

Logic Programming

Georg Moser

Department of Computer Science @ UIBK

Winter 2016

Happy New Year!

Summary of Last Lecture

Definition

the intended meaning of a Prolog program is a set of ground facts G

- a program P is called
 - correct with respect to the intended meaning *M*, if the meaning of *P* is a subset of *M*
 - complete if the intended meaning M is a subset of the meaning of P

Definition

let P be a Prolog program and Q be a query; the search tree visit and construction algorithm A generates a search tree (T, N, U) as follows:

- 1 initially the root becomes current node N, labelled with Q and ϵ
- if the current sequence of goals Q is true backtrack to the first node in U (U is always updated by using a depth-first, leftmost strategy)
- 3 otherwise, let T be the first goal in Q
- 4 if T = true, delete T and goto Step 2
- **5** if *T* is user-defined, either expand the tree by *n* successor nodes, where *n* is the number of clauses $H_i : -B_i$ such that H_i unifies with *T* or backtrack; in the former case the successors are labelled by $Q \setminus \{T\} \cup B_i$, the leftmost child becomes the current node, update *U*
- **6** if *T* is built-in, perform the specific side effects of the predicate and goto Step 2

Outline of the Lecture

Monotone Logic Programs

introduction, basic constructs, logic foundations, unification, semantics, database and recursive programming, termination, complexity

Incomplete Data Structures and Constraints

incomplete data structures, definite clause grammars, constraint logic programming, answer set programming

Full Prolog

semantics (revisted), cuts, correctness proofs, meta-logical predicates, nondeterministic programming, pragmatics, efficient programs, meta programming

Outline of the Lecture

Monotone Logic Programs

introduction, basic constructs, logic foundations, unification, semantics, database and recursive programming, termination, complexity

Incomplete Data Structures and Constraints

incomplete data structures, definite clause grammars, constraint logic programming, answer set programming

Full Prolog

semantics (revisted), cuts, correctness proofs, meta-logical predicates, nondeterministic programming, pragmatics, efficient programs, meta programming

Definition

• meta-logical predicates are extensions of the first-order theory of logic programming

- meta-logical predicates are extensions of the first-order theory of logic programming
- meta-logical predicates can
 - 1 query the state of the proof

- meta-logical predicates are extensions of the first-order theory of logic programming
- meta-logical predicates can
 - 1 query the state of the proof
 - 2 treat variables as objects

- meta-logical predicates are extensions of the first-order theory of logic programming
- meta-logical predicates can
 - 1 query the state of the proof
 - 2 treat variables as objects
 - 3 allow conversion of data structures to goals

Definition

- meta-logical predicates are extensions of the first-order theory of logic programming
- meta-logical predicates can
 - 1 query the state of the proof
 - 2 treat variables as objects
 - 3 allow conversion of data structures to goals

Remark

meta-logical type predicates allow us to overcome two difficulties:

Definition

- meta-logical predicates are extensions of the first-order theory of logic programming
- meta-logical predicates can
 - 1 query the state of the proof
 - 2 treat variables as objects
 - 3 allow conversion of data structures to goals

Remark

meta-logical type predicates allow us to overcome two difficulties:

1 variables in system predicates do not behave as intended

Definition

- meta-logical predicates are extensions of the first-order theory of logic programming
- meta-logical predicates can
 - 1 query the state of the proof
 - 2 treat variables as objects
 - 3 allow conversion of data structures to goals

Remark

meta-logical type predicates allow us to overcome two difficulties:

- 1 variables in system predicates do not behave as intended
- 2 (logical) variables can be accidentally instantiated

- var(Term) is true if Term is at present an uninstantiated variable
- nonvar(Term) is true if Term is at present not a variable
- ground(*Term*) is true if *Term* does not contain variables
- compound(Term) is true if Term is compound

