
Logic Programming

Georg Moser

Department of Computer Science @ UIBK

Winter 2016

Happy New Year!

GM (Department of Computer Science @ UIBK) Logic Programming 197/1

Summary of Last Lecture

Definition

the intended meaning of a Prolog program is a set of ground facts G

Definition

a program P is called

• correct with respect to the intended meaning M, if the meaning of
P is a subset of M

• complete if the intended meaning M is a subset of the meaning of P

GM (Department of Computer Science @ UIBK) Logic Programming 198/1

Definition

let P be a Prolog program and Q be a query; the search tree visit and
construction algorithm A generates a search tree (T ,N,U) as follows:

1 initially the root becomes current node N, labelled with Q and ε

2 if the current sequence of goals Q is true backtrack to the first
node in U (U is always updated by using a depth-first, leftmost
strategy)

3 otherwise, let T be the first goal in Q

4 if T = true, delete T and goto Step 2

5 if T is user-defined, either expand the tree by n successor nodes,
where n is the number of clauses Hi : −Bi such that Hi unifies with
T or backtrack; in the former case the successors are labelled by
Q \ {T} ∪ Bi , the leftmost child becomes the current node,
update U

6 if T is built-in, perform the specific side effects of the predicate and
goto Step 2

GM (Department of Computer Science @ UIBK) Logic Programming 199/1

http://cl-informatik.uibk.ac.at

Outline

Outline of the Lecture

Monotone Logic Programs

introduction, basic constructs, logic foundations, unification, semantics,
database and recursive programming, termination, complexity

Incomplete Data Structures and Constraints

incomplete data structures, definite clause grammars, constraint logic pro-
gramming, answer set programming

Full Prolog

semantics (revisted), cuts, correctness proofs, meta-logical predicates,
nondeterministic programming, pragmatics, efficient programs, meta pro-
gramming

GM (Department of Computer Science @ UIBK) Logic Programming 200/1

Meta-logical Predicates

Meta-logical Predicates

Definition
• meta-logical predicates are extensions of the first-order theory of

logic programming

• meta-logical predicates can

1 query the state of the proof
2 treat variables as objects
3 allow conversion of data structures to goals

Remark

meta-logical type predicates allow us to overcome two difficulties:

1 variables in system predicates do not behave as intended

2 (logical) variables can be accidentally instantiated

GM (Department of Computer Science @ UIBK) Logic Programming 201/1

Meta-logical Predicates

Meta-logical Type Predicates

Definition

• var(Term) is true if Term is at present an uninstantiated variable

• nonvar(Term) is true if Term is at present not a variable

• ground(Term) is true if Term does not contain variables

• compound(Term) is true if Term is compound

Example

plus(X,Y,Z) : −
nonvar(X), nonvar(Y), Z is X + Y.

plus(X,Y,Z) : −
nonvar(X), nonvar(Z), Y is Z - X.

plus(X,Y,Z) : −
nonvar(Y), nonvar(Z), X is Z - Y.

GM (Department of Computer Science @ UIBK) Logic Programming 202/1

Meta-logical Predicates

Example

unify(X,Y) : − var(X), var(Y), X = Y.

unify(X,Y) : − var(X), nonvar(Y), X = Y.

unify(X,Y) : − nonvar(X), var(Y), Y = X.

unify(X,Y) : −
nonvar(X), nonvar(Y), constant(X), constant(Y),

X = Y.

unify(X,Y) : −
nonvar(X), nonvar(Y), compound(X), compound(Y),

term unify(X,Y).

term unify(X,Y) : −
functor(X,F,N), functor(Y,F,N), unify args(N,X,Y).

unify args(N,X,Y) : −
N > 0, unify arg(N,X,Y), N1 is N - 1, unify args(N1,X,Y).

unify args(0,X,Y).

unify arg(N,X,Y) : −
arg(N,X,ArgX), arg(N,Y,ArgY), unify(ArgX,ArgY).

GM (Department of Computer Science @ UIBK) Logic Programming 203/1

Comparing nonground terms

Remark

alternative sto the above (and below) implementation of unify :

• Term1 = Term2

• unify with occurs check (Term1,Term2)

Definition (Comparing nonground terms)

• X == Y is true if X and Y are identical constants, variables, or
compound terms

• X \== Y is true if X and Y are not identical

Example

: − X == 5

false

GM (Department of Computer Science @ UIBK) Logic Programming 204/1

Comparing nonground terms

Unification with Occurs Check

Example

not occurs in(X,Y) : −
var(Y), X \== Y.

not occurs in(X,Y) : −
nonvar(Y), constant(Y).

not occurs in(X,Y) : −
nonvar(Y), compound(Y),

functor(Y,F,N), not occurs in(N,X,Y).

not occurs in(N,X,Y) : −
N > 0, arg(N,Y,Arg), not occurs in(X,Arg), N1 is N - 1,

not occurs in(N1,X,Y).

not occurs in(0,X,Y).

unify(X,Y) : − var(X), nonvar(Y), not occurs in(X,Y), X = Y.

unify(X,Y) : − nonvar(X), var(Y), not occurs in(Y,X), Y = X.

GM (Department of Computer Science @ UIBK) Logic Programming 205/1

Meta-Variable Facility

Meta-Variable Facility

Definition

the meta-variable facility allows a variable to appear as a goal or in the
body

Example
X; Y : − X.

