
Logic Programming

Georg Moser

Department of Computer Science @ UIBK

Winter 2016

http://cl-informatik.uibk.ac.at

Summary of Last Lecture

Example

no doubles([],[]).

no doubles([X|Xs],Ys) : −
member(X,Xs), !, cut
no doubles(Xs,Ys).

no doubles([X|Xs],[X|Ys]) : −
no doubles(Xs,Ys).

Effect of Cut

! succeeds

! fixes all choices between (and including) moment of matching
rule’s head with parent goal and cut

if backtracking reaches !, the cut fails and the search continues from
the last choice made before the clause containing ! was chosen

GM (Department of Computer Science @ UIBK) Logic Programming 179/1

Outline

Outline of the Lecture

Monotone Logic Programs

introduction, basic constructs, logic foundations, unification, semantics,
database and recursive programming, termination, complexity

Incomplete Data Structures and Constraints

incomplete data structures, definite clause grammars, constraint logic pro-
gramming, answer set programming

Full Prolog

semantics (revisited), cuts, correctness proofs, meta-logical predicates,
cuts nondeterministic programming, efficient programs, complexity

GM (Department of Computer Science @ UIBK) Logic Programming 180/1

Outline

Outline of the Lecture

Monotone Logic Programs

introduction, basic constructs, logic foundations, unification, semantics,
database and recursive programming, termination, complexity

Incomplete Data Structures and Constraints

incomplete data structures, definite clause grammars, constraint logic pro-
gramming, answer set programming

Full Prolog

semantics (revisited), cuts, correctness proofs, meta-logical predicates,
cuts nondeterministic programming, efficient programs, complexity

GM (Department of Computer Science @ UIBK) Logic Programming 180/1

Green vs Red Cuts

Green vs Red Cuts

Definition
• a cut is green if the addition of the cut doesn’t change the meaning

of the program; removing it makes the program potentially
inefficient, but not wrong

• a cut is red if its presence changes the meaning of the program;
removing it, changes the meaning and thus may make the program
wrong

Example (Green Cut)

delete([X|Ys],X,Zs) : − !, delete(Ys,X,Zs).

delete([Y|Ys],X,[Y|Zs]) : − Y 6= X, !, delete(Ys,X,Zs).

delete([],X,[]).

GM (Department of Computer Science @ UIBK) Logic Programming 181/1

Green vs Red Cuts

Green vs Red Cuts

Definition
• a cut is green if the addition of the cut doesn’t change the meaning

of the program; removing it makes the program potentially
inefficient, but not wrong

• a cut is red if its presence changes the meaning of the program;
removing it, changes the meaning and thus may make the program
wrong

Example (Green Cut)

delete([X|Ys],X,Zs) : − !, delete(Ys,X,Zs).

delete([Y|Ys],X,[Y|Zs]) : − Y 6= X, !, delete(Ys,X,Zs).

delete([],X,[]).

GM (Department of Computer Science @ UIBK) Logic Programming 181/1

Green vs Red Cuts

Green vs Red Cuts

Definition
• a cut is green if the addition of the cut doesn’t change the meaning

of the program; removing it makes the program potentially
inefficient, but not wrong

• a cut is red if its presence changes the meaning of the program;
removing it, changes the meaning and thus may make the program
wrong

Example (. . .)

delete([X|Ys],X,Zs) : − !, delete(Ys,X,Zs).

delete([Y|Ys],X,[Y|Zs]) : − Y 6= X, !, delete(Ys,X,Zs).

delete([],X,[]).

GM (Department of Computer Science @ UIBK) Logic Programming 181/1

Green vs Red Cuts

Green vs Red Cuts

Definition
• a cut is green if the addition of the cut doesn’t change the meaning

of the program; removing it makes the program potentially
inefficient, but not wrong

• a cut is red if its presence changes the meaning of the program;
removing it, changes the meaning and thus may make the program
wrong

Example (Green Cut)

delete([X|Ys],X,Zs) : − !, delete(Ys,X,Zs).

delete([Y|Ys],X,[Y|Zs]) : − Y 6= X, !, delete(Ys,X,Zs).

delete([],X,[]).

GM (Department of Computer Science @ UIBK) Logic Programming 181/1

Green vs Red Cuts

Example (. . .)

delete([X|Xs],X,Zs) : − !, delete(Ys,X,Zs).

delete([Y|Ys],X,[Y|Zs]) : − !, delete(Ys,X,Zs).

delete([],X,[]).

: − \+ delete([a,b],b,[a,b]).

Example (Red Cut)

member(X,[X|Xs]) : − !.

member(X,[Y|Ys]) : − member(X,Ys).

Example (Bad Cut)

minimum(X,Y,X) : − X 6 Y, .

minimum(X,Y,Y).

GM (Department of Computer Science @ UIBK) Logic Programming 182/1

Green vs Red Cuts

Example (Red Cut)

delete([X|Xs],X,Zs) : − !, delete(Ys,X,Zs).

delete([Y|Ys],X,[Y|Zs]) : − !, delete(Ys,X,Zs).

delete([],X,[]).

: − \+ delete([a,b],b,[a,b]).

Example (Red Cut)

member(X,[X|Xs]) : − !.

member(X,[Y|Ys]) : − member(X,Ys).

