Logic Programming

Georg Moser

Department of Computer Science @ UIBK
Winter 2016

Happy New Year!

Summary of Last Lecture

Definition
 the intended meaning of a Prolog program is a set of ground facts G

Definition

a program P is called

- correct with respect to the intended meaning M, if the meaning of P is a subset of M
- complete if the intended meaning M is a subset of the meaning of P

Definition

let P be a Prolog program and Q be a query; the search tree visit and construction algorithm A generates a search tree (T, N, U) as follows:
1 initially the root becomes current node N, labelled with Q and ϵ
2 if the current sequence of goals Q is true backtrack to the first node in $U(U$ is always updated by using a depth-first, leftmost strategy)
3 otherwise, let T be the first goal in Q
4 if T =true, delete T and goto Step 2
5 if T is user-defined, either expand the tree by n successor nodes, where n is the number of clauses $H_{i}:-B_{i}$ such that H_{i} unifies with T or backtrack; in the former case the successors are labelled by $Q \backslash\{T\} \cup B_{i}$, the leftmost child becomes the current node, update U
6 if T is built-in, perform the specific side effects of the predicate and goto Step 2

Outline of the Lecture

Monotone Logic Programs
introduction, basic constructs, logic foundations, unification, semantics, database and recursive programming, termination, complexity

Incomplete Data Structures and Constraints

incomplete data structures, definite clause grammars, constraint logic programming, answer set programming

Full Prolog

semantics (revisted), cuts, correctness proofs, meta-logical predicates, nondeterministic programming, pragmatics, efficient programs, meta programming

Outline of the Lecture

Monotone Logic Programs
introduction, basic constructs, logic foundations, unification, semantics, database and recursive programming, termination, complexity

Incomplete Data Structures and Constraints

incomplete data structures, definite clause grammars, constraint logic programming, answer set programming

Full Prolog

semantics (revisted), cuts, correctness proofs, meta-logical predicates, nondeterministic programming, pragmatics, efficient programs, meta programming

Meta-logical Predicates

Definition

- meta-logical predicates are extensions of the first-order theory of logic programming

Meta-logical Predicates

Definition

- meta-logical predicates are extensions of the first-order theory of logic programming
- meta-logical predicates can

1 query the state of the proof

Meta-logical Predicates

Definition

- meta-logical predicates are extensions of the first-order theory of logic programming
- meta-logical predicates can

1 query the state of the proof
2 treat variables as objects

Meta-logical Predicates

Definition

- meta-logical predicates are extensions of the first-order theory of logic programming
- meta-logical predicates can

1 query the state of the proof
2 treat variables as objects
3 allow conversion of data structures to goals

Meta-logical Predicates

Definition

- meta-logical predicates are extensions of the first-order theory of logic programming
- meta-logical predicates can

1 query the state of the proof
2 treat variables as objects
3 allow conversion of data structures to goals

Remark

meta-logical type predicates allow us to overcome two difficulties:

Meta-logical Predicates

Definition

- meta-logical predicates are extensions of the first-order theory of logic programming
- meta-logical predicates can

1 query the state of the proof
2 treat variables as objects
3 allow conversion of data structures to goals

Remark

meta-logical type predicates allow us to overcome two difficulties:
1 variables in system predicates do not behave as intended

Meta-logical Predicates

Definition

- meta-logical predicates are extensions of the first-order theory of logic programming
- meta-logical predicates can

1 query the state of the proof
2 treat variables as objects
3 allow conversion of data structures to goals

Remark

meta-logical type predicates allow us to overcome two difficulties:
1 variables in system predicates do not behave as intended
2 (logical) variables can be accidentally instantiated

Meta-logical Type Predicates

Definition

- $\operatorname{var}($ Term) is true if Term is at present an uninstantiated variable
- nonvar(Term) is true if Term is at present not a variable
- ground(Term) is true if Term does not contain variables
- compound(Term) is true if Term is compound

Meta-logical Type Predicates

Definition

- $\operatorname{var}($ Term) is true if Term is at present an uninstantiated variable
- nonvar(Term) is true if Term is at present not a variable
- ground(Term) is true if Term does not contain variables
- compound(Term) is true if Term is compound

Example

```
plus(X,Y,Z) : -
    nonvar(X), nonvar(Y), Z is X + Y.
    plus(X,Y,Z) :-
    nonvar(X), nonvar(Z), Y is Z - X.
plus(X,Y,Z) :-
    nonvar(Y), nonvar(Z), X is Z - Y.
```

