
Logic Programming

Georg Moser

Department of Computer Science @ UIBK

Winter 2016

Summary

Summary of Last Lecture

Example (meta-variable facility)

X; Y : − X.

X; Y : − Y.

Definitions (second-order programming)

• the predicate bagof(Template,Goal ,Bag) unifies Bag with the
alternatives of Template that meet Goal

• if Goal has free variables besides the one sharing with Template
bagof will backtrack

• fails if Goal has no solutions

• construct VarˆGoal tells bagof to existentially quantify Var

• the predicate setof(Template,Goal ,Bag) is similar to bagof but sorts
the obtained multi-set (bag) and removed duplicates

GM (Department of Computer Science @ UIBK) Logic Programming 216/1

Outline

Outline of the Lecture

Monotone Logic Programs

introduction, basic constructs, logic foundations, unification, semantics,
database and recursive programming, termination, complexity

Incomplete Data Structures and Constraints

incomplete data structures, definite clause grammars, constraint logic pro-
gramming, answer set programming

Full Prolog

semantics (revisted), cuts, correctness proofs, meta-logical predicates,
pragmatics, efficient programs, meta programming

GM (Department of Computer Science @ UIBK) Logic Programming 217/1

Efficiency of Prolog Programs

Time and Space Complexity

Definition

the time complexity of a (Prolog) program expresses the runtime of a
program as a function of the size of its input

Definition

the space complexity of a (Prolog) program expresses the memory
requirement of a program as a function of the size of its input

Observations on Space

• space usage depends on the depth of recursion

• space usage depends also on the number of data structures created

• the former may be a major problem: stack overflow

GM (Department of Computer Science @ UIBK) Logic Programming 218/1

http://cl-informatik.uibk.ac.at

Efficiency of Prolog Programs

Example

sublist(Xs,AXBs) :- suffix(XBs,AXBs), prefix(Xs,XBs).

sublist(Xs,AXBs) :- prefix(AXs,AXBs), suffix(Xs,AXs).

Question

What is better, if we argue wrt a linked-list implementation of cons lists?

Answer

the first alternative:

• consider

sublist([1,2,3,4],[1,2,3,4,1,2,3,4,1,2,3,4,1,2,3,4])

• the 1st clause iterates over the 2nd list to find a suitable suffix

• then iterates over the first list

• no intermediate data structures are created

• in the 2nd clause an auxilliary list is created

GM (Department of Computer Science @ UIBK) Logic Programming 219/1

Efficiency of Prolog Programs

Definition

we say: the first clause doesn’t cons

Observations on Time

• if full unification (unification of two arbitrary terms in goals) is not
employed, reduction of a goal using a clause needs constant time

• that is, it depends only on the program

• hence, if full unification is not employed the number of reductions
asymptotically bounds the runtime

• equivalently the number of unifications (performed and attempted)
asymptotically bounds the runtime

• on the other hand, if unification needs to be taken into account time
complexity analysis is more involved

• in general size of search space and size of input terms needs to be
taken into account

GM (Department of Computer Science @ UIBK) Logic Programming 220/1

Efficiency of Prolog Programs

Howto Improve Performance

Suggestion À

use better algorithms ,

Example

reverse([X|Xs],Zs) :-

reverse(Xs,Ys),

append(Ys,[X],Zs).

reverse([],[]).

Example

reverse(Xs,Ys) :- reverse(Xs,[],Ys).

reverse([X|Xs],Acc,Ys) :-

reverse(Xs,[X|Acc],Ys).

reverse([],Ys,Ys).

GM (Department of Computer Science @ UIBK) Logic Programming 221/1

Transforming Recursion into Iteration

Excursion: Transforming Recursion into Iteration

Definitions
• a Prolog clause is called iterative if

1 it has one recursive call, and
2 zero or more calls to system predicates, before the recursive call

• a Prolog procedure is iterative if it contains only facts and iterative
clauses

Example (Factorial Iterative, Version 1)

factorial(N,F) : − factorial(0,N,1,F).

factorial(I,N,T,F) : −
I < N, I1 is I + 1, T1 is T*I1, factorial(I1,N,T1,F).

factorial(N,N,F,F).

