
Logic Programming

Georg Moser

Department of Computer Science @ UIBK

Winter 2016

http://cl-informatik.uibk.ac.at

Summary of Last Lecture

Summary of Last Lecture

Definition

• goals (aka formulas) are constants or compound terms

• goals are typically non-ground

Definitions
• a clause or rule is an universally quantified logical formula of the

form
A :− B1 , B2 , . . . , Bn .

where A and the Bi ’s are goals

• A is called the head of the clause; the Bi ’s are called the body

• a rule of the form A :− is called a fact; we write facts simply A.

Definition

a logic program is a finite set of clauses

GM (Department of Computer Science @ UIBK) Logic Programming 18/1

Summary of Last Lecture

Notation
• A← A1, . . . ,Am instead of A :- A1, . . . ,Am. for rules

• ← A1, . . . ,Am instead of ?- A1, . . . ,Am. for queries

GM (Department of Computer Science @ UIBK) Logic Programming 19/1

Outline

Outline of the Lecture

Monotone Logic Programs

introduction, basic constructs, logic foundations, unification, semantics,
database and recursive programming, termination, complexity

Incomplete Data Structures and Constraints

incomplete data structures, definite clause grammars, constraint logic pro-
gramming, answer set programming

Full Prolog

semantics (revisted), correctness proofs, meta-logical predicates, cuts non-
deterministic programming, efficient programs, complexity

GM (Department of Computer Science @ UIBK) Logic Programming 20/1

Outline

Outline of the Lecture

Monotone Logic Programs

introduction, basic constructs, logic foundations, unification, semantics,
database and recursive programming, termination, complexity

Incomplete Data Structures and Constraints

incomplete data structures, definite clause grammars, constraint logic pro-
gramming, answer set programming

Full Prolog

semantics (revisted), correctness proofs, meta-logical predicates, cuts non-
deterministic programming, efficient programs, complexity

GM (Department of Computer Science @ UIBK) Logic Programming 20/1

Choosing Names for Predicates

Example

c h i l d o f (j o s e p h I , l e o p o l d I) .
c h i l d o f (k a r l V I , l e o p o l d I) .
c h i l d o f (ma r i a t h e r e s i a , k a r l V I) .
c h i l d o f (j o s e p h I I , m a r i a t h e r e s i a) .
c h i l d o f (j o s e p h I I , f r a n z I) .
c h i l d o f (l e o p o l d I I , m a r i a t h e r e s i a) .
c h i l d o f (l e o p o l d I I , f r a n z I) .
c h i l d o f (ma r i a a n t o i n e t t e , m a r i a t h e r e s i a) .
c h i l d o f (f r a n z I I , l e o p o l d I I) .

male (f r a n z I) . f ema l e (m a r i a t h e r e s i a) .
male (f r a n z I I) . f ema l e (ma r i e a n t o i n e t t e) .
male (j o s e p h I) .
male (j o s e p h I I) .
male (k a r V I) .
male (l e o p o l d I) .
male (l e o p o l d I I) .

hu sband w i f e (f r a n z I , m a r i a t h e r e s i a) .

GM (Department of Computer Science @ UIBK) Logic Programming 21/1

Choosing Names for Predicates

Review of Basic Constructs

Definitions

• a fact describes a relation (predicate) between terms

c h i l d o f (j o s e p h I I , m a r i a t h e r e s i a) .

which reads “Joseph II is the child of Maria Theresia.”

• child of is the name of the relation

• the arity denotes the number of arguments

• predicates are also denoted as child of/2

• fact that do not contain variables are ground

Fact

the order of the arguments is essential, hence it is important to choose
meaningful names for predicates

GM (Department of Computer Science @ UIBK) Logic Programming 22/1

Choosing Names for Predicates

Review of Basic Constructs

Definitions

• a fact describes a relation (predicate) between terms

c h i l d o f (j o s e p h I I , m a r i a t h e r e s i a) .

which reads “Joseph II is the child of Maria Theresia.”

• child of is the name of the relation

• the arity denotes the number of arguments

• predicates are also denoted as child of/2

• fact that do not contain variables are ground

Fact

the order of the arguments is essential, hence it is important to choose
meaningful names for predicates

GM (Department of Computer Science @ UIBK) Logic Programming 22/1

Choosing Names for Predicates

Choosing Names

1 describe the arguments

t y p 1 t y p 2 t y p 3 t y p 4 (Arg1 , Arg2 , Arg3 , Arg4)

2 refine the name

p e r s o n p e r s o n (X,Y) . % too coa r s e
c h i l d p e r s o n (Ch i ld , Person) % b e t t e r
c h i l d p a r e n t (Ch i ld , Parent) % p e r f e c t

3 indicate the relation

c h i l d o f p a r e n t (Ch i ld , Parent) % p r e p o s i t i o n
e xp r e s s i on imp rov edp rog r am (Exp , IExp) % p a r t i c i p l e
e xp r imp roved (Exp , IExp)
c o n s i s t s o f (X,Y) % ve rb

4 abbreviations

c oun t r y /8

GM (Department of Computer Science @ UIBK) Logic Programming 23/1

Logic Foundations

Definition
• a query tests whether a relation holds

:− c h i l d o f (j o s e p h I I , m a r i a t h e r e s i a) .