Example (Bad Cut)

minimum(X,Y,X) : − X 6 Y, .

minimum(X,Y,Y).

GM (Department of Computer Science @ UIBK) Logic Programming 182/1

Green vs Red Cuts

Example (Red Cut)

delete([X|Xs],X,Zs) : − !, delete(Ys,X,Zs).

delete([Y|Ys],X,[Y|Zs]) : − !, delete(Ys,X,Zs).

delete([],X,[]).

: − \+ delete([a,b],b,[a,b]).

Example (. . .)

member(X,[X|Xs]) : − !.

member(X,[Y|Ys]) : − member(X,Ys).

Example (Bad Cut)

minimum(X,Y,X) : − X 6 Y, .

minimum(X,Y,Y).

GM (Department of Computer Science @ UIBK) Logic Programming 182/1

Green vs Red Cuts

Example (Red Cut)

delete([X|Xs],X,Zs) : − !, delete(Ys,X,Zs).

delete([Y|Ys],X,[Y|Zs]) : − !, delete(Ys,X,Zs).

delete([],X,[]).

: − \+ delete([a,b],b,[a,b]).

Example (Red Cut)

member(X,[X|Xs]) : − !.

member(X,[Y|Ys]) : − member(X,Ys).

Example (Bad Cut)

minimum(X,Y,X) : − X 6 Y, .

minimum(X,Y,Y).

GM (Department of Computer Science @ UIBK) Logic Programming 182/1

Green vs Red Cuts

Example (Red Cut)

delete([X|Xs],X,Zs) : − !, delete(Ys,X,Zs).

delete([Y|Ys],X,[Y|Zs]) : − !, delete(Ys,X,Zs).

delete([],X,[]).

: − \+ delete([a,b],b,[a,b]).

Example (Red Cut)

member(X,[X|Xs]) : − !.

member(X,[Y|Ys]) : − member(X,Ys).

Example (. . .)

minimum(X,Y,X) : − X 6 Y, !.

minimum(X,Y,Y).

: − minimum(2,5,X)

X = 2

GM (Department of Computer Science @ UIBK) Logic Programming 182/1

Green vs Red Cuts

Example (Red Cut)

delete([X|Xs],X,Zs) : − !, delete(Ys,X,Zs).

delete([Y|Ys],X,[Y|Zs]) : − !, delete(Ys,X,Zs).

delete([],X,[]).

: − \+ delete([a,b],b,[a,b]).

Example (Red Cut)

member(X,[X|Xs]) : − !.

member(X,[Y|Ys]) : − member(X,Ys).

Example (. . .)

minimum(X,Y,X) : − X 6 Y, .

minimum(X,Y,Y).

: − minimum(2,5,X)

X = 2
X = 5

GM (Department of Computer Science @ UIBK) Logic Programming 182/1

Green vs Red Cuts

Example (Red Cut)

delete([X|Xs],X,Zs) : − !, delete(Ys,X,Zs).

delete([Y|Ys],X,[Y|Zs]) : − !, delete(Ys,X,Zs).

delete([],X,[]).

: − \+ delete([a,b],b,[a,b]).

Example (Red Cut)

member(X,[X|Xs]) : − !.

member(X,[Y|Ys]) : − member(X,Ys).

Example (. . .)

minimum(X,Y,X) : − X 6 Y, !.

minimum(X,Y,Y).

: − minimum(2,5,5)

true

GM (Department of Computer Science @ UIBK) Logic Programming 182/1

Green vs Red Cuts

Example (Red Cut)

delete([X|Xs],X,Zs) : − !, delete(Ys,X,Zs).

delete([Y|Ys],X,[Y|Zs]) : − !, delete(Ys,X,Zs).

delete([],X,[]).

: − \+ delete([a,b],b,[a,b]).

Example (Red Cut)

member(X,[X|Xs]) : − !.

member(X,[Y|Ys]) : − member(X,Ys).

Example (Bad Cut)

minimum(X,Y,X) : − X 6 Y, !.

minimum(X,Y,Y).

: − minimum(2,5,5)

true

GM (Department of Computer Science @ UIBK) Logic Programming 182/1

Green vs Red Cuts

Cuts: Why (Not) Use Them

Fact

the following motivations are given in the literature for the use of cuts

1 non-overlapping pattern matches

2 increased efficiency due to improved handling of negations

3 efficient generate and test

Example

bubblesort(Xs,Ys) : −
append(As,[X,Y|Bs],Xs),

X > Y, !,

append(As,[Y,X|Bs],Xs1),

bubblesort(Xs1,Ys).

bubblesort(Xs,Xs) : −
ordered(Xs), !.

GM (Department of Computer Science @ UIBK) Logic Programming 183/1

Green vs Red Cuts

Cuts: Why (Not) Use Them

Fact

the following motivations are given in the literature for the use of cuts

1 non-overlapping pattern matches

2 increased efficiency due to improved handling of negations

3 efficient generate and test

Example

bubblesort(Xs,Ys) : −
append(As,[X,Y|Bs],Xs),

X > Y, !,

append(As,[Y,X|Bs],Xs1),

bubblesort(Xs1,Ys).

bubblesort(Xs,Xs) : −
ordered(Xs), !.

