ogic

Logic Programming

Georg Moser

Department of Computer Science @ UIBK

Winter 2016

http://cl-informatik.uibk.ac.at

Summary of Last Lecture

Definitions

e a Prolog clause is called iterative if
it has one recursive call, and
zero or more calls to system predicates, before the recursive call

e a Prolog procedure is iterative if it contains only facts and iterative
clauses

Observation
e iterative programs are tail recursive

e sometimes tail recursion in general can be implemented as iteration
which doesn’t require a stack

Example

built_in (+,2).
user_def(fib ,1).

— eval(fib(13),N), N=233.

GM (Department of Computer Science @ Ul Logic Programming

Outline of the Lecture

Monotone Logic Programs

introduction, basic constructs, logic foundations, unification, semantics,
database and recursive programming, termination, complexity
Incomplete Data Structures and Constraints

incomplete data structures, definite clause grammars, constraint logic pro-
gramming, answer set programming

Full Prolog

semantics (revisted), cuts, correctness proofs, meta-logical predicates,
nondeterministic programming, pragmatics, efficient programs, meta pro-
gramming

GM (Department of Computer Science @ Ul Logic Programming

Outline of the Lecture

Monotone Logic Programs

introduction, basic constructs, logic foundations, unification, semantics,
database and recursive programming, termination, complexity
Incomplete Data Structures and Constraints

incomplete data structures, definite clause grammars, constraint logic pro-
gramming, answer set programming

Full Prolog

semantics (revisted), cuts, correctness proofs, meta-logical predicates,
nondeterministic programming, pragmatics, efficient programs, meta pro-
gramming

GM (Department of Computer Science @ Ul Logic Programming

Meta-Interpreters

Meta-Programming and Meta-Interpreters

Definition
e a meta-program treats other programs as data; it analyses,
transforms, and simulates other programs

GM (Department of Computer Science @ Ul Logic Programming

Meta-Interpreters

Meta-Programming and Meta-Interpreters

Definition
e a meta-program treats other programs as data; it analyses,
transforms, and simulates other programs
e a meta-interpreter for a language is an interpreter for the language
written in the language itself

GM (Department of Computer Science @ Ul Logic Programming

Meta-Interpreters

Meta-Programming and Meta-Interpreters

Definition
e a meta-program treats other programs as data; it analyses,
transforms, and simulates other programs
e a meta-interpreter for a language is an interpreter for the language
written in the language itself

o for example, relation solve (Goal) is true, if Goal is true with respect
to the program interpreted

GM (Department of Computer Science @ Ul Logic Programming

Meta-Interpreters

Meta-Programming and Meta-Interpreters

Definition
e a meta-program treats other programs as data; it analyses,
transforms, and simulates other programs
e a meta-interpreter for a language is an interpreter for the language
written in the language itself
o for example, relation solve (Goal) is true, if Goal is true with respect
to the program interpreted

Example (simple meta-interpreter)

solve(true).
solve((A,B)) :- solve(A), solve(B).
solve(A) :- clause(A,B), solve(B).

GM (Department of Computer Science @ Ul Logic Programming

Meta-Program We Have Already Seen

Example

accept(8) :-
initial(Q),
accept(Q,S).

accept(Q, [X|Xs]) :-
delta(Q,X,Q1),
accept(Qq,Xs) .

accept(Q,[1) :-
final(Q).

initial(qg) .
final(qy).

delta(qgo,0,qo) .
delta(qg,0,q1) -
delta(qo,1,q0) -
delta(qi,1,q2) .

GM (Department of Computer Science @ Ul Logic Programming

Meta-Program We Have Already Seen

Example

accept(8) :-
initial(Q),
accept(Q,S).

accept(Q, [X|Xs]) :-
delta(Q,X,Q1),
accept(Qq,Xs) .

accept(Q,[1) :-
final(Q).

initial(qg) .
final(qy).

delta(qo,0,qo) -
delta(qo,0,q1) .
delta(qgo,1,q0) -
delta(qi,1,q2).

