GM (Department of Computer Science @ UIBK) Logic Programming 165/1

Semantics (revisited)

Declarative, Operational, and Denotational Semantics

Definition

• the declarative semantics of P (aka its meaning) is the minimal
model of P

• we also say that the meaning of a logic program P, is the set of
(ground unit) goals deducible from P

Definitions

the operational semantics describes the meaning of a program
procedurally

Definition

the denotational semantics assign meanings to programs based on
associating with the program a function over the domain computed by
the program

GM (Department of Computer Science @ UIBK) Logic Programming 166/1

The Execution Model of Prolog

Rule Order

Fact

The rule order determines the order in which solutions are found

Example

parent(terach,abraham). parent(abraham,isaac).

parent(isaac,jakob). parent(jakob,benjamin).

ancestor1(X,Y) : − parent(X,Y).

ancestor1(X,Z) : − parent(X,Y), ancestor1(Y,Z).

Example

append1([X|Xs],Ys,[X|Zs]) : − append2([],Ys,Ys).

append1(Xs,Ys,Zs). append2([X|Xs],Ys,[X|Zs]) : −
append1([],Ys,Ys). append2(Xs,Ys,Zs).

GM (Department of Computer Science @ UIBK) Logic Programming 167/1

The Execution Model of Prolog

Goal Order

Fact

Goal order determines the SLD tree

Example
grandparent1(X,Z) : − parent(X,Y), parent(Y,Z).

grandparent2(X,Z) : − parent(Y,Z), parent(X,Y).

Example

r e v e r s e 1 ([X | Xs] , Zs) :− r e v e r s e 1 (Xs , Ys) , append1 (Ys , [X] , Zs) .
r e v e r s e 1 ([] , []) .

r e v e r s e 2 ([X | Xs] , Zs) :− append1 (Ys , [X] , Zs) , r e v e r s e 2 (Xs , Ys) .
r e v e r s e 2 ([] , []) .

:− r e v e r s e 1 ([a , b , c , d] , Xs) , Xs=[d , c , b , a] .
:− r e v e r s e 2 ([a , b , c , d] , Xs) , Xs=[d , c , b , a] .

GM (Department of Computer Science @ UIBK) Logic Programming 168/1

Intermission: Redundancy

Redundant Solutions

Example

minimum(N1,N2,N1) : − N1 6 N2.

minimum(N1,N2,N2) : − N2 6 N1.

: − minium(2,2,M)

Example

minimum(N1,N2,N1) : − N1 6 N2.

minimum(N1,N2,N2) : − N2 < N1.

Observation

similar care is necessary with the definition of partition, etc.

GM (Department of Computer Science @ UIBK) Logic Programming 169/1

Intermission: Redundancy

Redundant Solutions (part II)

Example

member(X,[X|Xs]).

member(X,[Y|Xs]) : − member(X,Xs).

?- member(X,[a,b,a]).

X 7→ a ;

X 7→ b ;

X 7→ a ;

false

Example

member check(X,[X|Xs]).

member check(X,[Y|Ys]) : − X 6= Y, member check(X,Ys).

GM (Department of Computer Science @ UIBK) Logic Programming 170/1

Intermission: Redundancy

Fact

some care is necessary in pruning the search tree, as this may change the
meaning of a program

Example

select(X,[X|Xs],Xs).

select(X,[Y|Ys],[Y|Zs]) : − select(X,Ys,Zs).

Example

select fst(X,[X|Xs],Xs).

select fst(X,[Y|Ys],[Y|Zs]) : − dif(X,Y), select fst(X,Ys,Zs).

Observation

select(a,[a,b,a,c],[a,b,c]) is in the meaning of the 1st program;
select fst(a,[a,b,a,c],[a,b,c]) is not in the meaning of the 2nd

GM (Department of Computer Science @ UIBK) Logic Programming 171/1

Cuts

Removal of Duplicates

no doubles([],[]).

no doubles([X|Xs],Ys) : −
member(X,Xs), !, cut
no doubles(Xs,Ys).

no doubles([X|Xs],[X|Ys]) : −
no doubles(Xs,Ys).