GM (Department of Computer Science @ UIBK) Logic Programming 183/1

Green vs Red Cuts

Cuts: Why (Not) Use Them

Fact

the following motivations are given in the literature for the use of cuts

1 non-overlapping pattern matches

2 increased efficiency due to improved handling of negations

3 efficient generate and test

Example

bubblesort(Xs,Ys) : −
append(As,[X,Y|Bs],Xs),

X > Y, !,

append(As,[Y,X|Bs],Xs1),

bubblesort(Xs1,Ys).

bubblesort(Xs,Xs) : −
ordered(Xs), !.

GM (Department of Computer Science @ UIBK) Logic Programming 183/1

Green vs Red Cuts

Cuts: Why (Not) Use Them

Fact

the following motivations are given in the literature for the use of cuts

1 non-overlapping pattern matches

2 increased efficiency due to improved handling of negations

3 efficient generate and test

Example

bubblesort(Xs,Ys) : −
append(As,[X,Y|Bs],Xs),

X > Y, !,

append(As,[Y,X|Bs],Xs1),

bubblesort(Xs1,Ys).

bubblesort(Xs,Xs) : −
ordered(Xs), !.

GM (Department of Computer Science @ UIBK) Logic Programming 183/1

Green vs Red Cuts

Cuts: Why (Not) Use Them

Fact

the following motivations are given in the literature for the use of cuts

1 non-overlapping pattern matches

2 increased efficiency due to improved handling of negations

3 efficient generate and test

Example

bubblesort(Xs,Ys) : −
append(As,[X,Y|Bs],Xs),

X > Y, !,

append(As,[Y,X|Bs],Xs1),

bubblesort(Xs1,Ys).

bubblesort(Xs,Xs) : −
ordered(Xs), !.

GM (Department of Computer Science @ UIBK) Logic Programming 183/1

Green vs Red Cuts

Cuts: Why (Not) Use Them

Fact

the following motivations are given in the literature for the use of cuts

1 non-overlapping pattern matches

2 increased efficiency due to improved handling of negations

3 efficient generate and test

Example

bubblesort(Xs,Ys) : −
append(As,[X,Y|Bs],Xs),

X > Y, !,

append(As,[Y,X|Bs],Xs1),

bubblesort(Xs1,Ys).

bubblesort(Xs,Xs) : −
ordered(Xs), !.

GM (Department of Computer Science @ UIBK) Logic Programming 183/1

Green vs Red Cuts

Fact

the following motivations are given in the literature for the use of cuts

1 non-overlapping pattern matches

2 increased efficiency due to improved handling of negations

3 efficient generate and test

Example

no doubles([],[]).

no doubles([X|Xs],Ys) : −
member(X,Xs), !,

no doubles(Xs,Ys).

no doubles([X|Xs],[X|Ys]) : −
no doubles(Xs,Ys).

GM (Department of Computer Science @ UIBK) Logic Programming 184/1

Green vs Red Cuts

Fact

the following motivations are given in the literature for the use of cuts

1 non-overlapping pattern matches

2 increased efficiency due to improved handling of negations

3 efficient generate and test

Example

no doubles([],[]).

no doubles([X|Xs],Ys) : −
member(X,Xs), !,

no doubles(Xs,Ys).

no doubles([X|Xs],[X|Ys]) : −
no doubles(Xs,Ys).

GM (Department of Computer Science @ UIBK) Logic Programming 184/1

Green vs Red Cuts

Fact

the following motivations are given in the literature for the use of cuts

1 non-overlapping pattern matches

2 increased efficiency due to improved handling of negations

3 efficient generate and test

Example (integer division with cut)

i s i n t e g e r (0) .
i s i n t e g e r (N) :− i s i n t e g e r (N1) , N i s N1 + 1 .

d i v i d e (N1 ,N2 , Re s u l t) :−
i s i n t e g e r (Re s u l t) ,
Product1 i s R e s u l t ∗ N2 ,
Product2 i s (R e s u l t +1)∗N2 ,
Product1 =< N1 ,
Product2 > N1 , ! .

GM (Department of Computer Science @ UIBK) Logic Programming 185/1

Green vs Red Cuts

Fact

the following motivations are given in the literature for the use of cuts

1 non-overlapping pattern matches

2 increased efficiency due to improved handling of negations

3 efficient generate and test

Example (integer division with cut)

i s i n t e g e r (0) .
i s i n t e g e r (N) :− i s i n t e g e r (N1) , N i s N1 + 1 .

d i v i d e (N1 ,N2 , Re s u l t) :−
i s i n t e g e r (Re s u l t) ,
Product1 i s R e s u l t ∗ N2 ,
Product2 i s (R e s u l t +1)∗N2 ,
Product1 =< N1 ,
Product2 > N1 , ! .

GM (Department of Computer Science @ UIBK) Logic Programming 185/1

Green vs Red Cuts

Reflections

Fact

only the 2nd motivation withstands scrutinised look and can often be
prevented by the explicit use of negation:

• (arithmetic) comparisons are (very) cheap

• generate and test is more efficiently solved by CLP

Example

no doubles([],[]).

no doubles([X|Xs],Ys) : −
member(X,Xs),

no doubles(Xs,Ys).

no doubles([X|Xs],[X|Ys]) : −
\+ member(X,Xs),

no doubles(Xs,Ys).