GM (Department of Computer Science @ Ul Logic Programming

(Sort of) Meta-Program We'll See Soon
Example

prove(and(A,B),UnExp, Lits ,FreeV,VarLim) :— I,
prove (A,[B|UnExp], Lits ,FreeV,6 VarLim).
prove(or(A,B),UnExp, Lits , FreeV,VarLim) :— 1,
prove (A,UnExp, Lits ,FreeV, VarLim),
prove (B, UnExp, Lits , FreeV ,VarLim).
prove(all(X,Fml),UnExp, Lits , FreeV,VarLim) :— 1,
\+ length (FreeV, VarLim),
copy-term ((X,Fml, FreeV) ,(X1,Fmll, FreeV)),
append (UnExp,[all (X,Fml)], UnExpl),
prove (Fmll,UnExpl, Lits ,[X1|FreeV], VarLim).
prove(Lit,_UnExp,[L|Lits],_-FreeV,_VarLim) :— 1,
(Lit = neg Neg; neg Lit = Neg) —>
(unify_with_occurs_check (Neg,L);
prove(Lit,[], Lits,_-FreeV0,_VarLim0)).
prove(Lit,[Next|UnExp], Lits , FreeV,6 VarLim) :— 1,
prove (Next,UnExp,[Lit|Lits], FreeV,6 VarLim).

GM (Department of Computer Science @ Ul Logic Programming

Meta-Interpreters

Example (meta-interpreter with proofs)

solve(true,true).

solve((A,B), (ProofA,ProofB)) :-
solve(A,ProofA),
solve(B,ProofB).

solve(A, (A :- Proof)) :-
clause(A,B),
solve(B,Proof) .

GM (Department of Computer Science @ Ul Logic Programming

Meta-Interpreters

Example (meta-interpreter with proofs)

solve(true,true).

solve((A,B), (ProofA,ProofB)) :-
solve(A,ProofA),
solve(B,ProofB).

solve(A, (A :- Proof)) :-
clause(A,B),

solve(B,Proof) .
Example
father (andreas,boris) . female (doris). male(andreas) .
father (andreas,christian). female(eva). male(boris) .
father (andreas,doris) . male(christian).
father (boris,eva) . mother(doris,franz). male(franz).
father(franz,georg) . mother (eva,georg) . male(georg) .

son(X,Y) :- father(Y,X), male(X).

GM (Department of Computer Science @ Ul Logic Programming

Meta-Interpreters

Example (A Meta-Interpreter with Proofs (cont'd))

:— solve(son(christian,andreas) ,Proof).

Proof — (son(christian, andreas) <--
(father(andreas, christian)<--true,
male(christian)<--true))

GM (Department of Computer Science @ Ul Logic Programming

Meta-Interpreters

Example (A Meta-Interpreter with Proofs (cont'd))

:— solve(son(christian,andreas) ,Proof).

Proof — (son(christian, andreas) <--
(father(andreas, christian)<--true,
male(christian)<--true))

Example (Tracing Pure Prolog)

trace(Goal) :- trace(Goal,0).

GM (Department of Computer Science @ Ul Logic Programming

Meta-Interpreters

Example (A Meta-Interpreter with Proofs (cont'd))

:— solve(son(christian,andreas) ,Proof).

Proof — (son(christian, andreas) <--
(father(andreas, christian)<--true,
male(christian)<--true))

Example (Tracing Pure Prolog)

trace(Goal) :- trace(Goal,0).

trace(true,Depth) .
trace((A,B),Depth) :-
trace(A,Depth), trace(B,Depth).
trace(A,Depth) :-
clause(A,B),
display(A,Depth),
Depthl is Depth + 1,
trace(B,Depthl).

GM (Department of Computer Science @ Ul Logic Programming

Meta-Interpreters

Example (A Meta-Interpreter with Proofs (cont'd))

:— solve(son(christian,andreas) ,Proof).

