Logic Programming

Georg Moser

Department of Computer Science @ UIBK

Winter 2016

Outine
Outline of the Lecture
Monotone Logic Programs
introduction, basic constructs, logic foundations, unification, semantics, database and recursive programming, termination, complexity

Incomplete Data Structures and Constraints
incomplete data structures, definite clause grammars, constraint logic programming, answer set programming

Full Prolog

semantics (revisted), cuts, correctness proofs, meta-logical predicates, pragmatics, efficient programs, meta programming

Summary of Last Lecture

```
Example (meta-variable facility)
X; Y : - X.
X; Y:-Y.
```

Definitions (second-order programming)

- the predicate bagof(Template, Goal, Bag) unifies Bag with the alternatives of Template that meet Goal
- if Goal has free variables besides the one sharing with Template bagof will backtrack
- fails if Goal has no solutions
- construct Var^ Goal tells bagof to existentially quantify Var
- the predicate setof(Template, Goal,Bag) is similar to bagof but sorts the obtained multi-set (bag) and removed duplicates

Efficiency of Prolog Programs

Time and Space Complexity

Definition

the time complexity of a (Prolog) program expresses the runtime of a program as a function of the size of its input

Definition

the space complexity of a (Prolog) program expresses the memory requirement of a program as a function of the size of its input

Observations on Space

- space usage depends on the depth of recursion
- space usage depends also on the number of data structures created
- the former may be a major problem: stack overflow

Example

sublist(Xs,AXBs) :- suffix(XBs,AXBs), prefix(Xs,XBs).
sublist(Xs,AXBs) :- prefix(AXs,AXBs), suffix(Xs,AXs)

Question
What is better, if we argue wrt a linked-list implementation of cons lists?

Answer
the first alternative:

- consider
sublist([1, 2, 3, 4], $[1,2,3,4,1,2,3,4,1,2,3,4,1,2,3,4])$
- the 1 st clause iterates over the 2 nd list to find a suitable suffix
- then iterates over the first list
- no intermediate data structures are created
- in the 2 nd clause an auxilliary list is created

Efficiency of Prolog Programs

Howto Improve Performance

Suggestion (1)
 use better algorithms \odot

Example

```
reverse([X|Xs],Zs) :-
```

 reverse(Xs,Ys),
 append (Ys, \([\mathrm{X}], \mathrm{Zs}\)).
 reverse([], []).

```
Example
reverse(Xs,Ys) :- reverse(Xs,[],Ys).
reverse([X|Xs],Acc,Ys) :-
    reverse(Xs,[X|Acc],Ys).
reverse([],Ys,Ys).
```

Example (Factorial Iterative, Version 2)
factorial(N,F) :- factorial(N, 1, F).
factorial(N,T,F) :-
$\mathrm{N}>0$, T 1 is $\mathrm{T} * \mathrm{~N}, \mathrm{~N} 1$ is $\mathrm{N}-1$, factorial ($\mathrm{N} 1, \mathrm{~T} 1, \mathrm{~F}$). factorial ($0, F, F$).

Example

```
between(I,J,I) : - I \leqslant J.
between(I,J,K):- I < J, I1 is I+1, between(I1,J,K).
```


Example

sumlist (Is, Sum) : - sumlist(Is,0,Sum).
sumlist ([I\|Is],Temp, Sum) : -
Temp1 is Temp + I, sumlist(Is, Temp1, Sum).
sumlist([], Sum, Sum).

Suggestion (2)
tuning, via:
1 good goal order
2 elimination of (unwanted) nondeterminism by using explicit conditions and cuts
3 exploit clause indexing (order arguments suitably) indexing performs static analysis to detect clauses which are applicable for reduction

Example

```
append([X|Xs],Ys,[X|Zs]) :-
```

 append (Xs,Ys,Zs).
 append([],Ys,Ys).

By default, SWI-Prolog, as most other implementations, indexes predicates on their first argument.

Example

maximum([X|Xs],M):- maximum(Xs,X,M).
maximum([X|Xs],Y,M) :-
$\mathrm{X} \leqslant \mathrm{Y}, \operatorname{maximum}(\mathrm{Xs}, \mathrm{Y}, \mathrm{M})$.
maximum([X|Xs],Y,M):-
$\mathrm{X}>\mathrm{Y}, \operatorname{maximum}(\mathrm{Xs}, \mathrm{X}, \mathrm{M})$.
maximum ([], M, M).