Example
unify $(X, Y):-\operatorname{var}(X), \operatorname{var}(Y), X=Y$.
GM (Department of Computer Science © Ul
$\begin{array}{l}\text { (Logic Programming }\end{array}$
$103 / 1$

Meta-logical Predicates
Example
unify $(\mathrm{X}, \mathrm{Y}):-\operatorname{var}(\mathrm{X}), \operatorname{var}(\mathrm{Y}), \mathrm{X}=\mathrm{Y} \cdot$
GM (Department of Computer Science © Ul
\qquad

Example
unify $(X, Y):-\operatorname{var}(X), \operatorname{var}(Y), \mathrm{X}=\mathrm{Y}$,
GM (Department of Computer Science © Ul
un d Programming

\qquad
Meta-logical Predicates
Example
unify $(X, Y):-\operatorname{var}(X), \operatorname{var}(Y), X=Y$.
Ex
Ex
Meta-logical Predicates
Example
unify $(X, Y):-\operatorname{var}(X), \operatorname{var}(Y), X=Y$.
Ex
Ex

Example

$$
\begin{aligned}
& \operatorname{unify}(X, Y):-\operatorname{var}(X), \operatorname{var}(Y), X=Y . \\
& \operatorname{unify}(X, Y):-\operatorname{var}(X), \operatorname{nonvar}(Y), X=Y . \\
& \operatorname{unify}(X, Y):-\operatorname{nonvar}(X), \operatorname{var}(Y), Y=X .
\end{aligned}
$$

Example

$$
\begin{aligned}
& \text { unify }(X, Y):-\operatorname{var}(X), \operatorname{var}(Y), X=Y . \\
& \text { unify }(X, Y):-\operatorname{var}(X), \operatorname{nonvar}(Y), X=Y . \\
& \text { unify }(X, Y):-\operatorname{nonvar}(X), \operatorname{var}(Y), Y=X . \\
& \text { unify }(X, Y):- \\
& \quad \text { nonvar }(X) \text {, nonvar }(Y), \text { constant }(X), \text { constant }(Y), \\
& X=Y .
\end{aligned}
$$

Example

```
unify(X,Y) : - var(X), var(Y), X = Y.
unify(X,Y) : - var(X), nonvar(Y), X = Y.
unify(X,Y) : - nonvar(X), var(Y), Y = X.
unify(X,Y) : -
    nonvar(X), nonvar(Y), constant(X), constant(Y),
    X = Y.
unify(X,Y) : -
    nonvar(X), nonvar(Y), compound(X), compound(Y),
    term_unify(X,Y).
```


Example

```
unify(X,Y) : - var(X), var(Y), X = Y.
unify(X,Y) : - var(X), nonvar(Y), X = Y.
unify(X,Y) : - nonvar(X), var(Y), Y = X.
unify(X,Y) : -
    nonvar(X), nonvar(Y), constant(X), constant(Y),
    X = Y.
unify(X,Y) : -
    nonvar(X), nonvar(Y), compound(X), compound(Y),
    term_unify(X,Y).
term_unify(X,Y) : -
    functor(X,F,N), functor(Y,F,N), unify_args(N,X,Y).
```


Example

```
unify(X,Y) : - var(X), var(Y), X = Y.
unify(X,Y) : - var(X), nonvar(Y), X = Y.
unify(X,Y) : - nonvar(X), var(Y), Y = X.
unify(X,Y) : -
    nonvar(X), nonvar(Y), constant(X), constant(Y),
    X = Y.
unify(X,Y) : -
    nonvar(X), nonvar(Y), compound(X), compound(Y),
    term_unify(X,Y).
term_unify(X,Y) : -
    functor(X,F,N), functor(Y,F,N), unify_args(N,X,Y).
unify_args(N,X,Y) :-
    N > O, unify_arg(N,X,Y), N1 is N - 1, unify_args(N1,X,Y).
unify_args(0,X,Y).
```


Example

```
unify(X,Y) : - var(X), var(Y), X = Y.
unify(X,Y) : - var(X), nonvar(Y), X = Y.
unify(X,Y) : - nonvar(X), var(Y), Y = X.
unify(X,Y) : -
    nonvar(X), nonvar(Y), constant(X), constant(Y),
    X = Y.
```

unify(X,Y) : -
nonvar(X), nonvar(Y), compound(X), compound(Y),
term_unify (X,Y).
term_unify (X,Y) :-
functor (X,F,N), functor(Y,F,N), unify_args(N,X,Y).
unify_args ($\mathrm{N}, \mathrm{X}, \mathrm{Y}$) : -
$N>0$, unify_arg($N, X, Y)$, $N 1$ is $N-1$, unify_args ($N 1, X, Y$).
unify_args ($0, X, Y$).
unify_arg (N,X,Y) :-
$\arg (N, X, \operatorname{ArgX}), \arg (N, Y, \operatorname{ArgY}), \quad u n i f y(A r g X, A r g Y)$.

