Logic Programming

Georg Moser

Department of Computer Science @ UIBK

Winter 2016

Qutline

Outline of the Lecture

Monotone Logic Programs
introduction, basic constructs, logic foundations, unification, semantics, database and recursive programming, termination, complexity

Incomplete Data Structures and Constraints
incomplete data structures, definite clause grammars, constraint logic programming, answer set programming

Full Prolog

semantics (revisited), cuts, correctness proofs, meta-logical predicates, nondeterministic programming, efficient programs, complexity

Summary of Last Lecture

Answer Set Programming

- novel approach to modelling and solving search and optimisation problems
- \neg programming, but a specification language
- \neg Turing complete
- purely declarative
- restricted to finite models

Example ((part of) 8-queens problem)

$$
:-\operatorname{not}(1=\operatorname{count}(Y: \text { queen }(X, Y))) \text {, row }(X)
$$

- expresses that exactly one queen appears in every row and column
- is read as a rule: "if X is a row, $1=\operatorname{count}(\mathrm{Y}:$ queen $(\mathrm{X}, \mathrm{Y}))$ holds"

Negative Definitions

Definition

negative definitions define a relation with the help of negation

Example
$\operatorname{land}(X)$:- not sea(X).

Fact

negative definitions are dangerous as their scope is usually larger than expected and they are difficult to maintain, if underlying definitions get refined

Example
:- land(27).
:- land(kar rinne).
:- land(milka kuh).

Semantics (revisited)

Definitions

- SLD-derivation of monotone logic program P and goal clause G consists of
1 maximal sequence $G_{0}, G_{1}, G_{2}, \ldots$ of goal clauses
2 sequence $C_{0}, C_{1}, C_{2}, \ldots$ of variants of rules in P
3 sequence $\theta_{0}, \theta_{1}, \theta_{2}, \ldots$ of substitutions
such that
- $G_{0}=G$
- G_{i+1} is resolvent of G_{i} and C_{i} with mgu θ_{i}
- C_{i} has no variables in common with $G, C_{0}, \ldots, C_{i-1}$
- SLD refutation is finite SLD derivation ending in \square
- computed answer substitution of SLD refutation of P and G with substitutions $\theta_{0}, \theta_{1}, \ldots, \theta_{m}$ is restriction of $\theta_{0} \theta_{1} \cdots \theta_{m}$ to variables in G

Semantics (revisited)

Monotone Logic Programs and Herbrand Models

(yet another connection between proofs and programs)

Definitions

- the Herbrand universe for a program P is the set of all closed terms built from constants and function symbols appearing in the program
- the Herbrand base is the set of all ground goals formed from predicates in P and terms in the Herbrand universe
- an interpretation is a subset of the Herbrand base
- an interpretation I is a model if it is closed under rules:

$$
\forall \text { rules } A:-B_{1}, \ldots, B_{n}: \quad \text { if } B_{1}, \ldots, B_{n} \in I \text {, then } A \in I
$$

- the minimal model of P is the intersection of all models

Theorem

the minimal model is unique

Semantics (revisited)

Definition (search tree)
a search tree (aka SLD tree) of a goal G is a tree T such that

- the root of T is labelled with G; the nodes of T are labelled with conjunctions of goals, where one goal is selected (wrt a selection function)
- \exists edge from node N for each clause, whose head unifies with the selected goal; edges are labelled with (partial) answer substitutions
- leaves are success nodes, if \square has been reached or failure nodes otherwise

Definition (proof tree)
a proof tree for a program P and a goal G is a tree, whose nodes are goals and whose edges represent reduction of goals such that

- the root is the query G
- the edges are labelled with (partial) answer substitutions
- a proof tree for G_{1}, \ldots, G_{n} is set of proof trees for G_{i}
GM (Department of Computer Science © UI Logic Programming 164/1

Semantics (revisited)

Declarative, Operational, and Denotational Semantics

Definition

- the declarative semantics of P (aka its meaning) is the minimal model of P
- we also say that the meaning of a logic program P, is the set of (ground unit) goals deducible from P

Definitions
the operational semantics describes the meaning of a program procedurally

Definition

the denotational semantics assign meanings to programs based on associating with the program a function over the domain computed by the program

The Execution Model of Prolog

Rule Order

Fact
The rule order determines the order in which solutions are found

Example

parent(terach, abraham).	parent(abraham,isaac).
parent(isaac, jakob).	parent(jakob, benjamin).

ancestor1 (X,Y) : - parent (X,Y).
ancestor1(X,Z) :- parent(X,Y), ancestor1(Y,Z).