GM (Department of Computer Science @ UIBK) Logic Programming 186/1

Green vs Red Cuts

Reflections

Fact

only the 2nd motivation withstands scrutinised look and can often be
prevented by the explicit use of negation:

• (arithmetic) comparisons are (very) cheap

• generate and test is more efficiently solved by CLP

Example

no doubles([],[]).

no doubles([X|Xs],Ys) : −
member(X,Xs),

no doubles(Xs,Ys).

no doubles([X|Xs],[X|Ys]) : −
\+ member(X,Xs),

no doubles(Xs,Ys).

GM (Department of Computer Science @ UIBK) Logic Programming 186/1

Green vs Red Cuts

Reflections

Fact

only the 2nd motivation withstands scrutinised look and can often be
prevented by the explicit use of negation:

• (arithmetic) comparisons are (very) cheap

• generate and test is more efficiently solved by CLP

Example

no doubles([],[]).

no doubles([X|Xs],Ys) : −
member(X,Xs),

no doubles(Xs,Ys).

no doubles([X|Xs],[X|Ys]) : −
\+ member(X,Xs),

no doubles(Xs,Ys).

GM (Department of Computer Science @ UIBK) Logic Programming 186/1

Green vs Red Cuts

Reflections

Fact

only the 2nd motivation withstands scrutinised look and can often be
prevented by the explicit use of negation:

• (arithmetic) comparisons are (very) cheap

• generate and test is more efficiently solved by CLP

Example

no doubles([],[]).

no doubles([X|Xs],Ys) : −
member(X,Xs),

no doubles(Xs,Ys).

no doubles([X|Xs],[X|Ys]) : −
\+ member(X,Xs),

no doubles(Xs,Ys).

GM (Department of Computer Science @ UIBK) Logic Programming 186/1

Semantics for Full Prolog

Definition (Prolog Search Tree)

a Prolog search tree is a triple (T ,N,U), where

• T is a tree whose nodes are labelled with sequences of goals and
partial answer substitutions

• N is the current node of T , which is to be considered in the next
step

• U is a set of yet unvisited nodes

Example

minus (X, 0 ,X) .
minus (s (X) , s (Y) ,Z) :− minus (X,Y, Z) .

d i v (X, 0 ,Z ,R) :− ! , f a i l .
d i v (0 , Y , Z ,R) :− ! , Z=0, R=0.
d i v (X,Y, s (Z) ,R) :− minus (X,Y,U) , ! ,

d i v (U,Y, Z ,R) .
d i v (X,Y, 0 ,X) .

GM (Department of Computer Science @ UIBK) Logic Programming 187/1

Semantics for Full Prolog

Definition (Prolog Search Tree)

a Prolog search tree is a triple (T ,N,U), where

• T is a tree whose nodes are labelled with sequences of goals and
partial answer substitutions

• N is the current node of T , which is to be considered in the next
step

• U is a set of yet unvisited nodes

Example

minus (X, 0 ,X) .
minus (s (X) , s (Y) ,Z) :− minus (X,Y, Z) .

d i v (X, 0 ,Z ,R) :− ! , f a i l .
d i v (0 , Y , Z ,R) :− ! , Z=0, R=0.
d i v (X,Y, s (Z) ,R) :− minus (X,Y,U) , ! ,

d i v (U,Y, Z ,R) .
d i v (X,Y, 0 ,X) .

GM (Department of Computer Science @ UIBK) Logic Programming 187/1

Semantics for Full Prolog

Definition

let P be a Prolog program and Q be a query; the search tree visit and
construction algorithm A generates a search tree (T ,N,U) as follows:

1 initially the root becomes current node N, labelled with Q and ε

2 if the current sequence of goals Q is true backtrack to the first
node in U (U is always updated by using a depth-first, leftmost
strategy)

3 otherwise, let T be the first goal in Q

4 if T = true, delete T and goto Step 2

5 if T is user-defined, either expand the tree by n successor nodes,
where n is the number of clauses Hi : −Bi such that Hi unifies with
T or backtrack; in the former case the successors are labelled by
Q \ {T} ∪ Bi , the leftmost child becomes the current node,
update U

6 if T is built-in, perform the specific side effects of the predicate and
goto Step 2

GM (Department of Computer Science @ UIBK) Logic Programming 188/1

Semantics for Full Prolog

Definition

let P be a Prolog program and Q be a query; the search tree visit and
construction algorithm A generates a search tree (T ,N,U) as follows:

1 initially the root becomes current node N, labelled with Q and ε

2 if the current sequence of goals Q is true backtrack to the first
node in U (U is always updated by using a depth-first, leftmost
strategy)

3 otherwise, let T be the first goal in Q

4 if T = true, delete T and goto Step 2

5 if T is user-defined, either expand the tree by n successor nodes,
where n is the number of clauses Hi : −Bi such that Hi unifies with
T or backtrack; in the former case the successors are labelled by
Q \ {T} ∪ Bi , the leftmost child becomes the current node,
update U

6 if T is built-in, perform the specific side effects of the predicate and
goto Step 2