Proof — (son(christian, andreas) <--
(father(andreas, christian)<--true,
male(christian)<--true))

Example (Tracing Pure Prolog)

trace(Goal) :- trace(Goal,0).

trace(true,Depth) .
trace((A,B),Depth) :-
trace(A,Depth), trace(B,Depth).
trace(A,Depth) :-
clause(A,B),
display(A,Depth),
Depthl is Depth + 1,
trace(B,Depthl).

display(A,Depth) :- tab(Depth), write(A), nl.

GM (Department of Computer Science @ Ul Logic Programming

Meta-Interpreters

Example

system(A is B). system(read(X)) . system(integer(X)).
system(clause(A,B)). system(A < B). system(A >= B).
system(write(X)). system(functor(T,F,N)). system(system(X)).

GM (Department of Computer Science @ Ul Logic Programming

Meta-Interpreters

Example

system(A is B). system(read (X)) . system(integer (X)) .
system(clause(A,B)). system(A < B). system(A >= B).
system(write(X)). system(functor(T,F,N)). system(system(X)).
Example

trace(Goal) :- trace(Goal,0).

GM (Department of Computer Science @ Ul Logic Programming

Meta-Interpreters

Example

system(A is B). system(read (X)) . system(integer (X)) .
system(clause(A,B)). system(A < B). system(A >= B).
system(write(X)). system(functor(T,F,N)). system(system(X)).
Example

trace(Goal) :- trace(Goal,0).

trace(true,Depth) :- !.

Logic Programming

GM (Department of Computer Science @ Ul

Meta-Interpreters

Example

system(A is B). system(read (X)) . system(integer (X)) .
system(clause(A,B)). system(A < B). system(A >= B).
system(write(X)). system(functor(T,F,N)). system(system(X)).
Example

trace(Goal) :- trace(Goal,0).

trace(true,Depth) :- !.

trace((A,B) ,Depth)

:= !, trace(A,Depth), trace(B,Depth).

GM (Department of Computer Science @ Ul

Logic Programming

Meta-Interpreters

Example

system(A is B). system(read (X)) . system(integer(X)).
system(clause(A,B)). system(A < B). system(A >= B).
system(write(X)). system(functor(T,F,N)). system(system(X)).
Example

trace(Goal) :- trace(Goal,0).

trace(true,Depth) :- !.

trace((A,B) ,Depth) :- !, trace(A,Depth), trace(B,Depth).
trace(A,Depth) :- system(A), A, !, display2(A,Depth), nl.

Logic Programming

GM (Department of Computer Science @ Ul

Meta-Interpreters

Example

system(A is B). system(read (X)) . system(integer (X)) .
system(clause(A,B)). system(A < B). system(A >= B).
system(write(X)). system(functor(T,F,N)). system(system(X)).
Example

trace(Goal) :- trace(Goal,0).

trace(true,Depth) :- !.
trace((A,B) ,Depth) :- !, trace(A,Depth), trace(B,Depth).
trace(A,Depth) :- system(A), A, !, display2(A,Depth), nl.
trace(A,Depth) :-

clause(A,B), display(A,Depth), nl,

Depthl is Depth + 1, trace(B,Depthl).

Logic Programming

GM (Department of Computer Science @ Ul

Meta-Interpreters

Example
system(A is B). system(read (X)) . system(integer (X)) .
system(clause(A,B)). system(A < B). system(A >= B).
system(write(X)). system(functor(T,F,N)). system(system(X)).
Example
trace(Goal) :- trace(Goal,0).
trace(true,Depth) :- !.
trace((A,B) ,Depth) :- !, trace(A,Depth), trace(B,Depth).
trace(A,Depth) :- system(A), A, !, display2(A,Depth), nl.
trace(A,Depth) :-

clause(A,B), display(A,Depth), nl,

Depthl is Depth + 1, trace(B,Depthl).
trace(A,Depth) :-

\+ clause(A,B), display(A,Depth),

tab(8), write(f),nl,fail.