Example

$$
\begin{array}{cc}
\text { append1 }([\mathrm{X} \mid \mathrm{Xs}], \mathrm{Ys},[\mathrm{X} \mid \mathrm{Zs}]):- & \text { append2 }([], \mathrm{Ys}, \mathrm{Ys}) . \\
\text { append1 }(\mathrm{Xs}, \mathrm{Ys}, \mathrm{Zs}) . & \text { append2 }([\mathrm{X} \mid \mathrm{Xs}], \mathrm{Ys},[\mathrm{X} \mid \mathrm{Zs}]):- \\
\text { append1 }([], \mathrm{Ys}, \mathrm{Ys}) . & \text { append2 }(\mathrm{Xs}, \mathrm{Ys}, \mathrm{Zs}) .
\end{array}
$$

Logic Programming

Intermission: Redundancy

Redundant Solutions

Example

$$
\operatorname{minimum}\left(N_{1}, N_{2}, N_{1}\right):-N_{1} \leqslant N_{2} .
$$

$$
\operatorname{minimum}\left(\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{~N}_{2}\right):-\mathrm{N}_{2} \leqslant \mathrm{~N}_{1} .
$$

- minium(2,2,M)

Example
minimum $\left(\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{~N}_{1}\right):-\mathrm{N}_{1} \leqslant \mathrm{~N}_{2}$.
$\operatorname{minimum}\left(\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{~N}_{2}\right):-\mathrm{N}_{2}<\mathrm{N}_{1}$

Observation
similar care is necessary with the definition of partition, etc

Goal Order

Fact

Goal order determines the SLD tree

Example
grandparent1(X,Z) : - parent(X,Y), parent(Y,Z). grandparent2(X,Z) : - parent (Y,Z), parent(X,Y).

Example

$$
\begin{aligned}
& \text { reverse1 }([X \mid X s], Z s):-\quad \text { reverse } 1(X s, Y s), \quad \text { append } 1(Y s,[X], Z s) . \\
& \text { reverse1 }([],[]) . \\
& \text { reverse } 2([X \mid X s], Z s):-\operatorname{append} 1(Y s,[X], Z s), \quad \operatorname{reverse} 2(X s, Y s) . \\
& \text { reverse2 }([],[]) . \\
& :-\operatorname{reverse} 1([a, b, c, d], X s), X s=[d, c, b, a] . \\
& :-\operatorname{reverse} 2([a, b, c, d], X s), X s=[d, c, b, a] .
\end{aligned}
$$

```
Intermission: Redundancy
```


Redundant Solutions (part II)

```
Example
    member(X,[X|Xs])
    member(X,[Y|Xs]) :- member(X,Xs).
?- member(X, [a,b,a]).
X \mapsto a ;
X \mapsto b ;
X \mapsto a ;
false
```

Example
member_check(X, [X|Xs]).
member_check(X,[Y|Ys]) : $-X \neq Y$, member_check(X,Ys).

Fact
some care is necessary in pruning the search tree, as this may change the meaning of a program

Example

$$
\begin{aligned}
& \text { select }(X,[X \mid X s], X s) . \\
& \operatorname{select}(X,[Y \mid Y s],[Y \mid Z s]):-\operatorname{select}(X, Y s, Z s) .
\end{aligned}
$$

Example

$$
\begin{aligned}
& \text { select_fst }(X,[X \mid X s], X s) . \\
& \text { select_fst }(X,[Y \mid Y s],[Y \mid Z s]):-\operatorname{dif}(X, Y), \text { select_fst(X,Ys,Zs). }
\end{aligned}
$$

Observation

select ($\mathrm{a},[\mathrm{a}, \mathrm{b}, \mathrm{a}, \mathrm{c}],[\mathrm{a}, \mathrm{b}, \mathrm{c}]$) is in the meaning of the 1st program; select_fst ($a,[a, b, a, c],[a, b, c]$) is not in the meaning of the 2nd

GM (Department of Computer Science @ UI

Examples of Cuts

Example (With Cuts)

$$
\begin{aligned}
& \operatorname{merge}([X \mid X s], \quad[Y \mid Y s],[X \mid Z s]):- \\
& X<Y,!, \operatorname{merge}(X s,[Y \mid Y s], Z s) . \\
& \operatorname{merge}([X \mid X s],[Y \mid Y s],[X, Y \mid Z s]):- \\
& X=Y,!, \operatorname{merge}(X s, Y s, Z s) . \\
& \operatorname{merge}([X \mid X s],[Y \mid Y s],[Y \mid Z s]):- \\
& X>Y,!, \operatorname{merge}([X \mid X s], Y s, Z s) . \\
& \operatorname{merge}(X s,[], X s):-!. \\
& \operatorname{merge}([], Y s, Y s):-!.
\end{aligned}
$$