GM (Department of Computer Science @ UIBK) Logic Programming 222/1

Transforming Recursion into Iteration

Example (Factorial Iterative, Version 2)

factorial(N,F) : − factorial(N,1,F).

factorial(N,T,F) : −
N > 0, T1 is T * N, N1 is N-1, factorial(N1,T1,F).

factorial(0,F,F).

Example

between(I,J,I) : − I 6 J.

between(I,J,K) : − I < J, I1 is I+1, between(I1,J,K).

Example

sumlist(Is,Sum) : − sumlist(Is,0,Sum).

sumlist([I|Is],Temp,Sum) : −
Temp1 is Temp + I,sumlist(Is,Temp1,Sum).

sumlist([],Sum,Sum).

GM (Department of Computer Science @ UIBK) Logic Programming 223/1

Transforming Recursion into Iteration

Example

maximum([X|Xs],M) : − maximum(Xs,X,M).

maximum([X|Xs],Y,M) : −
X 6 Y, maximum(Xs,Y,M).

maximum([X|Xs],Y,M) : −
X > Y, maximum(Xs,X,M).

maximum([],M,M).

Example

length([X|Xs],N) : −
N > 0, N1 is N - 1, length(Xs,N1).

length([],0).

length([X|Xs],N) : −
length(Xs,N1), N is N1 + 1.

length([],0).

GM (Department of Computer Science @ UIBK) Logic Programming 224/1

Transforming Recursion into Iteration

Suggestion Á

tuning, via:

1 good goal order

2 elimination of (unwanted) nondeterminism by using explicit
conditions and cuts

3 exploit clause indexing (order arguments suitably)
indexing performs static analysis to detect clauses which are
applicable for reduction

Example

append([X|Xs],Ys,[X|Zs]) :-

append(Xs,Ys,Zs).

append([],Ys,Ys).

By default, SWI-Prolog, as most other implementations,
indexes predicates on their first argument.

GM (Department of Computer Science @ UIBK) Logic Programming 225/1

Tail Recursion Optimisation

Observation
• iterative programs are tail recursive

• sometimes tail recursion in general can be implemented as iteration
which doesn’t require a stack

Definition (tail recursion optimisation)

• consider a generic clause for A

A′ : −B1, . . . ,Bn

such that A and A′ unify with σ

• suppose the goal B1σ, . . . ,Bn−1σ is deterministic

• then goal Bnσ can re-use space for A; may require clause indexing

Definition

clause indexing is used to detect which clauses are applicable for
reduction: 2nd clause in append need only be considered for empty lists

GM (Department of Computer Science @ UIBK) Logic Programming 226/1

Programming tricks

How to Implement Functions

Functions vs Relations
• often, we want to compute functions:

1 addition: N× N→ N
2 sorting: list → list

• in logic programming we specify relations and every function can be
seen as a relation

frel(i1, . . . , in, o1, . . . , om) iff f (i1, . . . , in) = (o1, . . . , om)

• that is, we implement functions f (i1, . . . , in) = (o1, . . . , om) by
relations frel/(n + m)

• result is obtained by query frel(i1, . . . , in,X1, . . . ,Xm)

1 addition: plus(n,m,Z) Z = n + m
2 sorting: sort(list,Xs) Xs = sorted version of list

GM (Department of Computer Science @ UIBK) Logic Programming 227/1

Programming tricks

Function Applications

• function applications harder to write down
• program f (x) = x2 + 7 · (x2 − 5)
• defining fact

f(X,plus(times(X,X), times(7,minus(times(X,X),5)))).

does not work

• solution: store result of each sub-expression in fresh variable

f(X,Y) :- times(X,X,Z), minus(Z,5,V), times(7,V,U),

plus(Z,U,Y).