- var(Term) is true if Term is at present an uninstantiated variable
- nonvar(Term) is true if Term is at present not a variable
- ground(Term) is true if Term does not contain variables
- compound(Term) is true if Term is compound

```
Example
plus(X,Y,Z) : -
    nonvar(X), nonvar(Y), Z is X + Y.
plus(X,Y,Z) : -
    nonvar(X), nonvar(Z), Y is Z - X.
plus(X,Y,Z) : -
    nonvar(Y), nonvar(Z), X is Z - Y.
```

unify(X,Y) : - var(X), var(Y), X = Y.

```
unify(X,Y) : - var(X), var(Y), X = Y.
unify(X,Y) : - var(X), nonvar(Y), X = Y.
```

```
unify(X,Y) :- var(X), var(Y), X = Y.
unify(X,Y) :- var(X), nonvar(Y), X = Y.
unify(X,Y) :- nonvar(X), var(Y), Y = X.
```

```
unify(X,Y) :- var(X), var(Y), X = Y.
unify(X,Y) :- var(X), nonvar(Y), X = Y.
unify(X,Y) :- nonvar(X), var(Y), Y = X.
unify(X,Y) :-
nonvar(X), nonvar(Y), constant(X), constant(Y),
X = Y.
```

```
unify(X,Y) :- var(X), var(Y), X = Y.
unify(X,Y) :- var(X), nonvar(Y), X = Y.
unify(X,Y) :- nonvar(X), var(Y), Y = X.
unify(X,Y) :-
nonvar(X), nonvar(Y), constant(X), constant(Y),
X = Y.
unify(X,Y) :-
nonvar(X), nonvar(Y), compound(X), compound(Y),
term_unify(X,Y).
```

```
unify(X,Y) :- var(X), var(Y), X = Y.
unify(X,Y) :- var(X), nonvar(Y), X = Y.
unify(X,Y) :- nonvar(X), var(Y), Y = X.
unify(X,Y) :-
nonvar(X), nonvar(Y), constant(X), constant(Y),
X = Y.
unify(X,Y) :-
nonvar(X), nonvar(Y), compound(X), compound(Y),
term_unify(X,Y).
term_unify(X,Y) :-
functor(X,F,N), functor(Y,F,N), unify_args(N,X,Y).
```

```
unify(X,Y) : - var(X), var(Y), X = Y.
unify(X,Y) := var(X), nonvar(Y), X = Y.
unify(X,Y) : - nonvar(X), var(Y), Y = X.
unify(X,Y) : -
    nonvar(X), nonvar(Y), constant(X), constant(Y),
    X = Y.
unify(X,Y) : -
    nonvar(X), nonvar(Y), compound(X), compound(Y),
    term_unify(X,Y).
term_unify(X,Y) : -
    functor(X,F,N), functor(Y,F,N), unify_args(N,X,Y).
unifv_args(N, X, Y) : -
    N > 0, unify_arg(N,X,Y), N1 is N - 1, unify_args(N1,X,Y).
unify_args(0,X,Y).
```

```
unify(X,Y) := var(X), var(Y), X = Y.
unify(X,Y) := var(X), nonvar(Y), X = Y.
unify(X,Y) : - nonvar(X), var(Y), Y = X.
unify(X,Y) : -
    nonvar(X), nonvar(Y), constant(X), constant(Y),
    X = Y.
unify(X,Y) : -
    nonvar(X), nonvar(Y), compound(X), compound(Y),
    term_unify(X,Y).
term_unify(X,Y) : -
    functor(X,F,N), functor(Y,F,N), unify_args(N,X,Y).
unifv_args(N, X, Y) : -
    N > 0, unify_arg(N,X,Y), N1 is N - 1, unify_args(N1,X,Y).
unify_args(0,X,Y).
unify_arg(N, X, Y) : -
    arg(N,X,ArgX), arg(N,Y,ArgY), unify(ArgX,ArgY).
```

Remark

alternative sto the above (and below) implementation of unify:

- Term1 = Term2
- unify_with_occurs_check (Term1,Term2)

Remark

alternative sto the above (and below) implementation of unify:

- Term1 = Term2
- unify_with_occurs_check (Term1,Term2)

Definition (Comparing nonground terms)

- X == Y is true if X and Y are identical constants, variables, or compound terms
- X \== Y is true if X and Y are not identical

Remark

alternative sto the above (and below) implementation of unify:

- Term1 = Term2
- unify_with_occurs_check (Term1,Term2)

Definition (Comparing nonground terms)

- X == Y is true if X and Y are identical constants, variables, or compound terms
- X \== Y is true if X and Y are not identical

Example

false

Unification with Occurs Check

```
not_occurs_in(X,Y) : -
    var(Y), X \== Y.
not_occurs_in(X,Y) : -
    nonvar(Y), constant(Y).
not_occurs_in(X,Y) : -
    nonvar(Y), compound(Y),
    functor(Y,F,N), not_occurs_in(N,X,Y).
not_occurs_in(N,X,Y) : -
    N > 0, arg(N,Y,Arg), not_occurs_in(X,Arg), N1 is N - 1,
    not_occurs_in(N1,X,Y).
```

Unification with Occurs Check

```
not_occurs_in(X,Y) : -
    var(Y), X = Y.
not_occurs_in(X,Y) : -
    nonvar(Y), constant(Y).
not_occurs_in(X,Y) : -
    nonvar(Y), compound(Y),
    functor(Y,F,N), not_occurs_in(N,X,Y).
not_occurs_in(N,X,Y) : -
    N > 0, arg(N, Y, Arg), not_occurs_in(X, Arg), N1 is N - 1,
    not_occurs_in(N1,X,Y).
not_occurs_in(0,X,Y).
unify(X,Y) : - var(X), nonvar(Y), not_occurs_in(X,Y), X = Y.
unify(X,Y) : - nonvar(X), var(Y), not_occurs_in(Y,X), Y = X.
```

Definition

the meta-variable facility allows a variable to appear as a goal or in the body

Definition

the meta-variable facility allows a variable to appear as a goal or in the body

Example

X; Y :- X. X; Y :- Y.

Definition

the meta-variable facility allows a variable to appear as a goal or in the body

Example

X; Y :- X. X; Y :- Y.

Other Control Predicates

Definition

the meta-variable facility allows a variable to appear as a goal or in the body

Example

X; Y :- X. X; Y :- Y.

Other Control Predicates

- fail/0 false/0 :- fail. :- false. false false
- *true*/0 :- true. true

- assert/1
 - $\leftarrow \texttt{assert}(C).$

true

• assert/1

```
\leftarrow \texttt{assert}(C).
```

true

• side effect: add rule C to program

• assert/1

```
\leftarrow assert(C).
```

true

- side effect: add rule C to program
- asserta/1 or assertz/1

```
\leftarrow asserta(C).
```

true

```
add C first (last) to the database
```

• assert/1

```
\leftarrow assert(C).
```

true

- side effect: add rule C to program
- asserta/1 or assertz/1

```
\leftarrow asserta(C).
```

true

add C first (last) to the database

retract/1 or retractall/1

```
\leftarrow \text{retract}(C).<br/>false
```

- side effect: remove first rule (all rules) from program that unifies with \boldsymbol{C}

Example (Fibonacci Numbers Revisited)

```
:- dynamic(fibonacci/2).
```

```
Example (Fibonacci Numbers Revisited)
```

```
:- dynamic(fibonacci/2).
```

```
fibonacci(0,0).
fibonacci(1,1).
fibonacci(N,X) :-
    N > 1,
    N1 is N-1, fibonacci(N1,Y),
    N2 is N-2, fibonacci(N2,Z),
    X is Y+Z,
    assert(fibonacci(N,X)),
    !.
```

```
Example (Fibonacci Numbers Revisited)
```

```
:- dynamic(fibonacci/2).
```

```
fibonacci(0,0).
fibonacci(1,1).
fibonacci(N,X) :-
    N > 1,
    N1 is N-1, fibonacci(N1,Y),
    N2 is N-2, fibonacci(N2,Z),
    X is Y+Z,
    asserta(fibonacci(N,X)),
    !.
```