Example

$$
\begin{aligned}
& \operatorname{minimum}(X, Y, X):-X \leqslant Y,!. \\
& \operatorname{minimum}(X, Y, Y):-X>Y,!.
\end{aligned}
$$

Removal of Duplicates

no_doubles ([], []).
no_doubles ([X|Xs],Ys) : -
member (X,Xs), !, cut no_doubles(Xs,Ys).
no_doubles([X|Xs], [X|Ys]) : -
no_doubles (Xs,Ys).
: - no_doubles ([a,b,a, c, b] , X).
$\mathrm{X} \mapsto[\mathrm{a}, \mathrm{c}, \mathrm{b}]$;
false

Effect of Cut

! succeeds
! fixes all choices between (and including) moment of matching rule's head with parent goal and cut
if backtracking reaches !, the cut fails and the search continues from the last choice made before the clause containing! was chosen
GM (Department of Computer Science © UI Logic Programming 172/1 Cuts

Fact
cuts can greatly increase the efficiency by removing redundant computations

```
Example
ordered([x]).
ordered([X,Y|Xs]):- X \leqslant Y, ordered([Y|Xs]).
bubblesort(Xs,Ys):-
    append(As, [X,Y|Bs],Xs),
    X > Y, !,
    append(As, [Y,X|Bs],Xs1),
    bubblesort(Xs1,Ys).
    bubblesort(Xs,Xs):-
        ordered(Xs), !.
    - bubblesort([3,2,1],Xs)
Xs }\mapsto[1,2,3
```

ordered ([x]).
ordered ([X,Y|Xs]):-X X , ordered([Y|Xs]).
bubblesort(Xs,Ys):-
$\operatorname{append}(\mathrm{As},[\mathrm{X}, \mathrm{Y} \mid \mathrm{Bs}], \mathrm{Xs})$,
X > Y, !,
append (As, $[\mathrm{Y}, \mathrm{X} \mid \mathrm{Bs}], \mathrm{Xs} 1$),
bubblesort(Xs1,Ys).
bubblesort(Xs,Xs):-

Xs $\mapsto[1,2,3]$

Definition (Negation as Failure)

- negation \+ is implemented using cut
- the principle of negation is limited and known as negation as failure

Example
not $\mathrm{X}:-\mathrm{X}, \mathrm{I}, \mathrm{fail}$.
not X.

Observation
if G does not terminate, $\operatorname{not}(G)$ may or may not terminate

Example

married(abraham, sarah).
married (X,Y) : - married(Y,X)
: - not married(abraham,sarah).

Example (Truth Tables for Propositional Formulas)
$\operatorname{and}(A, B):-A, B$.
or $(A, B):-A ; B$.
implies (A, B) : $-\operatorname{or}(\operatorname{not}(A), B)$.
bind(true).
bind(false).
table(A, B, E) : - bind(A), bind(B), row(A,B,E), fail.
table(_,_,_) :-nl.
row(A,B,_) : - wr(A), write(' '), wr(B), write(' '), fail.
row (_,_, E) :-E, !, wr (true), nl.
row(_,_,_) :- wr(false), nl.
wr(true) : - write('T').
wr(false) :- write('F').
$:-\operatorname{table}(A, B$, or $(A, i m p l i e s(B, o r(B, a n d(A, B))))$.

- table(A,B,false).

Cut-Fail Combinations

Example (Implementing \neq)

$$
\mathrm{X} \neq \mathrm{X} \rightarrow \text { !, fail. }
$$

$\mathrm{X} \neq \mathrm{Y}$.

Example (Implementing if_then_else)
if_then_else ($\mathrm{P}, \mathrm{Q}, \mathrm{R}$) : - $\mathrm{P}, \mathrm{l}, \mathrm{Q}$.
if_then_else (P, Q, R) : - R.

Example (Implementing same_vars)
same_vars (foo, Y) : - $\operatorname{var}(\mathrm{Y}),!, f a i l$.
same_vars (X,Y) : $-\operatorname{var}(X), \operatorname{var}(Y)$.

Cut and Generate and Test

Example (integer division with cut)
is_integer (0).
is_integer (N) :-
is_integer (N1),
N is $\mathrm{N} 1+1$.
divide(N1,N2, Result) :-
is_integer (Result),
Product1 is Result * N2,
Product2 is (Result +1$) *$ N2,
Product1 $=<$ N1
Product2 $>$ N1,
!. $/ *$ what happens if removed? */
$:-\quad$ divide (27, 6, Res $), \quad$ Res $=4$.