GM (Department of Computer Science @ Ul Logic Programming

Meta-Interpreters

Example
system(A is B). system(read (X)) . system(integer (X)) .
system(clause(A,B)). system(A < B). system(A >= B).
system(write(X)). system(functor(T,F,N)). system(system(X)).
Example
trace(Goal) :- trace(Goal,0).
trace(true,Depth) :- !.
trace((A,B) ,Depth) :- !, trace(A,Depth), trace(B,Depth).
trace(A,Depth) :- system(A), A, !, display2(A,Depth), nl.
trace(A,Depth) :-

clause(A,B), display(A,Depth), nl,

Depthl is Depth + 1, trace(B,Depthl).
trace(A,Depth) :-

\+ clause(A,B), display(A,Depth),

tab(8), write(f),nl,fail.
display(A,Depth) :- Spacing is 3*Depth, tab(Spacing), write(A).

GM (Department of Computer Science @ Ul Logic Programming

Meta-Interpreters for Debugging

Meta-Interpreters for Debugging

Example (Control Execution)
solve (true,.D,no_overflow) :—
I
solve (_LA,0,overflow ([])).
solve ((A,B),D, Overflow) :—
D> o0,
solve (A,D, OverflowA),

solve_conjunction (OverflowA ,B,D, Overflow).
solve (A,D, no_overflow) :—

D> 0,

system(A), !, A.
solve (A,D, Overflow) :—

D> 0,

clause (A,B),

D1 is D—- 1,

solve (B,D1, OverflowB),
return_overflow (OverflowB ,A, Overflow).

GM (Department of Computer Science @ Ul Logic Programming

Example (Control Execution (cont'd))

solve_conjunction (overflow(S),_.B,.D,overflow(S)).
solve_conjunction (no_overflow ,B,D, Overflow) :—
solve (B,D, Overflow).

return_overflow (no_overflow ,_ A, no_overflow).
return_overflow (overflow (S),A, overflow ([A|S])).

% isort(Xs,Ys) <— Ys is sorted Xs, using insertion sort

isort ([X|Xs],Ys) :— isort(Xs,Zs), my_insert(X,Zs,Ys).
isort ([]1.[])-

my_insert (X,[Y]|Ys],[X,Y|Ys]) :—
X <Y.

my_insert (X,[Y]|Ys] ,[Y|Zs]) :—
X>=Y,
my_insert (X,[Y|Ys], K Zs).

my_insert (X,[] ,[X]).

GM (Department of Computer Science @ Ul Logic Programming

Expert Systems in Prolog

Expert Systems
expert systems typically consists of
e knowledge base

e inference engine

this separation is not suitable for a Prolog implementation

GM (Department of Computer Science @ Ul Logic Programming

Expert Systems in Prolog

Expert Systems in Prolog

Expert Systems
expert systems typically consists of
e knowledge base
e inference engine
this separation is not suitable for a Prolog implementation

Employ Meta-Interpreters

we implement the following features of expert systems using meta-
interpreters:

e interaction with the user

e explanation facility

e uncertainty reasoning

GM (Department of Computer Science @ Ul Logic Programming

Expert Systems in Prolog

Toy Expert System

place_in_oven (Dish,top) :—
pastry (Dish), size(Dish,small).
place_in_oven (Dish,middle) :—
pastry(Dish), size(Dish, big).
place_in_oven (Dish, middle) :—
main_meal (Dish).
place_in_oven (Dish, low) :—
slow_cooker(Dish).

pastry (Dish) :— type(Dish,cake).
pastry (Dish) :— type(Dish, bread).

main_meal (Dish) :— type(Dish,h meat).

slow_cooker (Dish) :— type(Dish, milk_pudding).

GM (Department of Computer Science @ Ul Logic Programming

solvel/1

solvel (true) :—
I
solvel ((A,B)) :—
solvel (A), solvel(B).
solvel (A) :—
A\= (.Al,_A2),
clause(A,B), solvel(B).
solvel (A) :—
askable (A), \+ known(A),
ask (A, Answer),
respond (Answer ,A).

ask (A, Answer) :— display_query(A),read(Answer).

askable(type(-Dish, _Type)).
askable(size(-Dish, _Size)).

respond(yes ,A) :— assert(A).
respond(no,A) :— assert(untrue(A)), fail.