Definitions

• the predicate *bagof*(*Template*,*Goal*,*Bag*) unifies *Bag* with the alternatives of *Template* that meet *Goal*

- the predicate *bagof*(*Template,Goal,Bag*) unifies *Bag* with the alternatives of *Template* that meet *Goal*
- if *Goal* has free variables besides the one sharing with *Template bagof* will backtrack

- the predicate *bagof*(*Template,Goal,Bag*) unifies *Bag* with the alternatives of *Template* that meet *Goal*
- if *Goal* has free variables besides the one sharing with *Template bagof* will backtrack
- fails if Goal has no solutions

- the predicate *bagof*(*Template,Goal,Bag*) unifies *Bag* with the alternatives of *Template* that meet *Goal*
- if *Goal* has free variables besides the one sharing with *Template bagof* will backtrack
- fails if Goal has no solutions
- construct Var[^]Goal tells bagof to existentially quantify Var

- the predicate *bagof*(*Template,Goal,Bag*) unifies *Bag* with the alternatives of *Template* that meet *Goal*
- if *Goal* has free variables besides the one sharing with *Template bagof* will backtrack
- fails if Goal has no solutions
- construct Var[^]Goal tells bagof to existentially quantify Var
- the predicate *setof*(*Template*, *Goal*, *Bag*) is similar to *bagof* but sorts the obtained multi-set (bag) and removed duplicates

Definitions

- the predicate *bagof*(*Template,Goal,Bag*) unifies *Bag* with the alternatives of *Template* that meet *Goal*
- if *Goal* has free variables besides the one sharing with *Template bagof* will backtrack
- fails if Goal has no solutions
- construct Var[^]Goal tells bagof to existentially quantify Var
- the predicate *setof*(*Template*, *Goal*, *Bag*) is similar to *bagof* but sorts the obtained multi-set (bag) and removed duplicates

Definition

the predicate *findall*(*Template*,*Goal*,*Bag*) works as *bagof* if all excessive variables are existentially quantified

Applications of Set Predicates

Example

 $no_doubles(Xs, Ys) := setof(X, member(X, Xs), Ys).$

:- no_doubles([1,2,3,3],[1,2,3]).

Applications of Set Predicates

Example

 $no_doubles(Xs, Ys) := setof(X, member(X, Xs), Ys).$

:- no_doubles ([1,2,3,3],[1,2,3]).

Example

 $no_doubles_wrong(Xs, Ys) := bagof(X, member(X, Xs), Ys).$

:- no_doubles_wrong([1,2,3,3],[1,2,3,3]).

Example (Facts)

```
father(andreas,boris).
father(andreas,christian).
father(andreas,doris).
father(boris,eva).
father(franz,georg).
```

female(doris).
female(eva).

mother(doris,franz).
mother(eva,georg).

```
male(andreas).
male(boris).
male(christian).
male(franz).
male(georg).
```

Example (Facts)

father(andreas,boris).	female(doris).	<pre>male(andreas).</pre>
father(andreas,christian).	female(eva).	<pre>male(boris).</pre>
father(andreas,doris).		<pre>male(christian).</pre>
father(boris,eva).	<pre>mother(doris,franz).</pre>	<pre>male(franz).</pre>
<pre>father(franz,georg).</pre>	<pre>mother(eva,georg).</pre>	<pre>male(georg).</pre>

Example

```
children(X,Cs) :- children(X,[],Cs).
children(X,A,Cs) :-
    father(X,C), children(X,[C|A],Cs).
children(X,Cs,Cs).
```

