

Logic Programming

Georg Moser

Winter 2016

Outline of the Lecture

Monotone Logic Programs

introduction, basic constructs, logic foundations, unification, semantics, database and recursive programming, termination, complexity

Incomplete Data Structures and Constraints

incomplete data structures, definite clause grammars, constraint logic programming, answer set programming

Full Prolog

semantics (revisited), cuts, correctness proofs, meta-logical predicates, nondeterministic programming, efficient programs, complexity

Summary of Last Lecture

Answer Set Programming

- novel approach to modelling and solving search and optimisation problems
- \neg programming, but a specification language
- ¬ Turing complete
- purely declarative
- restricted to finite models

Example ((part of) 8-queens problem)

- :- not (1 = count(Y : queen(X,Y))), row(X)
- expresses that exactly one queen appears in every row and column
- is read as a rule: "if X is a row, 1 = count(Y : queen(X,Y)) holds"

GM (Department of Computer Science @ UI Logic Programming

Negative Definition

Definition

negative definitions define a relation with the help of negation

Example

land(X) := not sea(X).

Fact

negative definitions are dangerous as their scope is usually larger than expected and they are difficult to maintain, if underlying definitions get refined

Example

- :- land(27).
- :- land(kar_rinne).
- :- land(milka_kuh).

Semantics (revisited)

Definitions

- SLD-derivation of monotone logic program *P* and goal clause *G* consists of
 - **1** maximal sequence G_0, G_1, G_2, \ldots of goal clauses
 - **2** sequence C_0, C_1, C_2, \ldots of variants of rules in *P*
 - **3** sequence $\theta_0, \theta_1, \theta_2, \ldots$ of substitutions
 - such that • $G_0 = G$
 - G_{i+1} is resolvent of G_i and C_i with mgu θ_i
 - C_i has no variables in common with G, C_0, \ldots, C_{i-1}
- SLD refutation is finite SLD derivation ending in \square
- computed answer substitution of SLD refutation of P and G with substitutions $\theta_0, \theta_1, \ldots, \theta_m$ is restriction of $\theta_0 \theta_1 \cdots \theta_m$ to variables in G

```
GM (Department of Computer Science @ UI Logic Programming
```

163/1

Semantics (revisited)

Monotone Logic Programs and Herbrand Models

(yet another connection between proofs and programs)

Definitions

- the Herbrand universe for a program *P* is the set of all closed terms built from constants and function symbols appearing in the program
- the Herbrand base is the set of all ground goals formed from predicates in *P* and terms in the Herbrand universe
- an interpretation is a subset of the Herbrand base
- an interpretation *I* is a model if it is closed under rules:

 \forall rules $A: -B_1, \ldots, B_n$: if $B_1, \ldots, B_n \in I$, then $A \in I$

• the minimal model of *P* is the intersection of all models

Theorem

the minimal model is unique

Definition (search tree)

a search tree (aka SLD tree) of a goal G is a tree T such that

- the root of *T* is labelled with *G*; the nodes of *T* are labelled with conjunctions of goals, where one goal is selected (wrt a selection function)
- \exists edge from node N for each clause, whose head unifies with the selected goal; edges are labelled with (partial) answer substitutions
- leaves are success nodes, if \square has been reached or failure nodes otherwise

Definition (proof tree)

a proof tree for a program P and a goal G is a tree, whose nodes are goals and whose edges represent reduction of goals such that

Logic Programming

- the root is the query G
- the edges are labelled with (partial) answer substitutions
- a proof tree for G_1, \ldots, G_n is set of proof trees for G_i

GM (Department of Computer Science @ UI

Semantics (revisited)

Declarative, Operational, and Denotational Semantics

Definition

- the declarative semantics of *P* (aka its meaning) is the minimal model of *P*
- we also say that the meaning of a logic program *P*, is the set of (ground unit) goals deducible from *P*

Definitions

the operational semantics describes the meaning of a program procedurally

Definition

the denotational semantics assign meanings to programs based on associating with the program a function over the domain computed by the program

Logic Programmin

Rule Order

Fact

The rule order determines the order in which solutions are found

Example

parent(terach,abraham).
parent(isaac,jakob).

parent(abraham,isaac).
parent(jakob,benjamin).

```
ancestor1(X,Y) :- parent(X,Y).
ancestor1(X,Z) :- parent(X,Y), ancestor1(Y,Z).
```

Example

```
      append1([X|Xs],Ys,[X|Zs]) : -
      append2([],Ys,Ys).

      append1(Xs,Ys,Zs).
      append2([X|Xs],Ys,[X|Zs]) : -

      append1([],Ys,Ys).
      append2([Xs,Ys,Zs).
```

Logic Programming

GM (Department of Computer Science @ UI

167/1

Intermission: Redundancy

Redundant Solutions

Example

 $: - \min(2,2,M)$

Example

Observation

similar care is necessary with the definition of partition, etc.

Goal Order

Fact

Goal order determines the SLD tree

Example

grandparent1(X,Z) : - parent(X,Y), parent(Y,Z).
grandparent2(X,Z) : - parent(Y,Z), parent(X,Y).