Remark

alternative sto the above (and below) implementation of unify:

- Term1 = Term2
- unify_with_occurs_check (Term1,Term2)

Remark

alternative sto the above (and below) implementation of unify:

- Term1 = Term2
- unify_with_occurs_check (Term1,Term2)

Definition (Comparing nonground terms)

- $X==Y$ is true if X and Y are identical constants, variables, or compound terms
- $X \backslash==Y$ is true if X and Y are not identical

Remark

alternative sto the above (and below) implementation of unify:

- Term1 = Term2
- unify_with_occurs_check (Term1,Term2)

Definition (Comparing nonground terms)

- $X==Y$ is true if X and Y are identical constants, variables, or compound terms
- $X \backslash==Y$ is true if X and Y are not identical

Example

$$
:-X==5
$$

false

Unification with Occurs Check

```
Example
not_occurs_in(X,Y) : -
    var(Y), X \== Y.
not_occurs_in(X,Y) : -
    nonvar(Y), constant(Y).
not_occurs_in(X,Y) : -
    nonvar(Y), compound(Y),
    functor(Y,F,N), not_occurs_in(N,X,Y).
not_occurs_in(N,X,Y) :-
    N > 0, arg(N,Y,Arg), not_occurs_in(X,Arg), N1 is N - 1,
    not_occurs_in(N1,X,Y).
not_occurs_in(0,X,Y).
```


Unification with Occurs Check

```
Example
not_occurs_in(X,Y) : -
    var(Y), X \== Y.
not_occurs_in(X,Y) : -
    nonvar(Y), constant(Y).
not_occurs_in(X,Y) : -
    nonvar(Y), compound(Y),
    functor(Y,F,N), not_occurs_in(N,X,Y).
not_occurs_in(N,X,Y) :-
    N > 0, arg(N,Y,Arg), not_occurs_in(X,Arg), N1 is N - 1,
    not_occurs_in(N1,X,Y).
not_occurs_in(0,X,Y).
unify(X,Y) : - var(X), nonvar(Y), not_occurs_in(X,Y), X = Y.
unify(X,Y) : - nonvar(X), var(Y), not_occurs_in(Y,X), Y = X.
```


Meta-Variable Facility

Definition

the meta-variable facility allows a variable to appear as a goal or in the body

Meta-Variable Facility

Definition

the meta-variable facility allows a variable to appear as a goal or in the body

Example

X; Y : - X.
X; Y:-Y.

Meta-Variable Facility

Definition

the meta-variable facility allows a variable to appear as a goal or in the body

Example
 X; Y : - X.
 X; Y:-Y.

Other Control Predicates

- fail/0 false/0
:- fail.
:- false.
false
false

Meta-Variable Facility

Definition

the meta-variable facility allows a variable to appear as a goal or in the body

Example
 X; Y : - X.
 X; Y:-Y.

Other Control Predicates

- fail/0 false/0
:- fail.
:- false.
false
false
- true/0

$$
\begin{aligned}
& :- \text { true. } \\
& \text { true }
\end{aligned}
$$

Clause Database Operations

- assert/1
\leftarrow assert (C).
true

Clause Database Operations

- assert/1
$\leftarrow \operatorname{assert}(C)$.
true
- side effect: add rule C to program

Clause Database Operations

- assert/1
$\leftarrow \operatorname{assert}(C)$.
true
- side effect: add rule C to program
- asserta/1 or assertz/1
$\leftarrow \operatorname{asserta}(C)$.
true
add C first (last) to the database

Clause Database Operations

- assert/1

```
\leftarrowassert(C).
true
```

- side effect: add rule C to program
- asserta/1 or assertz/1
$\leftarrow \operatorname{asserta}(C)$.
true
add C first (last) to the database
- retract/1 or retractall/1
$\leftarrow \operatorname{retract}(C)$.
false
- side effect: remove first rule (all rules) from program that unifies with C

Example (Fibonacci Numbers Revisited)

:- dynamic(fibonacci/2).
fibonacci $(0,0)$.
fibonacci $(1,1)$.
fibonacci(N,X) :-
N > 1,
N1 is N-1, fibonacci(N1,Y),
N 2 is $\mathrm{N}-2$, fibonacci $(\mathrm{N} 2, \mathrm{Z})$,
X is $\mathrm{Y}+\mathrm{Z}$,
assert(fibonacci(N,X)),
!.