Example (Facts)

father(andreas,boris).	female(doris).	<pre>male(andreas).</pre>
father(andreas,christian).	female(eva).	<pre>male(boris).</pre>
father(andreas,doris).		<pre>male(christian).</pre>
father(boris,eva).	<pre>mother(doris,franz).</pre>	<pre>male(franz).</pre>
father(franz,georg).	<pre>mother(eva,georg).</pre>	<pre>male(georg).</pre>

Example

```
children(X,Cs) :- children(X,[],Cs).
children(X,A,Cs) :-
    father(X,C), children(X,[C|A],Cs).
children(X,Cs,Cs).
```

Example (cont'd)

```
children(X,Kids) :- setof(C,father(X,C),Kids).
children(AllKids) :- setof(C,X^father(X,C),AllKids).
children2(AllKids) :- setof(C,father(_X,C),AllKids).
```

Recall Propositional Tableaux

Example

consider the tableau proof of $P
ightarrow (Q
ightarrow R))
ightarrow (P \lor S
ightarrow (Q
ightarrow R) \lor S)$

Free-Variable Semantic Tableaux

Definition (expansion rules)

$$\frac{\gamma}{\gamma(x)}$$
 x a free variable $\frac{\delta}{\delta(f(x_1, \dots, x_n))}$ f a Skolem function

- x_1, \ldots, x_n denote all free variables of the formula δ
- Skolem function f must be new on the branch

Free-Variable Semantic Tableaux

Definition (expansion rules)

$$\frac{\gamma}{\gamma(x)}$$
 x a free variable $\frac{\delta}{\delta(f(x_1, \dots, x_n))}$ f a Skolem function

- x_1, \ldots, x_n denote all free variables of the formula δ
- Skolem function f must be new on the branch

Definition (atomic closure rule)

- **1** \exists branch in tableau *T* that contains two literals *A* and $\neg B$
- **2** \exists mgu σ of A and B
- **3** then $T\sigma$ is also a tableau

Example

consider the tableau proof of

$$\exists x \forall y R(x, y) \rightarrow \forall y \exists x R(x, y)$$

and

$\forall x \forall y (P(x) \land P(y)) \rightarrow \forall x \forall y (P(x) \lor P(y))$

on the blackboard

- a strategy *S* details:
 - 1 which expansion rule is supposed to be applied
 - 2 or that no expansion rule can be applied
- a strategy may use extra information which is updated

- a strategy *S* details:
 - 1 which expansion rule is supposed to be applied
 - 2 or that no expansion rule can be applied
- a strategy may use extra information which is updated

Definition

a strategy S is fair if for sequence of tableaux T_1, T_2, \ldots following S :

- a strategy *S* details:
 - 1 which expansion rule is supposed to be applied
 - 2 or that no expansion rule can be applied
- a strategy may use extra information which is updated

- a strategy S is fair if for sequence of tableaux T_1, T_2, \ldots following S:
 - **1** any non-literal formula in T_i is eventually expanded, and

- a strategy *S* details:
 - 1 which expansion rule is supposed to be applied
 - 2 or that no expansion rule can be applied

a strategy may use extra information which is updated

- a strategy S is fair if for sequence of tableaux T_1, T_2, \ldots following S :
 - **1** any non-literal formula in T_i is eventually expanded, and
 - **2** any γ -formula occurrence in T_i has the γ -rule applied to it arbitrarily often

- a strategy *S* details:
 - 1 which expansion rule is supposed to be applied
 - 2 or that no expansion rule can be applied

a strategy may use extra information which is updated

Definition

- a strategy S is fair if for sequence of tableaux T_1, T_2, \ldots following S :
 - **1** any non-literal formula in T_i is eventually expanded, and
 - **2** any γ -formula occurrence in T_i has the γ -rule applied to it arbitrarily often

Exercise +

make sure your implementation of free-variable tableaux is fair