GM (Department of Computer Science @ Ul Logic Programming

Interaction (in the Naive)

interact (Goal) :—
reset , solvel(Goal).

reset :— retractall(type(_Dish,_Type))
retractall (size(_Sish,_Size))
retractall (untrue(_Fact)).

?7— interact(place_in_oven (dish ,X)).
type(dish ,cake)? yes.

size (dish ,small)? no.

type (dish , bread)? no.

size(dish ,big)? yes.

X = middle

GM (Department of Computer Science @ Ul Logic Programming

Expert Systems in Prolog

Interaction (in the Naive)

interact (Goal) :—
reset , solvel(Goal).

reset :— retractall(type(_-Dish,6 _Type)),
retractall (size(_Sish,_Size))
retractall (untrue(_Fact)).

?7— interact(place_in_oven (dish ,X)).
type(dish ,cake)? yes.

size (dish ,small)? no.

type (dish , bread)? no.

size(dish ,big)? yes.

X = middle

Question
what about explanations for questions?

GM (Department of Computer Science @ Ul Logic Programming

solve2/1

solve2 (Goal) :— solve2(Goal,[]).

solve2 (true, _Rules) :—

I
solve2 ((A,B),Rules) :—

solve2 (A, Rules), solve2 (B, Rules).
solve2 (A, Rules) :—

A \= (-Al,_A2),

clause (A,B),

solve2 (B,[rule(A,B)|Rules]).
solve2 (A, Rules) :—

askable (A), \+ known(A),

ask (A, Answer), respond(Answer,A, Rules).

respond (why ,A, [Rule|Rules]) :—
display_rule(Rule),
ask (A, Answer),
respond (Answer ,A, Rules).

GM (Department of Computer Science @ Ul Logic Programming

Expert Systems in Prolog

Interaction with Explanations

interact_why (Goal) :— reset, solve2(Goal).

GM (Department of Computer Science @ Ul Logic Programming

Interaction with Explanations

interact_why (Goal) :— reset, solve2(Goal).

?7— interact_why(place_in_oven (dish ,X)).
type (dish ,cake)? yes.

size(dish ,small)? no.

type(dish ,bread)? no.

size (dish ,big)? why.

if pastry(dish) and size(dish, big)
then place_in_oven (dish ,middle)

size (dish ,big)? yes.

X = middle

GM (Department of Computer Science @ Ul Logic Programming

Interaction with Explanations

interact_why (Goal) :— reset, solve2(Goal).

?7— interact_why(place_in_oven (dish ,X)).
type (dish ,cake)? yes.

size(dish ,small)? no.

type(dish ,bread)? no.

size (dish ,big)? why.

if pastry(dish) and size(dish, big)
then place_in_oven (dish ,middle)

size (dish ,big)? yes.

X = middle

Question
how to obtain general explanations

GM (Department of Computer Science @ Ul Logic Programming

Expert Systems in Prolog

interpret/1

interpret ((Proofl , Proof2)) :—

interpret (Proofl), interpret(Proof2).
interpret (Proof) :—

fact(Proof,Fact),

nl, write(Fact),

writeln (' is a fact in the database’).
interpret (Proof) :—

rule (Proof ,Head, Body, Proofl),

nl, write(Head),

writeln (" is proved using the rule’),

display_rule(rule(Head,Body)),

interpret (Proofl).

extract_body ((Proofl , Proof2),(Bodyl,Body2)) :—
I, extract_body(Proofl,6 Bodyl),
extract_body(Proof2,Body2).

extract_body ((Goal <— _Proof), Goal).

GM (Department of Computer Science @ Ul Logic Programming

how/1
how(Goal) :— solve(Goal,Proof), interpret(Proof).

