ogic

Logic Programming e a Prolog procedure is iterative if it contains only facts and iterative
clauses

Summary of Last Lecture

Definitions
e a Prolog clause is called iterative if

it has one recursive call, and
zero or more calls to system predicates, before the recursive call

Observation
e iterative programs are tail recursive

Georg Moser

Department of Computer Science @ UIBK e sometimes tail recursion in general can be implemented as iteration
which doesn't require a stack

Winter 2016

Example

built_in (+,2).

user_def (fib ,1).

:— eval(fib(13),N), N=233.

GM (Department of Computer Science @ Ul Logic Programming

Overview | RS

Outline of the Lecture Meta-Programming and Meta-Interpreters
Monotone Logic Programs o
Definition
e a meta-program treats other programs as data; it analyses,

transforms, and simulates other programs

introduction, basic constructs, logic foundations, unification, semantics,
database and recursive programming, termination, complexity

e a meta-interpreter for a language is an interpreter for the language

Incomplete Data Structures and Constraints written in the language itself

e for example, relation solve (Goal) is true, if Goal is true with respect

incomplete data structures, definite clause grammars, constraint logic pro- i
to the program interpreted

gramming, answer set programming

Full Prolog Example (simple meta-interpreter)

semantics (revisted), cuts, correctness proofs, meta-logical predicates, solve (true) .
solve((A,B)) :- solve(A), solve(B).

nondet'ermlmstlc programming, pragmatics, efficient programs, meta pro- solve(A) :- clause(A.B), solve(B).
gramming

GM (Department of Computer Science @ Ul Logic Programming 237/1 GM (Department of Computer Science @ Ul Logic Programming 238/1

http://cl-informatik.uibk.ac.at

Meta-Interpreters Meta-Interpreters

Meta-Program We Have Already Seen (Sort of) Meta-Program We'll See Soon
Example Example
accept(8) :- prove(and(A,B),UnExp, Lits ,FreeV,VarLim) :— I,
initial(Q), prove (A,[B|UnExp], Lits ,FreeV ,h VarLim).
accept(Q,8). prove (or(A,B),UnExp, Lits ,FreeV, VarLim) :— |,
accept (@, [X|Xs]) :- prove(A,UnExp,L!ts,Free\’,VarL!m),
prove (B,UnExp, Lits , FreeV,VarLim).
delta(@,X, @), prove(all(X,Fml),UnExp, Lits , FreeV,VarLim) :— !,
accept (Qq,Xs) . \+ length (FreeV, VarLim),
accept(Q,[1) :- copy_term ((X,Fml, FreeV) ,(X1,Fmll, FreeV)),
final(Q). append (UnExp,[all (X,Fml)],UnExpl),
initial(qg) . prove (Fmll, UnExpl, Lits ,[X1|FreeV], VarLim).
final(qp). prove(Lit,_UnExp,[L|Lits],_FreeV, _VarLim) :— !,
(Lit = neg Neg; neg Lit = Neg) —>
delta(qo,0,q0) . (unify_with_occurs_check (Neg,L);
delta(qo,0,q1) - prove(Lit , [],Lits,_FreeV0,_VarLim0)).
delta(qo,1,qo) - prove(Lit ,[Next|UnExp], Lits , FreeV,h VarLim) :— !,
delta(qi,1,q2). prove (Next,UnExp,[Lit|Lits],FreeV, VarLim).

GM (Department of Computer Science @ Ul Logic Programming 239/1 GM (Department of Computer Science @ Ul Logic Programming 240/1

Meta-Interpreters Meta-Interpreters

Example (meta-interpreter with proofs) Example (A Meta-Interpreter with Proofs (cont'd))

solve (true,true). :— solve(son(christian,andreas) ,Proof).

solve((A,B), (ProofA,ProofB)) :- Proof — (son(christian, andreas) <--
solve(A,ProofA), (father (andreas, christian)<--true,
solve(B,ProofB). male(christian)<--true))

solve(A, (A :- Proof)) :-

clause(A,B), Example (Tracing Pure Prolog)

solve(B,Proof).
trace(Goal) :- trace(Goal,0).

E | trace(true,Depth) .

Xample trace((A,B),Depth) :-
father (andreas,boris). female(doris). male (andreas) . trace(A,Depth), trace(B,Depth).
father (andreas,christian). female(eva). male(boris). trace(A,Depth) :-—
father (andreas,doris). male(christian). clause(A,B),
father (boris,eva). mother (doris,franz). male(franz). display(A,Dep‘th) ,
father(franz,georg) . mother (eva,georg) . male(georg) . Depthl is Depth + 1,
son(X,Y) :- father(Y,X), male(X). trace(B,Depthl) .

display(A,Depth) :- tab(Depth), write(A), nl.