Example

 $\label{eq:reversel} \begin{array}{l} \mathsf{reversel}\left(\left[X \,|\, Xs\right], Zs\right) \;:=\; \mathsf{reversel}\left(Xs\,, Ys\right), \;\; \mathsf{appendl}(Ys\,, \left[X\right], Zs\,). \\ \mathsf{reversel}\left(\left[\right]\,, \left[\right]\right). \end{array}$

reverse2([X|Xs],Zs) :- append1(Ys,[X],Zs), reverse2(Xs,Ys). reverse2([],[]).

Logic Programming

:- reverse1([a,b,c,d],Xs), Xs=[d,c,b,a]. :- reverse2([a,b,c,d],Xs), Xs=[d,c,b,a].

GM (Department of Computer Science @ UI

168/1

Intermission: Redundancy

Redundant Solutions (part II)

Example

```
member(X,[X|Xs]).
member(X,[Y|Xs]) :- member(X,Xs).
```

?- member(X,[a,b,a]).

 $X \mapsto a;$ $X \mapsto b;$

 $X \mapsto a$;

false

Example

```
member_check(X,[X|Xs]).
member_check(X,[Y|Ys]) :- X \neq Y, member_check(X,Ys).
```

Fact

some care is necessary in pruning the search tree, as this may change the meaning of a program

Example

select(X,[X|Xs],Xs).
select(X,[Y|Ys],[Y|Zs]) : - select(X,Ys,Zs).

Example

select_fst(X,[X|Xs],Xs).
select_fst(X,[Y|Ys],[Y|Zs]) :- dif(X,Y), select_fst(X,Ys,Zs).

Observation

select(a,[a,b,a,c],[a,b,c]) is in the meaning of the 1st program; select_fst(a,[a,b,a,c],[a,b,c]) is not in the meaning of the 2nd

Logic Programming

```
GM (Department of Computer Science @ UI
```

Examples of Cuts

```
Example (With Cuts)
merge([X|Xs], [Y|Ys],[X|Zs]) : -
    X < Y, !, merge(Xs,[Y|Ys],Zs).
merge([X|Xs],[Y|Ys],[X,Y|Zs]) : -
    X = Y, !, merge(Xs,Ys,Zs).
merge([X|Xs],[Y|Ys],[Y|Zs]) : -
    X > Y, !, merge([X|Xs],Ys,Zs).
merge(Xs,[],Xs) : - !.
merge([],Ys,Ys) : - !.
```

Example

Cuts

Removal of Duplicates

```
no_doubles([],[]).
no_doubles([X|Xs],Ys) : -
    member(X,Xs), !,
    no_doubles(Xs,Ys).
no_doubles([X|Xs],[X|Ys]) : -
    no_doubles(Xs,Ys).
```

: - no_doubles([a,b,a,c,b],X).

 $X \mapsto [a,c,b]$;

false

Effect of Cut

- ! succeeds
- ! fixes all choices between (and including) moment of matching rule's head with parent goal and cut

if backtracking reaches !, the cut fails and the search continues from the last choice made before the clause containing ! was chosen

Logic Programming

cut

GM (Department of Computer Science @ UI

172/1

Cuts

Fact

cuts can greatly increase the efficiency by removing redundant computations $% \left({{{\left[{{{c_{{\rm{m}}}} \right]}}}} \right)$

Example

```
ordered([X]).
ordered([X,Y|Xs]) : - X \leq Y, ordered([Y|Xs]).
bubblesort(Xs,Ys) : -
```

append(As,[X,Y|Bs],Xs), X > Y, !, append(As,[Y,X|Bs],Xs1), bubblesort(Xs1,Ys). bubblesort(Xs,Xs) : ordered(Xs), !.

:- bubblesort([3,2,1],Xs) Xs \mapsto [1,2,3]

171/1

Definition (Negation as Failure)

- negation \+ is implemented using cut
- the principle of negation is limited and known as negation as failure

Example

not X :- X, !, fail.
not X.

Observation

```
if G does not terminate, not(G) may or may not terminate
```

Example

```
married(abraham,sarah).
married(X,Y) : - married(Y,X)
: - not married(abraham,sarah).
```

GM (Department of Computer Science @ UI

175/1

Cuts

```
Example (Truth Tables for Propositional Formulas)
```

```
and(A,B) := A, B.
or(A,B) := A; B.
implies(A,B) := or(not(A),B).
bind(true).
bind(false).
table(A,B,E) := bind(A), bind(B), row(A,B,E), fail.
table(_,_,_) := nl.
row(A,B,_) := wr(A), write(' '), wr(B), write(' '), fail.
row(_,_E) := E, !, wr(true), nl.
row(_,_) := wr(false), nl.
wr(true) := write('T').
wr(false) := write('F').
:= table(A,B,or(A,implies(B,or(B,and(A,B))))).
```

Logic Programming

```
: - table(A,B,false).
```

its

Cut-Fail Combinations

Example (Implementing \neq) X \neq X \rightarrow !, fail. X \neq Y.

Example (Implementing if_then_else)
if_then_else(P,Q,R) :- P, !, Q.
if_then_else(P,Q,R) :- R.

Example (Implementing same_vars)
same_vars(foo,Y) : - var(Y), !, fail.
same_vars(X,Y) : - var(X), var(Y).

GM (Department of Computer Science @ UI

```
176/1
```

Cuts

Cut and Generate and Test

Example (integer division with cut)

```
is_integer(0).
is_integer(N) :-
is_integer(N1),
N is N1 + 1.
```

Logic Programming

:- divide (27,6,Res), Res=4.