ogic

Logic Programming

Georg Moser

Department of Computer Science @ UIBK

Winter 2016

Summary of Last Lecture

Definition
the intended meaning of a Prolog program is a set of ground facts G

Definition
a program P is called

e correct with respect to the intended meaning M, if the meaning of
P is a subset of M

e complete if the intended meaning M is a subset of the meaning of P

GM (Department of Computer Science @ Ul Logic Programming 198/1

Happy New Year!

GM (Department of Computer Science @ Ul

Logic Programming

I
Definition
let P be a Prolog program and @ be a query; the search tree visit and
construction algorithm A generates a search tree (T, N, U) as follows:
initially the root becomes current node N, labelled with Q and €
if the current sequence of goals @ is true backtrack to the first
node in U (U is always updated by using a depth-first, leftmost
strategy)
otherwise, let T be the first goal in Q
if T = true, delete T and goto Step 2
if T is user-defined, either expand the tree by n successor nodes,
where n is the number of clauses H; : —B; such that H; unifies with
T or backtrack; in the former case the successors are labelled by
Q\ {T} U B;, the leftmost child becomes the current node,
update U

@ if T is built-in, perform the specific side effects of the predicate and
goto Step 2

GM (Department of Computer Science @ Ul Logic Programming 199/1

http://cl-informatik.uibk.ac.at

Outline of the Lecture Meta-logical Predicates

Monotone Logic Programs

introduction, basic constructs, logic foundations, unification, semantics, Definition

database and recursive programming, termination, complexity e meta-logical predicates are extensions of the first-order theory of

logic programming
e meta-logical predicates can

Incomplete Data Structures and Constraints query the state of the proof
treat variables as objects

incomplete data structures, definite clause grammars, constraint logic pro- X
P g gicp allow conversion of data structures to goals

gramming, answer set programming

Remark
Full Prolog meta-logical type predicates allow us to overcome two difficulties:
semantics (revisted), cuts, correctness proofs, meta-logical predicates, variables in system predicates do not behave as intended
nondeterministic programming, pragmatics, efficient programs, meta pro- (logical) variables can be accidentally instantiated

gramming

GM (Department of Computer Science @ Ul Logic Programming GM (Department of Computer Science @ Ul Logic Programming

Meta-logical Type Predicates Example
Definition unify(X,Y) : — var(X), var(Y), X = Y.
e var(Term) is true if Term is at present an uninstantiated variable un:.Lfy(X,Y) :— var(), monvar(Y), X =Y.
.])) unify(X,Y) : — nonvar(X), var(Y), Y = X.
e nonvar(Term) is true if Term is at present not a variable unify(X,Y) : —
e ground(Term) is true if Term does not contain variables nonvar (X), nonvar(Y), constant(X), constant(Y),
. d(Term) is true if Term i d P
compound(Term) is true if Term is compoun anify(X,¥) : —

nonvar (X), nonvar(Y), compound(X), compound(Y),
term unify(X,Y).

Example term unify(X,Y) : —

plus(X,Y,2) : — functor(X,F,N), functor(Y,F,N), unify args(N,X,Y).
nonvar (X), nonvar(Y), Z is X + Y. unify args (N,X,Y) @ —

plus(X,Y,Z) : — N > 0, unify arg(N,X,¥), N1 is N - 1, unify args(N1,X,Y).

nonvar (X), nonvar(Z), Y is Z - X. unify args(0,X,V).

plus(X,Y,Z2) : — unify arg(N,X,Y) : —
P . arg(N,X,ArgX), arg(N,Y,ArgY), unify(ArgX,ArgY).

nonvar(Y), nonvar(Z), X is Z - Y.

GM (Department of Computer Science @ Ul Logic Programming 202/1 GM (Department of Computer Science @ Ul Logic Programming 203/1

Comparing nonground terms Comparing nonground terms

Remark Unification with Occurs Check
alternative sto the above (and below) implementation of unify:

® Terml = Term2 Example

e unify_with_occurs_check (Term1,Term2) not_occurs_in(X,Y) : —

var(Y), X \==Y.
o) not_occurs_in(X,Y) : —

Definition (Comparing nonground terms) nonvar(Y), constant(Y).

e X ==Y istrueif X and Y are identical constants, variables, or not-occurs-in(X,Y) : —

nonvar (Y), compound(Y),

compound terms
P functor(Y,F,N), not_occurs_in(N,X,Y).

e X \==Y is true if X and Y are not identical not_occurs in(N.X.Y) : —

N > 0, arg(N,Y,Arg), not_occurs_in(X,Arg), N1 is N - 1,
Example not_occprs_ln(Nl,X,Y).
not_occurs_in(0,X,Y).

unify(X,Y) : — var(X), nonvar(Y), not_occurs_in(X,Y), X = Y.
false unify(X,Y) : — nonvar(X), var(Y), not_occurs_in(Y,X), Y = X.