Example
length ([X|Xs],N) :-
$\mathrm{N}>0$, N 1 is $\mathrm{N}-1$, length $(\mathrm{Xs}, \mathrm{N} 1)$.
length ([],0).
length ([X|Xs],N) :-
length $(\mathrm{Xs}, \mathrm{N} 1), \mathrm{N}$ is $\mathrm{N} 1+1$.
length ([],0).

Tail Recursion Optimisation

Observation

- iterative programs are tail recursive
- sometimes tail recursion in general can be implemented as iteration which doesn't require a stack

Definition (tail recursion optimisation)

- consider a generic clause for A

$$
A^{\prime}:-B_{1}, \ldots, B_{n}
$$

such that A and A^{\prime} unify with σ

- suppose the goal $B_{1} \sigma, \ldots, B_{n-1} \sigma$ is deterministic
- then goal $B_{n} \sigma$ can re-use space for A; may require clause indexing

Definition

clause indexing is used to detect which clauses are applicable for reduction: 2nd clause in append need only be considered for empty lists

How to Implement Functions

Functions vs Relations

- often, we want to compute functions:

1 addition: $\mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$
2 sorting: list \rightarrow list

- in logic programming we specify relations and every function can be seen as a relation

$$
f_{r e l}\left(i_{1}, \ldots, i_{n}, o_{1}, \ldots, o_{m}\right) \text { iff } f\left(i_{1}, \ldots, i_{n}\right)=\left(o_{1}, \ldots, o_{m}\right)
$$

- that is, we implement functions $f\left(i_{1}, \ldots, i_{n}\right)=\left(o_{1}, \ldots, o_{m}\right)$ by relations $f_{\text {rel }} /(n+m)$
- result is obtained by query $f_{\text {rel }}\left(i_{1}, \ldots, i_{n}, X_{1}, \ldots, X_{m}\right)$

1 addition: plus $(n, m, Z) \quad Z=n+m$
2 sorting: $\operatorname{sort}($ list,$X s) \quad X s=$ sorted version of list

Programming tricks

Simulating Functional Programs

- using technique of previous slide, it is easy to transform first-order functional programs into logic programs
- remaining difficulty: translating if-then-else
idea: first evaluate condition, and then generate one rule for each branch

```
Example (Ackermann function in Haskell)
ack 0 m = m + 1
ack (n+1) m = if m == 0 then ack n 1 else
    ack n (ack (n+1) (m-1))
```

Example (Ackermann function as logic program) $\operatorname{ack}(0, M, \mathrm{~s}(\mathrm{M}))$.
$\operatorname{ack}(s(N), M, R):-=(M, O, B), \quad \operatorname{cond}(B, N, M, R)$.
cond(true, $N, M, R)$:- $\operatorname{ack}(N, s(0), R)$.
cond(false,N,M,R) :- -(M,s(0),U),ack(s(N),U,V),ack(N,V,R).

Function Applications

- function applications harder to write down
- program $f(x)=x^{2}+7 \cdot\left(x^{2}-5\right)$
- defining fact
$\mathrm{f}(\mathrm{X}, \mathrm{pl}$ us(times (X, X), times(7,minus(times $(X, X), 5))$). does not work
- solution: store result of each sub-expression in fresh variable $\mathrm{f}(\mathrm{X}, \mathrm{Y})$:- times $(\mathrm{X}, \mathrm{X}, \mathrm{Z})$, minus $(\mathrm{Z}, 5, \mathrm{~V})$, times $(7, \mathrm{~V}, \mathrm{U})$, plus(Z,U,Y).

Evaluating Arithmetic Expressions

- motivation: use arithmetic expressions as in functional programs
- solution: write evaluator eval which computes value of arithmetic expressions
- afterwards it is very simple to encode functions, e.g.

$$
f(x)=s\left(x^{2}\right)-x^{2}
$$

can be programmed as
$f(X, Y):-\operatorname{eval}(s(X * X)-X * X, Y)$.

- evaluator is simple logic program (actually a simple meta interpretor) eval $(0,0)$.
eval(s(E),s(N)) :- eval(E,N). eval(E+F,K) :- eval(E,N), eval(F,M), plus(N,M,K). eval(E-F,K) :- eval(E,N), eval(F,M), plus(M,K,N). eval(E*F,K) :- eval(E,N), eval(F,M), times(N,M,K).

