ogic

Logic Programming

Georg Moser

Department of Computer Science @ UIBK

Winter 2016

[Quthoe]
Outline of the Lecture

introduction, basic constructs, logic foundations, unification, semantics

Monotone Logic Programs
database and recursive programming, termination, complexity }

Incomplete Data Structures and Constraints

incomplete data structures, definite clause grammars, constraint logic pro-
gramming, answer set programming

semantics (revisted), cuts, correctness proofs, meta-logical predicates,
pragmatics, efficient programs, meta programming

Full Prolog }

GM (Department of Computer Science @ Ul Logic Programming 217/1

Summary of Last Lecture

Example (meta-variable facility)
X; Y- X.
X; Y :— Y.

Definitions (second-order programming)

e the predicate bagof(Template, Goal,Bag) unifies Bag with the
alternatives of Template that meet Goal

e if Goal has free variables besides the one sharing with Template
bagof will backtrack

e fails if Goal has no solutions
e construct Var” Goal tells bagof to existentially quantify Var

e the predicate setof(Template, Goal,Bag) is similar to bagof but sorts
the obtained multi-set (bag) and removed duplicates

GM (Department of Computer Science @ Ul Logic Programming

Time and Space Complexity

Definition
the time complexity of a (Prolog) program expresses the runtime of a
program as a function of the size of its input

Definition
the space complexity of a (Prolog) program expresses the memory
requirement of a program as a function of the size of its input

Observations on Space
e space usage depends on the depth of recursion
e space usage depends also on the number of data structures created

e the former may be a major problem: stack overflow

GM (Department of Computer Science @ Ul Logic Programming 218/1

http://cl-informatik.uibk.ac.at

Efficiency of Prolog Programs

Example

sublist(Xs,AXBs) :- suffix(XBs,AXBs), prefix(Xs,XBs).
sublist(Xs,AXBs) :- prefix(AXs,AXBs), suffix(Xs,AXs).

Question
What is better, if we argue wrt a linked-list implementation of cons lists?

Answer
the first alternative:
e consider
sublist([1,2,3,4],[1,2,3,4,1,2,3,4,1,2,3,4,1,2,3,41)
the 1st clause iterates over the 2nd list to find a suitable suffix

then iterates over the first list

no intermediate data structures are created

in the 2nd clause an auxilliary list is created

GM (Department of Computer Science @ Ul Logic Programming

Efficiency of Prolog Programs

Definition
we say: the first clause doesn't cons

Observations on Time

e if full unification (unification of two arbitrary terms in goals) is not
employed, reduction of a goal using a clause needs constant time

e that is, it depends only on the program

e hence, if full unification is not employed the number of reductions
asymptotically bounds the runtime

e equivalently the number of unifications (performed and attempted)
asymptotically bounds the runtime

e on the other hand, if unification needs to be taken into account time
complexity analysis is more involved

e in general size of search space and size of input terms needs to be
taken into account

GM (Department of Computer Science @ Ul Logic Programming

Efficiency of Prolog Programs

Howto Improve Performance
Suggestion @

use better algorithms ©

Example

reverse([X|Xs],Zs) :-
reverse(Xs,Ys),
append(Ys, [X],Zs).

reverse([],[1).

Example

reverse(Xs,Ys) :- reverse(Xs,[],Ys).

reverse([X|Xs],Acc,Ys) :-
reverse(Xs, [X|Accl,Ys).

reverse([],Ys,¥s).

Transforming Recursion into lteration

Excursion: Transforming Recursion into Iteration

Definitions
e a Prolog clause is called iterative if

it has one recursive call, and
zero or more calls to system predicates, before the recursive call

e a Prolog procedure is iterative if it contains only facts and iterative
clauses

Example (Factorial Iterative, Version 1)
factorial(N,F) : — factorial(O,N,1,F).

factorial(I,N,T,F) : —
I <N, I1is I + 1, T1 is TxI1, factorial(I1,N,T1,F).
factorial(N,N,F,F).

GM (Department of Computer Science @ Ul Logic Programming

GM (Department of Computer Science @ Ul Logic Programming

Transforming Recursion into lteration Transforming Recursion into lteration

Example (Factorial Iterative, Version 2)

Example
factorial(N,F) : — factorial(N,1,F). maximun([XXs],M) : — maximum(Xs,X,M) .
factorial(N,T,F) : — .)
N >0, T1 is T * N, N1 is N-1, factorial(Ni,T1,F). maximum((X[Xs],¥,M) :
factorial(0.F,F) X <Y, maximum(Xs,Y,M).
S maximum([X|Xs],Y,M) : —
X > Y, maximum(Xs,X,M).
Example maximum([],M,M).
between(I,J,I) :— I < J.
between(I,J,K) : — I < J, I1 is I+1, between(I1l,J,K). Example

length([X[Xs],N) : —

Example N >0, N1 is N - 1, length(Xs,N1).

length([],0).

sumlist (Is,Sum) : sumlist (Is,0,Sum). length([X|Xs],N) : —

sumlist([I|Is],Temp,Sum) : — length(Xs,N1), N is N1 + 1.
Templ is Temp + I,sumlist(Is,Templ,Sum). length([],0).

sumlist ([],Sum,Sum).