GM (Department of Computer Science @ UIBK) Logic Programming 188/1

Semantics for Full Prolog

Definition

let P be a Prolog program and Q be a query; the search tree visit and
construction algorithm A generates a search tree (T ,N,U) as follows:

1 initially the root becomes current node N, labelled with Q and ε

2 if the current sequence of goals Q is true backtrack to the first
node in U (U is always updated by using a depth-first, leftmost
strategy)

3 otherwise, let T be the first goal in Q

4 if T = true, delete T and goto Step 2

5 if T is user-defined, either expand the tree by n successor nodes,
where n is the number of clauses Hi : −Bi such that Hi unifies with
T or backtrack; in the former case the successors are labelled by
Q \ {T} ∪ Bi , the leftmost child becomes the current node,
update U

6 if T is built-in, perform the specific side effects of the predicate and
goto Step 2

GM (Department of Computer Science @ UIBK) Logic Programming 188/1

Semantics for Full Prolog

Definition

let P be a Prolog program and Q be a query; the search tree visit and
construction algorithm A generates a search tree (T ,N,U) as follows:

1 initially the root becomes current node N, labelled with Q and ε

2 if the current sequence of goals Q is true backtrack to the first
node in U (U is always updated by using a depth-first, leftmost
strategy)

3 otherwise, let T be the first goal in Q

4 if T = true, delete T and goto Step 2

5 if T is user-defined, either expand the tree by n successor nodes,
where n is the number of clauses Hi : −Bi such that Hi unifies with
T or backtrack; in the former case the successors are labelled by
Q \ {T} ∪ Bi , the leftmost child becomes the current node,
update U

6 if T is built-in, perform the specific side effects of the predicate and
goto Step 2

GM (Department of Computer Science @ UIBK) Logic Programming 188/1

Semantics for Full Prolog

Definition

let P be a Prolog program and Q be a query; the search tree visit and
construction algorithm A generates a search tree (T ,N,U) as follows:

1 initially the root becomes current node N, labelled with Q and ε

2 if the current sequence of goals Q is true backtrack to the first
node in U (U is always updated by using a depth-first, leftmost
strategy)

3 otherwise, let T be the first goal in Q

4 if T = true, delete T and goto Step 2

5 if T is user-defined, either expand the tree by n successor nodes,
where n is the number of clauses Hi : −Bi such that Hi unifies with
T or backtrack; in the former case the successors are labelled by
Q \ {T} ∪ Bi , the leftmost child becomes the current node,
update U

6 if T is built-in, perform the specific side effects of the predicate and
goto Step 2

GM (Department of Computer Science @ UIBK) Logic Programming 188/1

Semantics for Full Prolog

Definition

let P be a Prolog program and Q be a query; the search tree visit and
construction algorithm A generates a search tree (T ,N,U) as follows:

1 initially the root becomes current node N, labelled with Q and ε

2 if the current sequence of goals Q is true backtrack to the first
node in U (U is always updated by using a depth-first, leftmost
strategy)

3 otherwise, let T be the first goal in Q

4 if T = true, delete T and goto Step 2

5 if T is user-defined, either expand the tree by n successor nodes,
where n is the number of clauses Hi : −Bi such that Hi unifies with
T or backtrack; in the former case the successors are labelled by
Q \ {T} ∪ Bi , the leftmost child becomes the current node,
update U

6 if T is built-in, perform the specific side effects of the predicate and
goto Step 2

GM (Department of Computer Science @ UIBK) Logic Programming 188/1

Semantics for Full Prolog

Definition

let P be a Prolog program and Q be a query; the search tree visit and
construction algorithm A generates a search tree (T ,N,U) as follows:

1 initially the root becomes current node N, labelled with Q and ε

2 if the current sequence of goals Q is true backtrack to the first
node in U (U is always updated by using a depth-first, leftmost
strategy)

3 otherwise, let T be the first goal in Q

4 if T = true, delete T and goto Step 2

5 if T is user-defined, either expand the tree by n successor nodes,
where n is the number of clauses Hi : −Bi such that Hi unifies with
T or backtrack; in the former case the successors are labelled by
Q \ {T} ∪ Bi , the leftmost child becomes the current node,
update U

6 if T is built-in, perform the specific side effects of the predicate and
goto Step 2

GM (Department of Computer Science @ UIBK) Logic Programming 188/1

Correctness Proofs for Prolog

Correctness and Completeness of Prolog

Definition

the intended meaning of a Prolog program is a set of ground facts G

Definition

a program P is called

• correct with respect to the intended meaning M, if the meaning of
P is a subset of M

• complete if the intended meaning M is a subset of the meaning of P

GM (Department of Computer Science @ UIBK) Logic Programming 189/1

Correctness Proofs for Prolog

Correctness and Completeness of Prolog

Definition

the intended meaning of a Prolog program is a set of ground facts G

Definition

a program P is called

• correct with respect to the intended meaning M, if the meaning of
P is a subset of M

• complete if the intended meaning M is a subset of the meaning of P

GM (Department of Computer Science @ UIBK) Logic Programming 189/1

Correctness Proofs for Prolog

Example

natural number(0).

natural number(s(X)) : − natural number(X).

Lemma

the program is complete wrt the set of facts

M := {natural number(s i (0)) | i > 0}

Proof of Completeness.