x2︸︷︷︸
z

+ 7 · (x2︸︷︷︸
z

− 5︸ ︷︷ ︸
v

)

︸ ︷︷ ︸
u︸ ︷︷ ︸

f (x)=y

GM (Department of Computer Science @ UIBK) Logic Programming 228/1

Programming tricks

Simulating Functional Programs

• using technique of previous slide, it is easy to transform first-order
functional programs into logic programs

• remaining difficulty: translating if-then-else

idea: first evaluate condition, and then generate one rule for each
branch

Example (Ackermann function in Haskell)
ack 0 m = m + 1

ack (n+1) m = if m == 0 then ack n 1 else

ack n (ack (n+1) (m-1))

Example (Ackermann function as logic program)
ack(0,M,s(M)).

ack(s(N),M,R) :- =(M,0,B), cond(B,N,M,R).

cond(true,N,M,R) :- ack(N,s(0),R).

cond(false,N,M,R) :- -(M,s(0),U),ack(s(N),U,V),ack(N,V,R).

GM (Department of Computer Science @ UIBK) Logic Programming 229/1

Programming tricks

Evaluating Arithmetic Expressions

• motivation: use arithmetic expressions as in functional programs

• solution: write evaluator eval which computes value of arithmetic
expressions

• afterwards it is very simple to encode functions, e.g.

f (x) = s(x2)− x2

can be programmed as

f(X,Y) :- eval(s(X*X) - X*X, Y).

• evaluator is simple logic program (actually a simple meta interpretor)

eval(0,0).

eval(s(E),s(N)) :- eval(E,N).

eval(E+F,K) :- eval(E,N), eval(F,M), plus(N,M,K).

eval(E-F,K) :- eval(E,N), eval(F,M), plus(M,K,N).

eval(E*F,K) :- eval(E,N), eval(F,M), times(N,M,K).

GM (Department of Computer Science @ UIBK) Logic Programming 230/1

Programming tricks

Example (f(X,Y) :- eval(s(X*X) - X*X, Y).)

f(s(s(0)),Y)

eval(s(s(s(0))*s(s(0))) - s(s(0))*s(s(0)),Y)

eval(s(s(s(0))*s(s(0))),N), eval(s(s(0))*s(s(0)),M), plus(M,Y,N)

eval(s(s(0))*s(s(0)),N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))

N = s(N1)

eval(s(s(0)),N2), eval(s(s(0)),N3), times(N2,N3,N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))

eval(s(0),N4), eval(s(s(0)),N3), times(s(N4),N3,N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))

N2 = s(N4)

eval(0,N5), eval(s(s(0)),N3), times(s(s(N5)),N3,N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))

N4 = s(N5)

eval(s(s(0)),N3), times(s(s(0)),N3,N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))

N5 = 0

times(s(s(0)),s(s(0)),N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))

N3 = s(s(0))

eval(s(s(0))*s(s(0)),M), plus(M,Y,s(s(s(s(s(0))))))

N1 = s(s(s(s(0))))

plus(s(s(s(s(0)))),Y,s(s(s(s(s(0))))))

M = s(s(s(s(0))))

2
Y = s(0)

GM (Department of Computer Science @ UIBK) Logic Programming 231/1

Programming tricks

Speeding up evaluation using “let”

• consider sub-expression X*X

• solution: f (x) = (let x2 = x2 in s(x2)− x2)

• adding support for let in evaluator

• let(X,E,F) encodes let x = e in f

eval(0,0).

eval(s(E),s(N)) :- eval(E,N).

eval(E+F,K) :- eval(E,N), eval(F,M), plus(N,M,K).

eval(E-F,K) :- eval(E,N), eval(F,M), plus(M,K,N).

eval(E*F,K) :- eval(E,N), eval(F,M), times(N,M,K).

eval(let(X,E,F),K) :- eval(E,N), X = N, eval(F,K).