GM (Department of Computer Science @ Ul Logic Programming 241/1 GM (Department of Computer Science @ Ul Logic Programming 242/1

Example Meta-Interpreters for Debugging
system(A is B). system(read (X)) . system(integer (X)) .)
system(clause(A,B)). system(A < B). system(A >= B). Examp|e (COﬂtrOl EXGCUtIOﬂ)
system(write(X)). system(functor(T,F,N)). system(system(X)). solve (true,.D,no_overflow) :—
I,
solve (_A,0,overflow ([])).
Example solve ((A,B),D, Overflow) :—
D> o0,

trace(Goal) :- trace(Goal,O). solve (A,D, OverflowA),
trace(true,Depth) :- !. solve_conjunction (OverflowA ,B,D, Overflow).
trace((A,B),Depth) :- !, trace(A,Depth), trace(B,Depth). solve (A,D, no_overflow) :—
trace(A,Depth) :- system(A), A, !, display2(A,Depth), nl. D>0,
trace(A,Depth) :- system (A), !_' A.

clause(A,B), display(A,Depth), nl, solve (A,B,Sv(;arflow) T

Depthl is Depth + 1, trace(B,Depthl). cIausé(A B)
trace(A,Depth) :-— ' D1 is D - 1,,

\+ clause (A,B) 5 dlsplay(A,Depth) B solve (B,Dl, OverflowB) ’

tab(8), write(f),nl,fail. return_overflow (OverflowB ,A, Overflow).
display(A,Depth) :- Spacing is 3*Depth, tab(Spacing), write(A).
Example (Control Execution (cont'd)) Expert Systems in Prolog

solve_conjunction (overflow(S),_.B,_D,overflow(S)).
solve_conjunction(no_overflow ,B,D, Overflow) :— . .
solve (B,D, Overflow). expert systems typically consists of

Expert Systems

e knowledge base
return_overflow (no_overflow ,_ A, no_overflow).

return_overflow (overflow (S),A, overflow ([A[S])). e inference engine

))) .) this separation is not suitable for a Prolog implementation
% isort(Xs,Ys) <— Ys is sorted Xs, using insertion sort

isort ([X|Xs],Ys) :— isort(Xs,Zs), my_insert(X,Zs,Ys). Employ Meta-Interpreters
isort ,
(1) we implement the following features of expert systems using meta-

my_insert (X, [Y|Ys] , [X,Y]Ys]) :— interpreters:

X < Y. . . .
my_insert (X,[Y|Ys] ,[Y|Zs]) i e interaction with the user

X>=Y, e explanation facility

my-insert (X, [Y|Ys],Zs). e uncertainty reasonin
my_insert (X,[] . [X]). Y g

GM (Department of Computer Science @ Ul Logic Programming / GM (Department of Computer Science @ Ul Logic Programming 246/1

solvel/1
Toy Expert System

solvel (true) :—

!
solvel ((A,B)) :—

solvel (A), solvel(B).
solvel (A) :—

A \= (-Al1,_A2),

clause (A,B), solvel(B).
solvel (A) :—

askable(A), \+ known(A),

ask (A, Answer),

respond (Answer ,A).

place_in_oven (Dish,top) :—
pastry (Dish), size(Dish,small).
place_in_oven (Dish,middle) :—
pastry (Dish), size(Dish, big).
place_in_oven (Dish,middle) :—
main_meal (Dish).
place_in_oven (Dish, low) :—
slow_cooker (Dish).

pastry (Dish) :— type(Dish, cake).

pastry(Dish) :— type(Dish, bread). ask (A, Answer) :— display_query(A),read(Answer).

main_meal (Dish) :— type(Dish,h meat). askable (type(_Dish, Type)).

. . . . kabl i _Dish, _Si .

slow_cooker(Dish) :— type(Dish, milk_pudding). askable(size (-Dis Size))
respond (yes ,A) :— assert(A).
respond (no,A) :— assert(untrue(A)), fail.