Example (f(X,Y) :- eval ($\mathrm{s}(\mathrm{X} * \mathrm{X})-\mathrm{X} * \mathrm{X}, \mathrm{Y})$.

$$
\begin{gathered}
\square \\
y=s(0) \|
\end{gathered}
$$

plus(s(s(s(s(0)))),Y,s(s(s(s(s(0))))) $M=\mathrm{s}(\mathrm{s}(\mathrm{s}(\sin (0)))) \|$
eval(s(s(0))*s(s(0)),M), plus(M,Y,s(s(s(s(s(0)))))) $\left.{ }^{\mathrm{N} 1}=\mathrm{s}(\mathrm{s}(\mathrm{s}(\mathrm{s}(0))))\right)^{\|}$
times(s(s(0)),s(s(0)),N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1)) ${ }^{\text {N3 }}=\mathrm{s}(\mathrm{s}(0))$ ||
eval(s(s(0)),N3), times(s(s(0)),N3,N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1)) N5 $=01$
eval ($0, \mathrm{~N} 5$), $\operatorname{eval}(\mathrm{s}(\mathrm{s}(0)), \mathrm{N} 3), \operatorname{times}(\mathrm{s}(\mathrm{s}(\mathrm{N} 5)), \mathrm{N} 3, \mathrm{~N} 1), \operatorname{eval}(\mathrm{s}(\mathrm{s}(0)) * \mathrm{~s}(\mathrm{~s}(0)), \mathrm{M}), \operatorname{plus}(\mathrm{M}, \mathrm{Y}, \mathrm{s}(\mathrm{N} 1))$ $\mathrm{N4}=\mathrm{s}(\mathrm{NH})$ |
$\operatorname{eval}(\mathrm{s}(0), \mathrm{N} 4), \operatorname{eval}(\mathrm{s}(\mathrm{s}(0)), \mathrm{N} 3), \operatorname{times}(\mathrm{s}(\mathrm{N} 4), \mathrm{N} 3, \mathrm{~N} 1), \operatorname{eval}(\mathrm{s}(\mathrm{s}(0)) * \mathrm{~s}(\mathrm{~s}(0)), \mathrm{M}), \mathrm{plus}(\mathrm{M}, \mathrm{Y}, \mathrm{s}(\mathrm{N} 1))$ $\mathrm{N} 2 \mathrm{~s}(\mathrm{~N} 4)$ ।
eval(s(s(0)),N2), eval(s(s(0)),N3), times(N2,N3,N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
eval(s(s(0))*s(s(0)),N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1)) $\mathrm{N}=\mathrm{s}(\mathrm{N} 1) \mid$
eval(s(s(s(0))*s(s(0))),N), eval(s(s(0))*s(s(0)),M), plus(M,Y,N)

$$
\operatorname{eval}(\mathrm{s}(\mathrm{~s}(\mathrm{~s}(0)) * \mathrm{~s}(\mathrm{~s}(0)))-\mathrm{s}(\mathrm{~s}(0)) * \mathrm{~s}(\mathrm{~s}(0)), \mathrm{Y})
$$

$$
\mathrm{f}(\mathrm{~s}(\mathrm{~s}(0)), \mathrm{y})
$$

```
Example (f(X,Y) :- eval(let(X2,X*X,s(X2)-X2), Y).)
            y=s(0)|
        plus(s(s(s(s(0)))),Y,s(s(s(s(s(0))))))
        M=s(s(s(s(0))))|
    eval(s(s(s(s(0)))),M), plus(M,Y,s(s(s(s(s(0))))))
        N=s(s(s(s(s(0)))))|
eval(s(s(s(s(s(0))))),N), eval(s(s(s(s(0)))),M), plus(M,Y,N)
    eval(s(s(s(s(s(0)))))-s(s(s(s(0)))),Y)
        x2 =s(s(s(s(0))))
        X2 = s(s(s(s(0)))), eval(s(X2)-X2,Y)
        N = s(s(s(s(0))))|
    eval(s(s(0))*s(s(0)),N), X2 = N, eval(s(X2)-X2,Y)
        |
        eval(let(X2,s(s(0))*s(s(0)),s(X2)-X2),Y)
            |
        f(s(s(0)),Y)
```

Speeding up evaluation using "let"