: − no doubles([a,b,a,c,b],X).

X 7→ [a,c,b] ;

false

Effect of Cut

! succeeds

! fixes all choices between (and including) moment of matching
rule’s head with parent goal and cut

if backtracking reaches !, the cut fails and the search continues from
the last choice made before the clause containing ! was chosen

GM (Department of Computer Science @ UIBK) Logic Programming 172/1

Cuts

Examples of Cuts

Example (With Cuts)

merge([X|Xs], [Y|Ys],[X|Zs]) : −
X < Y, !, merge(Xs,[Y|Ys],Zs).

merge([X|Xs],[Y|Ys],[X,Y|Zs]) : −
X = Y, !, merge(Xs,Ys,Zs).

merge([X|Xs],[Y|Ys],[Y|Zs]) : −
X > Y, !, merge([X|Xs],Ys,Zs).

merge(Xs,[],Xs) : − !.

merge([],Ys,Ys) : − !.

Example

minimum(X,Y,X) : − X 6 Y, !.

minimum(X,Y,Y) : − X > Y, !.

GM (Department of Computer Science @ UIBK) Logic Programming 173/1

Cuts

Fact

cuts can greatly increase the efficiency by removing redundant computa-
tions

Example

ordered([X]).

ordered([X,Y|Xs]) : − X 6 Y, ordered([Y|Xs]).

bubblesort(Xs,Ys) : −
append(As,[X,Y|Bs],Xs),

X > Y, !,

append(As,[Y,X|Bs],Xs1),

bubblesort(Xs1,Ys).

bubblesort(Xs,Xs) : −
ordered(Xs), !.

: − bubblesort([3,2,1],Xs)

Xs 7→ [1,2,3]

GM (Department of Computer Science @ UIBK) Logic Programming 174/1

Cuts

Definition (Negation as Failure)

• negation \+ is implemented using cut

• the principle of negation is limited and known as negation as failure

Example

not X : − X, !, fail.

not X.

Observation

if G does not terminate, not(G) may or may not terminate

Example

married(abraham,sarah).

married(X,Y) : − married(Y,X)

: − not married(abraham,sarah).

GM (Department of Computer Science @ UIBK) Logic Programming 175/1

Cuts

Cut-Fail Combinations

Example (Implementing 6=)

X 6= X → !, fail.

X 6= Y.

Example (Implementing if then else)

if then else(P,Q,R) : − P, !, Q.

if then else(P,Q,R) : − R.

Example (Implementing same vars)

same vars(foo,Y) : − var(Y), !, fail.

same vars(X,Y) : − var(X), var(Y).

GM (Department of Computer Science @ UIBK) Logic Programming 176/1

Cuts

Example (Truth Tables for Propositional Formulas)

and(A,B) : − A, B.

or(A,B) : − A; B.

implies(A,B) : − or(not(A),B).

bind(true).

bind(false).

table(A,B,E) : − bind(A), bind(B), row(A,B,E), fail.

table(, ,) : − nl.

row(A,B,) : − wr(A), write(’ ’), wr(B), write(’ ’), fail.

row(, ,E) : − E, !, wr(true), nl.

row(, ,) : − wr(false), nl.

wr(true) : − write(’T’).

wr(false) : − write(’F’).

: − table(A,B,or(A,implies(B,or(B,and(A,B))))).

: − table(A,B,false).

GM (Department of Computer Science @ UIBK) Logic Programming 177/1

Cuts

Cut and Generate and Test

Example (integer division with cut)

i s i n t e g e r (0) .
i s i n t e g e r (N) :−

i s i n t e g e r (N1) ,
N i s N1 + 1 .

d i v i d e (N1 ,N2 , Re s u l t) :−
i s i n t e g e r (Re s u l t) ,
Product1 i s R e s u l t ∗ N2 ,
Product2 i s (R e s u l t +1)∗N2 ,
Product1 =< N1 ,
Product2 > N1 ,
! . /∗ what happens i f removed ? ∗/

:− d i v i d e (27 ,6 , Res) , Res=4.

GM (Department of Computer Science @ UIBK) Logic Programming 178/1