Example (Fibonacci Numbers Revisited)

:- dynamic(fibonacci/2).
fibonacci $(0,0)$.
fibonacci $(1,1)$.
fibonacci(N,X) :-
$\mathrm{N}>1$,
N1 is N-1, fibonacci(N1,Y),
N2 is $N-2$, fibonacci ($\mathrm{N} 2, \mathrm{Z}$),
X is $\mathrm{Y}+\mathrm{Z}$,
asserta(fibonacci(N,X)),
!.

Second-Order Programming

Definitions

- the predicate bagof(Template,Goal,Bag) unifies Bag with the alternatives of Template that meet Goal

Second-Order Programming

Definitions

- the predicate bagof(Template,Goal,Bag) unifies Bag with the alternatives of Template that meet Goal
- if Goal has free variables besides the one sharing with Template bagof will backtrack

Second-Order Programming

Definitions

- the predicate bagof(Template,Goal,Bag) unifies Bag with the alternatives of Template that meet Goal
- if Goal has free variables besides the one sharing with Template bagof will backtrack
- fails if Goal has no solutions

Second-Order Programming

Definitions

- the predicate bagof(Template,Goal,Bag) unifies Bag with the alternatives of Template that meet Goal
- if Goal has free variables besides the one sharing with Template bagof will backtrack
- fails if Goal has no solutions
- construct Var^Goal tells bagof to existentially quantify Var

Second-Order Programming

Definitions

- the predicate bagof(Template,Goal,Bag) unifies Bag with the alternatives of Template that meet Goal
- if Goal has free variables besides the one sharing with Template bagof will backtrack
- fails if Goal has no solutions
- construct Var^Goal tells bagof to existentially quantify Var
- the predicate setof(Template,Goal,Bag) is similar to bagof but sorts the obtained multi-set (bag) and removed duplicates

Second-Order Programming

Definitions

- the predicate bagof(Template,Goal,Bag) unifies Bag with the alternatives of Template that meet Goal
- if Goal has free variables besides the one sharing with Template bagof will backtrack
- fails if Goal has no solutions
- construct Var^Goal tells bagof to existentially quantify Var
- the predicate setof(Template,Goal,Bag) is similar to bagof but sorts the obtained multi-set (bag) and removed duplicates

Definition

the predicate findall(Template,Goal,Bag) works as bagof if all excessive variables are existentially quantified
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

\square

Applications of Set Predicates

Example

no_doubles (Xs, Ys) :- setof (X, member (X,Xs), Ys).
:- no_doubles ([1, 2, 3, 3] , [1, 2, 3]).

Example

 no_doubles_wrong(Xs,Ys) :- bagof(X, member (X,Xs),Ys).:- no_doubles_wrong([1,2,3,3],[1,2,3,3]).

 -
\qquad

father(andreas, boris).	female(doris).	male(andreas).
father(andreas, christian).	female(eva).	male(boris).
father(andreas, doris).		male(christian).
father(boris,eva).	mother(doris,franz).	male(franz).
father(franz, georg).	mother(eva, georg).	male(georg).

Logic Program
(Department of Computer Science @ Ul
-
=
mother (eva,georg). male(georg).
 \section*{\section*{Example (Facts)}}
 \section*{\section*{Example (Facts)}}
father (andreas,

other (eva, georg).
mother (eva,georg). male(georg).
-
-
mother (eva,georg). male(georg). male(christian). male(franz).

Example (Facts)

father (andreas, boris).	female(doris).	male(andreas).
father(andreas, christian).	female(eva).	male(boris).
father(andreas, doris).		male(christian).
father(boris,eva).	mother(doris,franz).	male(franz).
father(franz, georg).	mother(eva, georg).	male(georg).

Example

children(X,Cs) :- children(X, [],Cs).
children(X,A,Cs) :father (X,C), children(X,[C|A],Cs).
children(X,Cs,Cs).