Example

f(X,Y) :- eval(s(X*X) - X*X, Y).

f(X,Y) :- eval(let(X2, X*X, s(X2) - X2), Y).

GM (Department of Computer Science @ UIBK) Logic Programming 232/1

Programming tricks

Example (f(X,Y) :- eval(let(X2,X*X,s(X2)-X2), Y).)

f(s(s(0)),Y)

eval(let(X2,s(s(0))*s(s(0)),s(X2)-X2),Y)

eval(s(s(0))*s(s(0)),N), X2 = N, eval(s(X2)-X2,Y)

X2 = s(s(s(s(0)))), eval(s(X2)-X2,Y)

N = s(s(s(s(0))))

eval(s(s(s(s(s(0)))))-s(s(s(s(0)))),Y)

X2 = s(s(s(s(0))))

eval(s(s(s(s(s(0))))),N), eval(s(s(s(s(0)))),M), plus(M,Y,N)

eval(s(s(s(s(0)))),M), plus(M,Y,s(s(s(s(s(0))))))

N = s(s(s(s(s(0)))))

plus(s(s(s(s(0)))),Y,s(s(s(s(s(0))))))

M = s(s(s(s(0))))

2
Y = s(0)

GM (Department of Computer Science @ UIBK) Logic Programming 233/1

Programming tricks

Speeding up “let” even further

• detected problems:

1 after computing x2, result is evaluated again
eval(s(s(s(s(0)))),M)

2 eval also steps into initial input

• solution: add new constructor num which states that the argument
is a number, and hence, does not have to be evaluated

eval(0,0).

eval(s(E),s(N)) :- eval(E,N).

eval(E+F,K) :- eval(E,N), eval(F,M), plus(N,M,K).

eval(E-F,K) :- eval(E,N), eval(F,M), plus(M,K,N).

eval(E*F,K) :- eval(E,N), eval(F,M), times(N,M,K).

eval(num(N),N).

eval(let(X,E,F),K) :- eval(E,N),X = num(N), eval(F,K).

GM (Department of Computer Science @ UIBK) Logic Programming 234/1

Programming tricks

Example (f(X,Y):-GX=num(X),eval(let(X2,GX*GX,s(X2)-X2),Y))

f(s(s(0)),Y)

GX = num(s(s(0))), eval(let(X2,GX*GX,s(X2)-X2),Y)

eval(let(X2,num(s(s(0)))*num(s(s(0))),s(X2)-X2),Y)
GX = num(s(s(0)))

eval(num(s(s(0)))*num(s(s(0))),N), X2 = num(N), eval(s(X2)-X2,Y)

eval(num(s(s(0)),N1), eval(num(s(s(0)),N2), times(N1,N2,N), X2 = num(N), eval(s(X2)-X2,Y)

eval(num(s(s(0)),N2), times(s(s(0)),N2,N), X2 = num(N), eval(s(X2)-X2,Y)
N1 = s(s(0))

times(s(s(0)),s(s(0)),N), X2 = num(N), eval(s(X2)-X2,Y)
N2 = s(s(0))

X2 = num(s(s(s(s(0))))), eval(s(X2)-X2,Y)
N = s(s(s(s(0))))

eval(s(num(s(s(s(s(0))))))-num(s(s(s(s(0))))),Y)
X2 = num(s(s(s(s(0)))))

eval(s(num(s(s(s(s(0)))))),N), eval(num(s(s(s(s(0))))),M), plus(M,Y,N)

eval(num(s(s(s(s(0))))),N1), eval(num(s(s(s(s(0))))),M), plus(M,Y,s(N1))
N = s(N1)

eval(num(s(s(s(s(0))))),M), plus(M,Y,s(s(s(s(s(0))))))
N1 = s(s(s(s(0))))

plus(s(s(s(s(0)))),Y,s(s(s(s(s(0))))))
M = s(s(s(s(0))))

2
Y = s(0)

GM (Department of Computer Science @ UIBK) Logic Programming 235/1