1 let N be a natural number

2 we show that natural number(sN(0)) is deducible by given a
explicit search tree

3 case distinction on N = 0 and N > 0

GM (Department of Computer Science @ UIBK) Logic Programming 190/1

Correctness Proofs for Prolog

Example

natural number(0).

natural number(s(X)) : − natural number(X).

Lemma

the program is complete wrt the set of facts

M := {natural number(s i (0)) | i > 0}

Proof of Completeness.

1 let N be a natural number

2 we show that natural number(sN(0)) is deducible by given a
explicit search tree

3 case distinction on N = 0 and N > 0

GM (Department of Computer Science @ UIBK) Logic Programming 190/1

Correctness Proofs for Prolog

Example

natural number(0).

natural number(s(X)) : − natural number(X).

Lemma

the program is complete wrt the set of facts

M := {natural number(s i (0)) | i > 0}

Proof of Completeness.

1 let N be a natural number

2 we show that natural number(sN(0)) is deducible by given a
explicit search tree

3 case distinction on N = 0 and N > 0

GM (Department of Computer Science @ UIBK) Logic Programming 190/1

Correctness Proofs for Prolog

Example

natural number(0).

natural number(s(X)) : − natural number(X).

Lemma

the program is complete wrt the set of facts

M := {natural number(s i (0)) | i > 0}

Proof of Completeness.

1 let N be a natural number

2 we show that natural number(sN(0)) is deducible by given a
explicit search tree

3 case distinction on N = 0 and N > 0

GM (Department of Computer Science @ UIBK) Logic Programming 190/1

Correctness Proofs for Prolog

Example

natural number(0).

natural number(s(X)) : − natural number(X).

Lemma

the program is complete wrt the set of facts

M := {natural number(s i (0)) | i > 0}

Proof of Completeness.

1 let N be a natural number

2 we show that natural number(sN(0)) is deducible by given a
explicit search tree

3 case distinction on N = 0 and N > 0

GM (Department of Computer Science @ UIBK) Logic Programming 190/1

Correctness Proofs for Prolog

Lemma

the program is correct wrt the set of facts

M := {natural number(s i (0)) | i > 0}

Proof of Correctness.

1 suppose natural number(sm(0)) is deducible in n deductions

2 we use induction on n

3 n = 1: then natural number(sm(0)) implies m = 0

4 n > 0: the goal must be of form natural number(s(t))

5 thus natural number(t) is deducible with n − 1 deductions

6 t = sm
′
(0) for some m′ ∈ N

7 natural number(sm
′+1(0)) ∈ M and m = m′ + 1

GM (Department of Computer Science @ UIBK) Logic Programming 191/1

Correctness Proofs for Prolog

Lemma

the program is correct wrt the set of facts

M := {natural number(s i (0)) | i > 0}

Proof of Correctness.

1 suppose natural number(sm(0)) is deducible in n deductions

2 we use induction on n

3 n = 1: then natural number(sm(0)) implies m = 0

4 n > 0: the goal must be of form natural number(s(t))

5 thus natural number(t) is deducible with n − 1 deductions

6 t = sm
′
(0) for some m′ ∈ N

7 natural number(sm
′+1(0)) ∈ M and m = m′ + 1

GM (Department of Computer Science @ UIBK) Logic Programming 191/1

Correctness Proofs for Prolog

Lemma

the program is correct wrt the set of facts

M := {natural number(s i (0)) | i > 0}

Proof of Correctness.

1 suppose natural number(sm(0)) is deducible in n deductions

2 we use induction on n

3 n = 1: then natural number(sm(0)) implies m = 0

4 n > 0: the goal must be of form natural number(s(t))

5 thus natural number(t) is deducible with n − 1 deductions

6 t = sm
′
(0) for some m′ ∈ N

7 natural number(sm
′+1(0)) ∈ M and m = m′ + 1

GM (Department of Computer Science @ UIBK) Logic Programming 191/1

Correctness Proofs for Prolog

Lemma

the program is correct wrt the set of facts

M := {natural number(s i (0)) | i > 0}

Proof of Correctness.

1 suppose natural number(sm(0)) is deducible in n deductions

2 we use induction on n

3 n = 1: then natural number(sm(0)) implies m = 0

4 n > 0: the goal must be of form natural number(s(t))

5 thus natural number(t) is deducible with n − 1 deductions

6 t = sm
′
(0) for some m′ ∈ N

7 natural number(sm
′+1(0)) ∈ M and m = m′ + 1

GM (Department of Computer Science @ UIBK) Logic Programming 191/1

Correctness Proofs for Prolog

Lemma

the program is correct wrt the set of facts

M := {natural number(s i (0)) | i > 0}

Proof of Correctness.

1 suppose natural number(sm(0)) is deducible in n deductions

2 we use induction on n

3 n = 1: then natural number(sm(0)) implies m = 0

4 n > 0: the goal must be of form natural number(s(t))

5 thus natural number(t) is deducible with n − 1 deductions

6 t = sm
′
(0) for some m′ ∈ N

7 natural number(sm
′+1(0)) ∈ M and m = m′ + 1

GM (Department of Computer Science @ UIBK) Logic Programming 191/1

Correctness Proofs for Prolog

Lemma

the program is correct wrt the set of facts

M := {natural number(s i (0)) | i > 0}

Proof of Correctness.