Example (Facts)

father(andreas, boris).	female(doris).	male(andreas).
father (andreas, christian).	female(eva).	male(boris).
father (andreas, doris).		male(christian).
father(boris, eva).	mother(doris,franz).	male(franz).
father(franz, georg).	mother(eva, georg).	male(georg).

Example

children(X,Cs) :- children(X, [],Cs).
children(X,A,Cs) :father (X,C), children(X,[C|A],Cs).
children(X,Cs,Cs).

Example (cont'd)

children (X, Kids) :- setof(C, father (X, C), Kids). children (AllKids) : - setof (C, X^{\wedge} father (X,C), AllKids). children2(AllKids) :- setof(C, father (_X,C), AllKids).

Recall Propositional Tableaux

Example
consider the tableau proof of $P \rightarrow(Q \rightarrow R)) \rightarrow(P \vee S \rightarrow(Q \rightarrow R) \vee S)$

$$
\begin{aligned}
& \neg((P \rightarrow(Q \rightarrow R))\rightarrow(P \vee S \rightarrow(Q \rightarrow R) \vee S)) \\
& P \rightarrow(Q \rightarrow R) \\
& \neg(P \vee S \rightarrow(Q \rightarrow R) \vee S) \\
& P \vee S \\
& \neg((Q \rightarrow R) \vee S) \\
& \neg(Q \rightarrow R) \\
& \neg S \\
& \checkmark P \rightarrow R
\end{aligned}
$$

Free-Variable Semantic Tableaux

Definition (expansion rules)

$$
\frac{\gamma}{\gamma(x)} \quad x \text { a free variable } \quad \frac{\delta}{\delta\left(f\left(x_{1}, \ldots, x_{n}\right)\right)} \quad f \text { a Skolem function }
$$

- x_{1}, \ldots, x_{n} denote all free variables of the formula δ
- Skolem function f must be new on the branch

Free-Variable Semantic Tableaux

Definition (expansion rules)

$$
\frac{\gamma}{\gamma(x)} \quad x \text { a free variable } \frac{\delta}{\delta\left(f\left(x_{1}, \ldots, x_{n}\right)\right)} \quad f \text { a Skolem function }
$$

- x_{1}, \ldots, x_{n} denote all free variables of the formula δ
- Skolem function f must be new on the branch

Definition (atomic closure rule)
$1 \exists$ branch in tableau T that contains two literals A and $\neg B$
$2 \exists \mathrm{mgu} \sigma$ of A and B
3 then $T \sigma$ is also a tableau

Example

consider the tableau proof of

$$
\exists x \forall y R(x, y) \rightarrow \forall y \exists x R(x, y)
$$

and

$$
\forall x \forall y(P(x) \wedge P(y)) \rightarrow \forall x \forall y(P(x) \vee P(y)
$$

on the blackboard

Definition

a strategy S details:
1 which expansion rule is supposed to be applied
2 or that no expansion rule can be applied
a strategy may use extra information which is updated

Definition

a strategy S details:
1 which expansion rule is supposed to be applied
2 or that no expansion rule can be applied
a strategy may use extra information which is updated

Definition

a strategy S is fair if for sequence of tableaux T_{1}, T_{2}, \ldots following S :

Definition

a strategy S details:
1 which expansion rule is supposed to be applied
2 or that no expansion rule can be applied
a strategy may use extra information which is updated

Definition

a strategy S is fair if for sequence of tableaux T_{1}, T_{2}, \ldots following S :
1 any non-literal formula in T_{i} is eventually expanded, and

Definition

a strategy S details:
1 which expansion rule is supposed to be applied
2 or that no expansion rule can be applied
a strategy may use extra information which is updated

Definition

a strategy S is fair if for sequence of tableaux T_{1}, T_{2}, \ldots following S :
1 any non-literal formula in T_{i} is eventually expanded, and
2 any γ-formula occurrence in T_{i} has the γ-rule applied to it arbitrarily often

Definition

a strategy S details:
1 which expansion rule is supposed to be applied
2 or that no expansion rule can be applied
a strategy may use extra information which is updated

Definition

a strategy S is fair if for sequence of tableaux T_{1}, T_{2}, \ldots following S :
1 any non-literal formula in T_{i} is eventually expanded, and
2 any γ-formula occurrence in T_{i} has the γ-rule applied to it arbitrarily often

Exercise +

make sure your implementation of free-variable tableaux is fair