GM (Department of Computer Science @ Ul Logic Programming

GM (Department of Computer Science @ Ul Logic Programming

Suggestion @ Observation
tuning, via: e iterative programs are tail recursive
good goal order e sometimes tail recursion in general can be implemented as iteration
elimination of (unwanted) nondeterminism by using explicit which doesn't require a stack
conditions and cuts o . . -
exploit clause indexing (order arguments suitably) Definition (tail recursion optimisation)
indexing performs static analysis to detect clauses which are e consider a generic clause for A
applicable for reduction A _By....B,
Example such that A and A’ unify with o
e suppose the goal Bio, ..., B,_10 is deterministic
append ([X|Xs],Ys, [X]Zs]) :- PP & 195+ Bn—1 _ _ _
append (Xs,Ys,Zs) . e then goal B,o can re-use space for A; may require clause indexing

append([],Ys,Ys).

Definition
By default, SWI-Prolog, as most other implementations,

clause indexing is used to detect which clauses are applicable for
indexes predicates on their first argument.

reduction: 2nd clause in append need only be considered for empty lists

GM (Department of Computer Science @ Ul Logic Programming

GM (Department of Computer Science @ Ul Logic Programming

Programming tricks

How to Implement Functions

Functions vs Relations
e often, we want to compute functions:
addition: N x N — N
sorting: list — list
e in logic programming we specify relations and every function can be
seen as a relation

ﬁe/(il,...,i,,,ol,...,om) ifff(il,...,in):(01,...,Om)

e that is, we implement functions f(i,...,in) = (01,...,0m) by
relations f,e/(n+ m)
e result is obtained by query fre/(i1, ..., fin, X1, ..., Xm)
addition: plus(n, m, Z) Z=n+m
sorting: sort(list, Xs) Xs = sorted version of list

GM (Department of Computer Science @ Ul Logic Programming

Programming tricks

Simulating Functional Programs
e using technique of previous slide, it is easy to transform first-order
functional programs into logic programs
e remaining difficulty: translating if-then-else

idea: first evaluate condition, and then generate one rule for each
branch

Example (Ackermann function in Haskell)

ack Om=m+ 1

ack (n+1) m = if m == 0 then ack n 1 else
ack n (ack (n+1) (m-1))

Example (Ackermann function as logic program)

ack(0,M,s(M)).

ack(s(N),M,R) :- =(M,0,B), cond(B,N,M,R).

cond(true,N,M,R) :- ack(N,s(0),R).

cond(false,N,M,R) :- -(M,s(0),U),ack(s(N),U,V),ack(N,V,R).

GM (Department of Computer Science @ Ul Logic Programming

Programming tricks

Function Applications
e function applications harder to write down
e program f(x) = x>+ 7 (x> — b)
e defining fact
f(X,plus(times(X,X), times(7,minus(times(X,X),5)))).
does not work
e solution: store result of each sub-expression in fresh variable

£f(X,Y) :- times(X,X,Z), minus(Z,5,V), times(7,V,U),

plus(Z,U,Y).
2 2
x° +7-(.x 5)
z z
v
S —
- u e
f(x)=y

GM (Department of Computer Science @ Ul Logic Programming

Programming tricks

Evaluating Arithmetic Expressions
e motivation: use arithmetic expressions as in functional programs

e solution: write evaluator eval which computes value of arithmetic
expressions

e afterwards it is very simple to encode functions, e.g.
f(x) = s(x?) — x

can be programmed as
f(X,Y) :- eval(s(X*X) - X*X, Y).
e evaluator is simple logic program (actually a simple meta interpretor)
eval(0,0).
eval(s(E),s(N)) :- eval(E,N).
eval (E+F,K) :- eval(E,N), eval(F,M), plus(N,M,K).
eval (E-F,K) :- eval(E,N), eval(F,M), plus(M,K,N).
eval (ExF,K) :- eval(E,N), eval(F,M), times(N,M,K).

GM (Department of Computer Science @ Ul Logic Programming 230/1

Programming tricks

Example (£(X,Y) :- eval(s(X*X) - X*X, Y).)

[m]
¥ =50 |
plus(s(s(s(s(0)))),Y,s(s(s(s(s(0))))))
M= s(s(s(s(0))) ||
eval(s(s(0))*s(s(0)),M), plus(M,Y,s(s(s(s(s(0))))))
N1 = s(s(s(s(0))) ||
times(s(s(0)),s(s(0)),N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
N3 = s(s(0)) ||
eval(s(s(0)),N3), times(s(s(0)),N3,N1), eval(s(s(0))*s(s(0)),M, plus(M,Y,s(N1))

Ns =0 |

eval(0,N5), eval(s(s(0)),N3), times(s(s(N5)),N3,N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
N4 = sus) |

eval(s(0),N4), eval(s(s(0)),N3), times(s(N4),N3,N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
N2 = s(N4) |

eval(s(s(0)),N2), eval(s(s(0)),N3), times(N2,N3,N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
I

eval(s(s(0))*s(s(0)),N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
N = s |
eval(s(s(s(0))*s(s(0))),N), eval(s(s(0))*s(s(0)),M), plus(M,Y,N)
|
eval(s(s(s(0))*s(s(0))) - s(s(0))*s(s(0)),Y)
\
£(s(s(0)),Y)

GM (Department of Computer Science @ Ul Logic Programming

Programming tricks

Example (£(X,Y) :- eval(let(X2,X*X,s(X2)-X2), Y).)