1 suppose natural number(sm(0)) is deducible in n deductions

2 we use induction on n

3 n = 1: then natural number(sm(0)) implies m = 0

4 n > 0: the goal must be of form natural number(s(t))

5 thus natural number(t) is deducible with n − 1 deductions

6 t = sm
′
(0) for some m′ ∈ N

7 natural number(sm
′+1(0)) ∈ M and m = m′ + 1

GM (Department of Computer Science @ UIBK) Logic Programming 191/1

Correctness Proofs for Prolog

Lemma

the program is correct wrt the set of facts

M := {natural number(s i (0)) | i > 0}

Proof of Correctness.

1 suppose natural number(sm(0)) is deducible in n deductions

2 we use induction on n

3 n = 1: then natural number(sm(0)) implies m = 0

4 n > 0: the goal must be of form natural number(s(t))

5 thus natural number(t) is deducible with n − 1 deductions

6 t = sm
′
(0) for some m′ ∈ N

7 natural number(sm
′+1(0)) ∈ M and m = m′ + 1

GM (Department of Computer Science @ UIBK) Logic Programming 191/1

Correctness Proofs for Prolog

Lemma

the program is correct wrt the set of facts

M := {natural number(s i (0)) | i > 0}

Proof of Correctness.

1 suppose natural number(sm(0)) is deducible in n deductions

2 we use induction on n

3 n = 1: then natural number(sm(0)) implies m = 0

4 n > 0: the goal must be of form natural number(s(t))

5 thus natural number(t) is deducible with n − 1 deductions

6 t = sm
′
(0) for some m′ ∈ N

7 natural number(sm
′+1(0)) ∈ M and m = m′ + 1

GM (Department of Computer Science @ UIBK) Logic Programming 191/1

Correctness Proofs for Prolog

Example

is the program is complete wrt the following set?

M := {natural number(s i (0)) | 0 6 i 6 K}

Attempted Proof

1 suppose natural number(sm(0)) is deducible in n deductions

2 we use induction on n

3 n = 0: then natural number(sm(0)) implies m = 0

4 n > 0: the goal must be of form natural number(s(t))

5 thus natural number(t) is deducible with n − 1 deductions

6 t = sm
′
(0) for some 0 6 m′ 6 K and m = m′ + 1

7 natural number(sm(0)) ∈ M iff m 6 K

8 what happens for m > K?

GM (Department of Computer Science @ UIBK) Logic Programming 192/1

Correctness Proofs for Prolog

Example

is the program is correct wrt the following set?

M := {natural number(s i (0)) | 0 6 i 6 K}

Attempted Proof

1 suppose natural number(sm(0)) is deducible in n deductions

2 we use induction on n

3 n = 0: then natural number(sm(0)) implies m = 0

4 n > 0: the goal must be of form natural number(s(t))

5 thus natural number(t) is deducible with n − 1 deductions

6 t = sm
′
(0) for some 0 6 m′ 6 K and m = m′ + 1

7 natural number(sm(0)) ∈ M iff m 6 K

8 what happens for m > K?

GM (Department of Computer Science @ UIBK) Logic Programming 192/1

Correctness Proofs for Prolog

Example

is the program is correct wrt the following set?

M := {natural number(s i (0)) | 0 6 i 6 K}

Attempted Proof

1 suppose natural number(sm(0)) is deducible in n deductions

2 we use induction on n

3 n = 0: then natural number(sm(0)) implies m = 0

4 n > 0: the goal must be of form natural number(s(t))

5 thus natural number(t) is deducible with n − 1 deductions

6 t = sm
′
(0) for some 0 6 m′ 6 K and m = m′ + 1

7 natural number(sm(0)) ∈ M iff m 6 K

8 what happens for m > K?

GM (Department of Computer Science @ UIBK) Logic Programming 192/1

Correctness Proofs for Prolog

Example

is the program is correct wrt the following set?

M := {natural number(s i (0)) | 0 6 i 6 K}

Attempted Proof

1 suppose natural number(sm(0)) is deducible in n deductions

2 we use induction on n

3 n = 0: then natural number(sm(0)) implies m = 0

4 n > 0: the goal must be of form natural number(s(t))

5 thus natural number(t) is deducible with n − 1 deductions

6 t = sm
′
(0) for some 0 6 m′ 6 K and m = m′ + 1

7 natural number(sm(0)) ∈ M iff m 6 K

8 what happens for m > K?

GM (Department of Computer Science @ UIBK) Logic Programming 192/1

Correctness Proofs for Prolog

Example

is the program is correct wrt the following set?

M := {natural number(s i (0)) | 0 6 i 6 K}

Attempted Proof

1 suppose natural number(sm(0)) is deducible in n deductions

2 we use induction on n

3 n = 0: then natural number(sm(0)) implies m = 0

4 n > 0: the goal must be of form natural number(s(t))

5 thus natural number(t) is deducible with n − 1 deductions

6 t = sm
′
(0) for some 0 6 m′ 6 K and m = m′ + 1

7 natural number(sm(0)) ∈ M iff m 6 K

8 what happens for m > K?