- consider sub-expression $\mathrm{X} * \mathrm{X}$
- solution: $f(x)=\left(\right.$ let $x 2=x^{2}$ in $\left.s(x 2)-x 2\right)$
- adding support for let in evaluator
- let (X,E,F) encodes let $x=e$ in f eval $(0,0)$.
eval (s(E),s(N)) :- eval (E,N).
eval (E+F,K) :-eval(E,N), eval(F,M), plus(N,M,K).
eval (E-F,K) :- eval (E,N), eval (F,M), plus (M,K,N).
$\operatorname{eval}(E * F, K):-\operatorname{eval}(E, N)$, eval(F,M), times (N, M, K). eval(let $(X, E, F), K):-\operatorname{eval}(E, N), X=N$, eval (F, K).

Example

```
f(X,Y) :- eval(s(X*X) - X*X, Y).
f(X,Y) :- eval(let(X2, X*X, s(X2) - X2), Y).
```

Speeding up "let" even further

- detected problems:

1 after computing x^{2}, result is evaluated again eval(s(s(s(s(0)))),M)
2 eval also steps into initial input

- solution: add new constructor num which states that the argument is a number, and hence, does not have to be evaluated
eval $(0,0)$.
eval(s(E),s(N)) :- eval(E,N).
eval(E+F,K) :- eval(E,N), eval(F,M), plus(N,M,K).
eval(E-F,K) :- eval(E,N), eval(F,M), plus(M,K,N).
eval(E*F,K) :- eval(E,N), eval(F,M), times(N,M,K).
eval(num (N),N).
eval(let $(X, E, F), K):-\operatorname{eval}(E, N), X=\operatorname{num}(N), \operatorname{eval}(F, K)$

Example ($f(\mathrm{X}, \mathrm{Y}):-\mathrm{GX}=\mathrm{num}(\mathrm{X})$, eval (1et (X2,GX*GX,s(X2)-X2),Y))

$$
\begin{array}{r}
\square=s(0) \|
\end{array}
$$

plus(s(s(s(s(0)))), $\mathrm{Y}, \mathrm{s}(\mathrm{s}(\mathrm{s}(\mathrm{s}(\mathrm{s}(0))))))$
eval(num(s(s(s(s(0))))), M), plus(M,Y,s(s(s(s(s(0))))))

$\operatorname{eval}(\mathrm{s}(\operatorname{num}(\mathrm{s}(\mathrm{s}(\mathrm{s}(\mathrm{s}(0))))))-\mathrm{num}(\mathrm{s}(\mathrm{s}(\mathrm{s}(\mathrm{s}(0))))), \mathrm{Y})$
$\mathrm{x} 2=\operatorname{num}(\mathrm{s}(\mathrm{s}(\mathrm{s}(\mathrm{s}(0))))), \operatorname{eval}(\mathrm{s}(\mathrm{X} 2)-\mathrm{X} 2, \mathrm{Y})$
imes(s(s(0)), s(s(0)),N), X2 = num(N), eval(s(X2)-X2,Y)
eval (num(s(s(0)),N2), $\begin{gathered}\mathrm{N} 2=\mathrm{s}(\mathrm{s}(\mathrm{s}(\mathrm{O}) \mathrm{s}(\mathrm{s}(\mathrm{s}(0)), \mathrm{N} 2, \mathrm{~N}), \mathrm{X} 2=\operatorname{num}(\mathrm{N}), \operatorname{eval}(\mathrm{s}(\mathrm{X} 2)-\mathrm{X} 2, \mathrm{Y})\end{gathered}$
 $\operatorname{eval}(\operatorname{num}(\mathrm{s}(\mathrm{s}(0))) * n \mathrm{num}(\mathrm{s}(\mathrm{s}(0))), \mathrm{N}), \mathrm{X} 2=\operatorname{num}(\mathrm{N}), \operatorname{eval}(\mathrm{s}(\mathrm{X} 2)-\mathrm{X} 2, \mathrm{Y})$
$\operatorname{eval}(\operatorname{let}(X 2, \operatorname{num}(s(s(0))) * \operatorname{num}(s(s(0))), s(X 2)-X 2), Y)$
$G X=\operatorname{num}(s(s(0))), \operatorname{eval}(\operatorname{let}(X 2, G X * G X, s(X 2)-X 2), Y)$ $\stackrel{1}{f(s(s)}), \mathrm{Y})$