• queries are equivalent to use cases, as they are checked whenever
the program is compiled

Why does a Query fail?

1 the query doesn’t follow from the data represented in the program;
the negation of the query does not necessarily hold

2 the program is a complete representation; the negation of the query
does hold

Fact

Horn logic cannot distinguish between these options

GM (Department of Computer Science @ UIBK) Logic Programming 24/1

Logic Foundations

Definition
• a query tests whether a relation holds

:− c h i l d o f (j o s e p h I I , m a r i a t h e r e s i a) .

• queries are equivalent to use cases, as they are checked whenever
the program is compiled

Why does a Query fail?

1 the query doesn’t follow from the data represented in the program;
the negation of the query does not necessarily hold

2 the program is a complete representation; the negation of the query
does hold

Fact

Horn logic cannot distinguish between these options

GM (Department of Computer Science @ UIBK) Logic Programming 24/1

Logic Foundations

Definition
• a query tests whether a relation holds

:− c h i l d o f (j o s e p h I I , m a r i a t h e r e s i a) .

• queries are equivalent to use cases, as they are checked whenever
the program is compiled

Why does a Query fail?

1 the query doesn’t follow from the data represented in the program;
the negation of the query does not necessarily hold

2 the program is a complete representation; the negation of the query
does hold

Fact

Horn logic cannot distinguish between these options

GM (Department of Computer Science @ UIBK) Logic Programming 24/1

Logic Foundations

Some Background in Logic

Fact

a rule

mothe r o f (Mum, Ch i l d) :−
c h i l d o f (Ch i ld , Mum) ,
f ema l e (Mum) .

represents a logical formula:

∀xMum∀xChild (Child of(xChild, xMum) ∧ Female(xMum)→
→ Mother of(xMum, xChild))

Definition

formulas of this form are called Horn formulas (or Horn Clauses); thus a
logic program is a set of Horn formulas

GM (Department of Computer Science @ UIBK) Logic Programming 25/1

Logic Foundations

Some Background in Logic

Fact

a rule

mothe r o f (Mum, Ch i l d) :−
c h i l d o f (Ch i ld , Mum) ,
f ema l e (Mum) .

represents a logical formula:

∀xMum∀xChild (Child of(xChild, xMum) ∧ Female(xMum)→
→ Mother of(xMum, xChild))

Definition

formulas of this form are called Horn formulas (or Horn Clauses); thus a
logic program is a set of Horn formulas

GM (Department of Computer Science @ UIBK) Logic Programming 25/1

Logic Foundations

Computation is Inference

Fact

let P be a program and G a goal; a computation of G from P is the
verification of a logical consequence: P |= G

Fact (revisited)

Horn logic cannot distinguish whether or not P represents the
specification completely

Why only Horn formulas?

consider the “program”:

∀x (Even(x) ∨ Odd(x))

then Even(1) or Odd(1) follows as consequence; that is, the program se-
mantic is non-deterministic

GM (Department of Computer Science @ UIBK) Logic Programming 26/1

Logic Foundations

Computation is Inference

Fact

let P be a program and G a goal; a computation of G from P is the
verification of an inference: P ` G

Fact (revisited)

Horn logic cannot distinguish whether or not P represents the
specification completely

Why only Horn formulas?

consider the “program”:

∀x (Even(x) ∨ Odd(x))

then Even(1) or Odd(1) follows as consequence; that is, the program se-
mantic is non-deterministic

GM (Department of Computer Science @ UIBK) Logic Programming 26/1

Logic Foundations

Computation is Inference

Fact

let P be a program and G a goal; a computation of G from P is the
verification of an inference: P ` G

Fact (revisited)

Horn logic cannot distinguish whether or not P represents the
specification completely

Why only Horn formulas?

consider the “program”:

∀x (Even(x) ∨ Odd(x))

then Even(1) or Odd(1) follows as consequence; that is, the program se-
mantic is non-deterministic

GM (Department of Computer Science @ UIBK) Logic Programming 26/1

Logic Foundations

Computation is Inference

Fact

let P be a program and G a goal; a computation of G from P is the
verification of an inference: P ` G

Fact (revisited)

Horn logic cannot distinguish whether or not P represents the
specification completely

Why only Horn formulas?

consider the “program”:

∀x (Even(x) ∨ Odd(x))

then Even(1) or Odd(1) follows as consequence; that is, the program se-
mantic is non-deterministic

GM (Department of Computer Science @ UIBK) Logic Programming 26/1

Logic Foundations

Definition

a negative query verifies that the goal fails

:/− c h i l d o f (j o s e p h I I , f r i e d r i c h I I) .