O
Y = s(0) ”
plus(s(s(s(s(0)))),Y,s(s(s(s(s(0))))))
M = s(s(s(s(00))) ||
eval(s(s(s(s(0)))),M), plus(M,Y,s(s(s(s(s(0))))))
N = s(s(s(s(s(0))N |
eval(s(s(s(s(s(0))))),N), eval(s(s(s(s(0)))),M), plus(M,Y,N)
\
eval(s(s(s(s(s(0)))))-s(s(s(s(0)))),Y)
X2 = s(s(s(s(0)))) |
X2 = s(s(s(s(0)))), eval(s(X2)-X2,Y)

N = s(s(s(s(0))) |
eval(s(s(0))*s(s(0)),N), X2 = N, eval(s(X2)-X2,Y)
\
eval (let(X2,s(s(0))*s(s(0)),s(X2)-X2),Y)

\
£(s(s(0)),Y)

GM (Department of Computer Science @ Ul Logic Programming 233/1

Programming tricks

Speeding up evaluation using “let”
e consider sub-expression X*X
solution: f(x) = (let x2 = x? in s(x2) — x2)
adding support for let in evaluator
let(X,E,F) encodes let x =e in f
eval(0,0).
eval(s(E),s(N)) :- eval(E,N).
eval (E+F,K) :- eval(E,N), eval(F,M), plus(N,M,K).
eval (E-F,K) :- eval(E,N), eval(F,M), plus(M,K,N).
eval (ExF,K) :- eval(E,N), eval(F,M), times(N,M,K).
eval (let(X,E,F),K) :- eval(E,N), X = N, eval(F,K).

Example

£f(X,Y) :- eval(s(X*X) - XxX, Y).
f(X,Y) :- eval(let(X2, X*X, s(X2) - X2), Y).

GM (Department of Computer Science @ Ul Logic Programming

Programming tricks

Speeding up “let” even further

e detected problems:
after computing x2, result is evaluated again
eval(s(s(s(s(0)))),M)
eval also steps into initial input
e solution: add new constructor num which states that the argument
is a number, and hence, does not have to be evaluated

eval(0,0).

eval(s(E),s(N)) :- eval(E,N).

eval (E+F,K) :- eval(E,N), eval(F,M), plus(N,M,K).

eval (E-F,K) eval(E,N), eval(F,M), plus(M,K,N).

eval (ExF,K) :- eval(E,N), eval(F,M), times(N,M,K).
eval (num(N) ,N) .

eval (let(X,E,F),K) :- eval(E,N),X = num(N), eval(F,K).

GM (Department of Computer Science @ Ul Logic Programming 234/1

Programming tricks

Example (£(X,Y) :-GX=num(X) ,eval (let (X2,GX*GX,s (X2)-X2),Y))

a
Y =50 ||
plus(s(s(s(s(0)))),Y,s(s(s(s(s(0))))))
M = s(s(s(s(0)))) |
eval (num(s(s(s(s(0))))),M), plus(M,Y,s(s(s(s(s(0))))))
N1 = s(s(s(s(0)))) |
eval(num(s(s(s(s(0))))),N1), eval(num(s(s(s(s(0))))),M), plus(M,Y,s(N1))
N = s |
eval(s(nun(s(s(s(s(0)))))),N), eval(num(s(s(s(s(0))))),M), plus(M,Y,N)

|

eval (s (num(s (s (s(s(0))))))-num(s (s(s(s(0))))),Y)
X2 = num(s(s(s(s(0))))) |

X2 = num(s(s(s(s(0))))), eval(s(X2)-X2,Y)
N = s(s(s(s0)) ||
times(s(s(0)),s(s(0)),N), X2 = num(N), eval(s(X2)-X2,Y)
N2 = s(s(0) |
eval (num(s(s(0)),N2), times(s(s(0)),N2,N), X2 = num(N), eval(s(X2)-X2,Y)
N1 = s(s(0)) |
eval (num(s(s(0)),N1), eval(num(s(s(0)),N2), times(N1,N2,N), X2 = num(N), eval(s(X2)-X2,Y)
|
eval (num(s(s(0)))*num(s(s(0))),N), X2 = num(N), eval(s(X2)-X2,Y)

|

eval(let(X2,num(s(s(0)))*num(s(s(0))),s(X2)-X2),Y)
GX = num(s(s(0))) |

GX = num(s(s(0))), eval(let(X2,GX*GX,s(X2)-X2),Y)

|
£(s(s(0)),Y)

GM (Department of Computer Science @ Ul Logic Programming PXLYAN