?7— interact(place_in_oven(dish , X)).
% required for type and size of dish

?7— how(place_in_oven(dish , top)).
place_in_oven(dish ,top) is proved using the rule
if pastry(dish) and size(dish,small)

then place_in_oven (dish ,top)

pastry(dish) is proved using the rule

if type(dish, bread)

then pastry(dish)

type(dish ,bread) is a fact in the database

size(dish ,small) is a fact in the database

GM (Department of Computer Science @ Ul Logic Programming

Expert Systems in Prolog

Shortcomings with Explanation

e the explanation is exhaustive

e Prolog computation is mirrored

GM (Department of Computer Science @ Ul Logic Programming

Expert Systems in Prolog

Shortcomings with Explanation

e the explanation is exhaustive
not intelligible for a knowledge base with 100 rules

e Prolog computation is mirrored

GM (Department of Computer Science @ Ul Logic Programming

Expert Systems in Prolog

Shortcomings with Explanation

e the explanation is exhaustive
not intelligible for a knowledge base with 100 rules

e restrict explanation to one level:

pastry(dish) can be further explained

e Prolog computation is mirrored

GM (Department of Computer Science @ Ul Logic Programming

Expert Systems in Prolog

Shortcomings with Explanation

e the explanation is exhaustive
not intelligible for a knowledge base with 100 rules
e restrict explanation to one level:

pastry(dish) can be further explained

e Prolog computation is mirrored
e take expert knowledge into account:

interpret ((Goal <— Proof)) :—
classification (Goal),
write (Goal),

writeln (' is a classification example').

GM (Department of Computer Science @ Ul

Logic Programming

Shortcomings with Explanation

e the explanation is exhaustive
not intelligible for a knowledge base with 100 rules

restrict explanation to one level:

pastry(dish) can be further explained

Prolog computation is mirrored

take expert knowledge into account:

interpret ((Goal <— Proof)) :—
classification (Goal),
write (Goal),
writeln (" is a classification example').

in general make use of filtered explanations

GM (Department of Computer Science @ Ul Logic Programming

Shortcomings with Explanation

e the explanation is exhaustive
not intelligible for a knowledge base with 100 rules

e restrict explanation to one level:

pastry(dish) can be further explained

e Prolog computation is mirrored
e take expert knowledge into account:

interpret ((Goal <— Proof)) :—
classification (Goal),
write (Goal),
writeln (" is a classification example').

e in general make use of filtered explanations

Exercise

Modify the implementation of how/1 such that the partial answer proposed
is generated

GM (Department of Computer Science @ Ul Logic Programming

Definition
the certainty of a goal is computed as follows
min{cert(A), cert(B)} G=(AB)

cert(G) =
(¢) {max{cert(B) - Factor | exists (A: —B, Factor)} G =A

GM (Department of Computer Science @ Ul Logic Programming

Definition
the certainty of a goal is computed as follows
min{cert(A), cert(B)} G = (A, B)

cert(G) =
(¢) max{cert(B) - Factor | exists (A : —B, Factor)} G =A

Definition (clauses with certification factor)

clause_cf(place_in_oven (Dish,top),

(pastry(Dish), size(Dish,small)),0.7).
clause_cf(place_in_oven (Dish, middle),

(pastry(Dish), size(Dish,big)), 1).

clause_cf(place_in_oven (Dish, middle),
main_meal (Dish) , 1).

clause_cf(place_in_oven (Dish,low),
slow_cooker(Dish),0.5).

% otherwise

clause_cf(Head,Body,1) :— clause(Head, Body).

GM (Department of Computer Science @ Ul Logic Programming

solve3/1

solve3 (true ,1) :—
!
solve3 ((A,B),C) :—
b,
solve3(A,C1),
solve3(B,C2),
minimum (C1,C2,C).
solve3(A,C) :—
clause_cf(A,B,C1),
solve3(B,C2),
C is Cl % C2.

?7— interact(place_in_oven(dish , X)).
% required for type and size of dish

?7— solve3(place_in_oven(dish,htop),C).
C=0.7

GM (Department of Computer Science @ Ul Logic Programming

Thank You for Your Attention!

GM (Department of Computer Science @ Ul