GM (Department of Computer Science @ Ul Logic Programming GM (Department of Computer Science @ Ul Logic Programming

Meta-Variable Facility Clause Database Operations
Definition o assert/l
the meta-variable facility allows a variable to appear as a goal or in the + assert(C).
body true
e side effect: add rule C to program
Example e asserta/1 or assertz/1
X; Y :— X.
X; Y :— Y. < asserta(C).
true
Other Control Predicates add C first (last) to the database
e fail/0 false/0 e retract/1 or retractall/1
:— fail. : — false.
false false < retract(C).
true
e true/0 . : o
. _ true. e side effect: remove first rule (all rules) from program that unifies
true with C

GM (Department of Computer Science @ Ul Logic Programming 206/1 GM (Department of Computer Science @ Ul Logic Programming 207/1

Program Access and Manipulation Program Access and Manipulation

Second-Order Programming

Example (Fibonacci Numbers Revisited) Definitions

e the predicate bagof(Template, Goal,Bag) unifies Bag with the

+= dynamic(fibonacci/2). alternatives of Template that meet Goal

fibonacci(0,0). e if Goal has free variables besides the one sharing with Template
fibonacci(1,1). bagof will backtrack
fiboﬁazci(N’X) - e fails if Goal has no solutions
N1 is’N—l, fibonacci (N1,Y), e construct Var” Goal tells bagof to existentially quantify Var
N2 is N-2, fibonacci(N2,Z), e the predicate setof(Template, Goal,Bag) is similar to bagof but sorts
X is Y+Z,

the obtained multi-set (bag) and removed duplicates
asserta(fibonacci(N,X)),
I,

Definition
the predicate findall(Template, Goal,Bag) works as bagof if all excessive
variables are existentially quantified

GM (Department of Computer Science @ Ul Logic Programming GM (Department of Computer Science @ Ul Logic Programming

Applications of Set Predicates Example (Facts)
father (andreas,boris) . female(doris) . male(andreas) .
father (andreas,christian). female(eva). male(boris) .
father (andreas,doris) . male(christian).
Example father (boris,eva). mother(doris,franz). male(franz).
father (franz,georg) . mother (eva,georg) . male(georg) .
no_doubles(Xs,Ys) :— setof (X, member(X,Xs), Ys).
:— no._doubles([1,2,3,3],[1,2,3]). Example
children(X,Cs) :- children(X,[],Cs).
children(X,A,Cs) :-
Example father(X,C), children(X, [C|A],Cs).
children(X,Cs,Cs).

no_doubles_wrong (Xs,Ys) :— bagof (X, member(X,Xs),Ys).

:— no_doubles_wrong([1,2,3,3],[1,2,3,3]). Exan”ﬂe(confd)

children (X, Kids) :— setof(C, father(X,C), Kids)
children (AllKids) :— setof(C,X"father(X,C), AllKids).
children2 (AllKids) :— setof(C, father(-X,C), AllKids).

GM (Department of Computer Science @ Ul Logic Programming 210/1 GM (Department of Computer Science @ Ul Logic Programming VARWAN

Excursion: Free-Variable Semantic Tableaux

Recall Propositional Tableaux

Example
consider the tableau proof of P - (Q — R)) - (PVS — (Q — R)VS)

-(P=(Q—=R)—=(PVS—=(Q—=R)VYS))
P—(Q—R)
“(PVS—=(Q—=R)VYS)

PVS
(@ = R)VS)

-(Q = R)

=S
/ ™~
-P Q
VRN
P S

— R

GM (Department of Computer Science @ Ul Logic Programming

Excursion: Free-Variable Semantic Tableaux

Excursion: Free-Variable Semantic Tableaux

Free-Variable Semantic Tableaux

Definition (expansion rules)

- x a free variable 0 f a Skolem function
v(x) 0(F(x1y..yxn))
e xi,...,x, denote all free variables of the formula ¢

e Skolem function f must be new on the branch

Definition (atomic closure rule)
3 branch in tableau T that contains two literals A and =B
I mgu o of Aand B

then To is also a tableau

GM (Department of Computer Science @ Ul Logic Programming

Excursion: Free-Variable Semantic Tableaux

Example
consider the tableau proof of

IxVyR(x,y) — Vy3axR(x,y)

and
VxVy(P(x) A P(y)) — ¥x¥y(P(x) V P(y)

on the blackboard

GM (Department of Computer Science @ Ul Logic Programming 214/1

Definition

a strategy S details:
which expansion rule is supposed to be applied
or that no expansion rule can be applied

a strategy may use extra information which is updated

Definition
a strategy S is fair if for sequence of tableaux Ti, Tp,... following S :
any non-literal formula in T; is eventually expanded, and

any y-formula occurrence in T; has the v-rule applied to it
arbitrarily often

Exercise +
make sure your implementation of free-variable tableaux is fair

GM (Department of Computer Science @ Ul Logic Programming ALYAN