X; Y : − Y.

Other Control Predicates

• fail/0 false/0
: − fail. : − false.

false false

• true/0
: − true.

true

GM (Department of Computer Science @ UIBK) Logic Programming 206/1

Program Access and Manipulation

Clause Database Operations

• assert/1

← assert(C).
true

• side effect: add rule C to program

• asserta/1 or assertz/1

← asserta(C).
true

add C first (last) to the database

• retract/1 or retractall/1

← retract(C).
true

• side effect: remove first rule (all rules) from program that unifies
with C

GM (Department of Computer Science @ UIBK) Logic Programming 207/1

Program Access and Manipulation

Example (Fibonacci Numbers Revisited)

:- dynamic(fibonacci/2).

fibonacci(0,0).

fibonacci(1,1).

fibonacci(N,X) :-

N > 1,

N1 is N-1, fibonacci(N1,Y),

N2 is N-2, fibonacci(N2,Z),

X is Y+Z,

asserta(fibonacci(N,X)),

!.

GM (Department of Computer Science @ UIBK) Logic Programming 208/1

Program Access and Manipulation

Second-Order Programming

Definitions

• the predicate bagof(Template,Goal ,Bag) unifies Bag with the
alternatives of Template that meet Goal

• if Goal has free variables besides the one sharing with Template
bagof will backtrack

• fails if Goal has no solutions

• construct VarˆGoal tells bagof to existentially quantify Var

• the predicate setof(Template,Goal ,Bag) is similar to bagof but sorts
the obtained multi-set (bag) and removed duplicates

Definition

the predicate findall(Template,Goal ,Bag) works as bagof if all excessive
variables are existentially quantified

GM (Department of Computer Science @ UIBK) Logic Programming 209/1

Program Access and Manipulation

Applications of Set Predicates

Example

no doub l e s (Xs , Ys) :− s e t o f (X, member (X, Xs) , Ys) .

:− no doub l e s ([1 , 2 , 3 , 3] , [1 , 2 , 3]) .

Example

no doub l e s wrong (Xs , Ys) :− bagof (X, member (X, Xs) , Ys) .

:− no doub l e s wrong ([1 , 2 , 3 , 3] , [1 , 2 , 3 , 3]) .

GM (Department of Computer Science @ UIBK) Logic Programming 210/1

Program Access and Manipulation

Example (Facts)

father(andreas,boris). female(doris). male(andreas).

father(andreas,christian). female(eva). male(boris).

father(andreas,doris). male(christian).

father(boris,eva). mother(doris,franz). male(franz).

father(franz,georg). mother(eva,georg). male(georg).

Example

children(X,Cs) :- children(X,[],Cs).

children(X,A,Cs) :-

father(X,C), children(X,[C|A],Cs).

children(X,Cs,Cs).

Example (cont’d)

c h i l d r e n (X, Kids) :− s e t o f (C , f a t h e r (X,C) , Kids) .
c h i l d r e n (A l l K i d s) :− s e t o f (C ,Xˆ f a t h e r (X,C) , A l l K i d s) .
c h i l d r e n 2 (A l l K i d s) :− s e t o f (C , f a t h e r (X ,C) , A l l K i d s) .

GM (Department of Computer Science @ UIBK) Logic Programming 211/1

Excursion: Free-Variable Semantic Tableaux

Recall Propositional Tableaux

Example

consider the tableau proof of P → (Q → R))→ (P ∨ S → (Q → R)∨ S)

¬ ((P → (Q → R))→ (P ∨ S → (Q → R) ∨ S))

P → (Q → R)

¬(P ∨ S → (Q → R) ∨ S)

P ∨ S

¬((Q → R) ∨ S)

¬(Q → R)

¬S

¬P Q → R

P S

GM (Department of Computer Science @ UIBK) Logic Programming 212/1

Excursion: Free-Variable Semantic Tableaux

Free-Variable Semantic Tableaux

Definition (expansion rules)

γ

γ(x)
x a free variable

δ

δ(f (x1, . . . , xn))
f a Skolem function

• x1, . . . , xn denote all free variables of the formula δ

• Skolem function f must be new on the branch

Definition (atomic closure rule)

1 ∃ branch in tableau T that contains two literals A and ¬B
2 ∃ mgu σ of A and B

3 then Tσ is also a tableau

GM (Department of Computer Science @ UIBK) Logic Programming 213/1

Excursion: Free-Variable Semantic Tableaux

Example

consider the tableau proof of

∃x∀yR(x , y)→ ∀y∃xR(x , y)

and
∀x∀y(P(x) ∧ P(y))→ ∀x∀y(P(x) ∨ P(y)

on the blackboard

GM (Department of Computer Science @ UIBK) Logic Programming 214/1

Excursion: Free-Variable Semantic Tableaux

Definition

a strategy S details:

1 which expansion rule is supposed to be applied

2 or that no expansion rule can be applied

a strategy may use extra information which is updated

Definition

a strategy S is fair if for sequence of tableaux T1,T2, . . . following S :

1 any non-literal formula in Ti is eventually expanded, and

2 any γ-formula occurrence in Ti has the γ-rule applied to it
arbitrarily often

Exercise +

make sure your implementation of free-variable tableaux is fair

GM (Department of Computer Science @ UIBK) Logic Programming 215/1