GM (Department of Computer Science @ UIBK) Logic Programming 192/1

Correctness Proofs for Prolog

Example

is the program is correct wrt the following set?

M := {natural number(s i (0)) | 0 6 i 6 K}

Attempted Proof

1 suppose natural number(sm(0)) is deducible in n deductions

2 we use induction on n

3 n = 0: then natural number(sm(0)) implies m = 0

4 n > 0: the goal must be of form natural number(s(t))

5 thus natural number(t) is deducible with n − 1 deductions

6 t = sm
′
(0) for some 0 6 m′ 6 K and m = m′ + 1

7 natural number(sm(0)) ∈ M iff m 6 K

8 what happens for m > K?

GM (Department of Computer Science @ UIBK) Logic Programming 192/1

Correctness Proofs for Prolog

Example

is the program is correct wrt the following set?

M := {natural number(s i (0)) | 0 6 i 6 K}

Attempted Proof

1 suppose natural number(sm(0)) is deducible in n deductions

2 we use induction on n

3 n = 0: then natural number(sm(0)) implies m = 0

4 n > 0: the goal must be of form natural number(s(t))

5 thus natural number(t) is deducible with n − 1 deductions

6 t = sm
′
(0) for some 0 6 m′ 6 K and m = m′ + 1

7 natural number(sm(0)) ∈ M iff m 6 K

8 what happens for m > K?

GM (Department of Computer Science @ UIBK) Logic Programming 192/1

Correctness Proofs for Prolog

Example

is the program is correct wrt the following set?

M := {natural number(s i (0)) | 0 6 i 6 K}

Attempted Proof

1 suppose natural number(sm(0)) is deducible in n deductions

2 we use induction on n

3 n = 0: then natural number(sm(0)) implies m = 0

4 n > 0: the goal must be of form natural number(s(t))

5 thus natural number(t) is deducible with n − 1 deductions

6 t = sm
′
(0) for some 0 6 m′ 6 K and m = m′ + 1

7 natural number(sm(0)) ∈ M iff m 6 K

8 what happens for m > K?

GM (Department of Computer Science @ UIBK) Logic Programming 192/1

Correctness Proofs for Prolog

Example

is the program is correct wrt the following set?

M := {natural number(s i (0)) | 0 6 i 6 K}

Attempted Proof

1 suppose natural number(sm(0)) is deducible in n deductions

2 we use induction on n

3 n = 0: then natural number(sm(0)) implies m = 0

4 n > 0: the goal must be of form natural number(s(t))

5 thus natural number(t) is deducible with n − 1 deductions

6 t = sm
′
(0) for some 0 6 m′ 6 K and m = m′ + 1

7 natural number(sm(0)) ∈ M iff m 6 K

8 what happens for m > K?

GM (Department of Computer Science @ UIBK) Logic Programming 192/1

Correctness Proofs for Prolog

Example

natural number(0).

natural number(s(X)) : − natural number(X).

plus(0,X,X) : − natural number(X).

plus(s(X),Y,s(Z)) : − plus(X,Y,Z).

Lemma

the program is correct and complete wrt to the definition of addition

Proof Sketch.

1 completeness: suppose X + Y = Z ; then we give a search tree of
plus(X ,Y ,Z)

2 correctness: suppose plus(X ,Y ,Z) is deducible; then we prove by
induction on the length of this deduction that X + Y = Z

GM (Department of Computer Science @ UIBK) Logic Programming 193/1

Correctness Proofs for Prolog

Example

natural number(0).

natural number(s(X)) : − natural number(X).

plus(0,X,X) : − natural number(X).

plus(s(X),Y,s(Z)) : − plus(X,Y,Z).

Lemma

the program is correct and complete wrt to the definition of addition

Proof Sketch.

1 completeness: suppose X + Y = Z ; then we give a search tree of
plus(X ,Y ,Z)

2 correctness: suppose plus(X ,Y ,Z) is deducible; then we prove by
induction on the length of this deduction that X + Y = Z

GM (Department of Computer Science @ UIBK) Logic Programming 193/1

Correctness Proofs for Prolog

Example

natural number(0).

natural number(s(X)) : − natural number(X).

plus(0,X,X) : − natural number(X).

plus(s(X),Y,s(Z)) : − plus(X,Y,Z).

Lemma

the program is correct and complete wrt to the definition of addition

Proof Sketch.

1 completeness: suppose X + Y = Z ; then we give a search tree of
plus(X ,Y ,Z)

2 correctness: suppose plus(X ,Y ,Z) is deducible; then we prove by
induction on the length of this deduction that X + Y = Z

GM (Department of Computer Science @ UIBK) Logic Programming 193/1

Correctness Proofs for Prolog

Example

natural number(0).

natural number(s(X)) : − natural number(X).

plus(0,X,X) : − natural number(X).

plus(s(X),Y,s(Z)) : − plus(X,Y,Z).

Lemma

the program is correct and complete wrt to the definition of addition

Proof Sketch.

1 completeness: suppose X + Y = Z ; then we give a search tree of
plus(X ,Y ,Z)

2 correctness: suppose plus(X ,Y ,Z) is deducible; then we prove by
induction on the length of this deduction that X + Y = Z

GM (Department of Computer Science @ UIBK) Logic Programming 193/1