GM (Department of Computer Science @ Ul Logic Programming GM (Department of Computer Science @ Ul Logic Programming 248/1

Expert Systems in Prolog Expert Systems in Prolog

Interaction (in the Naive) solve2/1
interact (Goal) :— solve2 (Goal) :— solve2(Goal,[]).
reset , solvel(Goal). solve2 (true . Rules) i
. I
reset :— retractall(type(-Dish,_Type)), S
retractall(size(_-Sish, _Size)), solve2 ((A,B), Rules) :—
retractall (untrue(_Fact)). solve2 (A, Rules), solve2 (B, Rules).
solve2 (A, Rules) :—
?7— interact(place_in_oven (dish ,X)). Al\: (EilBSA2)
type(dish ,cake)? yes. clause (A,B),
size (dish ,small)? no. I 2(A5CI;|V|32§B,["U|3(A15)|R“|es])-
type(dish ,bread)? no. solve s Rules) :—
s}ilzegdish ,big)?)yes. askable(A), \+ known(A),
X = middle ask (A, Answer), respond(Answer,A, Rules).
respond (why,A,[Rule|Rules]) :—
. display_rule(Rule),
Question ask (A, Answer),
what about explanations for questions? respond (Answer ,A, Rules).

GM (Department of Computer Science @ Ul Logic Programming 249/1 GM (Department of Computer Science @ Ul Logic Programming 250/1

Interaction with Explanations interpret/1

interact_.why (Goal) :— reset, solve2(Goal). interpret ((Proofl , Proof2)) :—

interpret(Proofl), interpret(Proof2).
interpret (Proof) :—

fact (Proof, Fact),

nl, write(Fact),

writeln (' is a fact in the database).
interpret (Proof) :—

rule (Proof ,Head, Body, Proofl),

nl, write(Head),

writeln (' is proved using the rule’),

display_rule(rule(Head, Body)),

interpret(Proofl).

?7— interact_.why(place_in_oven(dish ,X)).
type(dish ,cake)? yes.

size(dish ,small)? no.

type(dish ,bread)? no.

size(dish ,big)? why.

if pastry(dish) and size(dish,big)
then place_in_oven (dish , middle)
size(dish ,big)? yes.

X = middle

extract_body ((Proofl, Proof2),(Bodyl,Body2)) :—
I, extract_body (Proofl,h Bodyl),
Question extract_body (Proof2,Body2).

. . tract_bod Goal <— _P f), Goal).
how to obtain general explanations extract_body ((Goal < roof), Goal)

GM (Department of Computer Science @ Ul Logic Programming GM (Department of Computer Science @ Ul

Logic Programming

hortcomings with Explanation
how /1 5 & P

e the explanation is exhaustive
how(Goal) :— solve(Goal,Proof), interpret(Proof). not intelligible for a knowledge base with 100 rules

72— interact(place_ in_oven (dish X)), restrict explanation to one level:

% required for type and size of dish pastry(dish) can be further explained

?7— how(place_in_oven (dish ,top)).

Prolog computation is mirrored

place_in_oven (dish ,top) is proved using the rule take expert knowledge into account:
if pastry(dish) and size(dish,6small)

interpret ((Goal <— Proof)) :—
then place_in_oven (dish , top)

classification (Goal),
write (Goal),

pastry(dish) is proved using the rule writeln (' is a classification example').

if type(dish,bread)
then pastry(dish)

e in general make use of filtered explanations
t dish ,bread) i fact in the datab .
ype(dis read) is a fact in e database Exercise
size(dish ,small) is a fact in the database Modify the implementation of how/1 such that the partial answer proposed

is generated

GM (Department of Computer Science @ Ul Logic Programming 253/1 GM (Department of Computer Science @ Ul Logic Programming 254/1

Expert Systems in Prolog Expert Systems in Prolog

Definition solve3/1
the certainty of a goal is computed as follows
solve3(true , 1) :—
cert(G) min{cert(A), cert(B)} G =(AB) !
max{cert(B) - Factor | exists (A: —B, Factor)} G =A solve3 ((’IA'B) €) i
solve3(A,C1),
solve3(B,C2),
Definition (clauses with certification factor) minimum (C1,C2,C).
solve3 (A, C) :—
clause_cf(place_in_oven (Dish,top), clause_cf(A,B,C1),
(pastry(Dish), size(Dish,small)),0.7). solve3(B,C2),
clause_cf(place_in_oven (Dish,middle), C is Cl x C2.
(pastry(Dish), size(Dish,h big)),1).
clause_cf(place_in_oven (Dish, middle), ?7— interact(place_in_oven (dish ,X)).
main_meal (Dish) , 1). % required for type and size of dish
clause_cf(place_in_oven (Dish,low),
slow_cooker (Dish),0.5). ?7— solve3(place_in_oven (dish top),C).
% otherwise C=0.7
clause_cf(Head,Body,1) :— clause(Head, Body).

GM (Department of Computer Science @ Ul Logic Programming GM (Department of Computer Science @ Ul Logic Programming

Last Slide

Thank You for Your Attention!

GM (Department of Computer Science @ Ul Logic Programming