Definition

a general query with variables provide answer substitutions

:− c h i l d o f (Ch i ld , m a r i a t h e r e s i a) .
:− c h i l d o f (Ch i l d , m a r i a t h e r e s i a) .
:/− c h i l d o f (Ch i ld , Ch i l d) .

NB: occurring variables are existentially quantified (inside negation)

Definition

a complex query combines several goals and typically make use of shared
variables

:− c h i l d o f (j o s e p h I I , Mum) , f ema l e (Mum) .

GM (Department of Computer Science @ UIBK) Logic Programming 27/1

Logic Foundations

Definition

a negative query verifies that the goal fails

:/− c h i l d o f (j o s e p h I I , f r i e d r i c h I I) .

Definition

a general query with variables provide answer substitutions

:− c h i l d o f (Ch i ld , m a r i a t h e r e s i a) .
:− c h i l d o f (Ch i l d , m a r i a t h e r e s i a) .
:/− c h i l d o f (Ch i ld , Ch i l d) .

NB: occurring variables are existentially quantified (inside negation)

Definition

a complex query combines several goals and typically make use of shared
variables

:− c h i l d o f (j o s e p h I I , Mum) , f ema l e (Mum) .

GM (Department of Computer Science @ UIBK) Logic Programming 27/1

Logic Foundations

Definition

a negative query verifies that the goal fails

:/− c h i l d o f (j o s e p h I I , f r i e d r i c h I I) .

Definition

a general query with variables provide answer substitutions

:− c h i l d o f (Ch i ld , m a r i a t h e r e s i a) .
:− c h i l d o f (Ch i l d , m a r i a t h e r e s i a) .
:/− c h i l d o f (Ch i ld , Ch i l d) .

NB: occurring variables are existentially quantified (inside negation)

Definition

a complex query combines several goals and typically make use of shared
variables

:− c h i l d o f (j o s e p h I I , Mum) , f ema l e (Mum) .

GM (Department of Computer Science @ UIBK) Logic Programming 27/1

Logic Foundations

How to Read a Program

• procedurally: look at the inference steps

• declarative: look at the consequence relation

Tower of Hanoi in Prolog

hanoi(0,_,_,_).

hanoi(N,X,Y,Z) :-

N > 0, M is N-1,

hanoi(M,X,Z,Y),

move(N,X,Y),

hanoi(M,Z,Y,X).

move(D,X,Y) :-

write(’move disk ’), write(D),

write(’ from ’), write(X),

write(’ to ’), write(Y), nl.

?- hanoi(4,a,c,b).

GM (Department of Computer Science @ UIBK) Logic Programming 28/1

Logic Foundations

How to Read a Program

• procedurally: look at the inference steps

• declarative: look at the consequence relation

Tower of Hanoi in Prolog

hanoi(0,_,_,_).

hanoi(N,X,Y,Z) :-

N > 0, M is N-1,

hanoi(M,X,Z,Y),

move(N,X,Y),

hanoi(M,Z,Y,X).

move(D,X,Y) :-

write(’move disk ’), write(D),

write(’ from ’), write(X),

write(’ to ’), write(Y), nl.

?- hanoi(4,a,c,b).

GM (Department of Computer Science @ UIBK) Logic Programming 28/1

Logic Foundations

Recursive Rules

Example

grandpartent(Ancestor,Descendant) :-

parent(Ancestor,Person), parent(Person,Descendant).

greatgrandpartent(Ancestor,Descendant) :-

parent(Ancestor,Person), grandpartent(Person,Descendant).

greatgreatgrandpartent(Ancestor,Descendant) :-

parent(Ancestor,Person), greatgrandpartent(Person,Descendant).

...

Example

ancestor(Ancestor,Descendant) :-

parent(Ancestor,Person), ancestor(Person,Descendant).

ancestor(Ancestor,Descendent) :- parent(Ancestor,Descendent).

GM (Department of Computer Science @ UIBK) Logic Programming 29/1

Logic Foundations

Recursive Rules

Example

grandpartent(Ancestor,Descendant) :-

parent(Ancestor,Person), parent(Person,Descendant).

greatgrandpartent(Ancestor,Descendant) :-

parent(Ancestor,Person), grandpartent(Person,Descendant).

greatgreatgrandpartent(Ancestor,Descendant) :-

parent(Ancestor,Person), greatgrandpartent(Person,Descendant).
...

Example

ancestor(Ancestor,Descendant) :-

parent(Ancestor,Person), ancestor(Person,Descendant).

ancestor(Ancestor,Descendent) :- parent(Ancestor,Descendent).

GM (Department of Computer Science @ UIBK) Logic Programming 29/1

Logic Foundations

Recursive Rules

Example

grandpartent(Ancestor,Descendant) :-

parent(Ancestor,Person), parent(Person,Descendant).

greatgrandpartent(Ancestor,Descendant) :-

parent(Ancestor,Person), grandpartent(Person,Descendant).

greatgreatgrandpartent(Ancestor,Descendant) :-

parent(Ancestor,Person), greatgrandpartent(Person,Descendant).
...

Example

ancestor(Ancestor,Descendant) :-

parent(Ancestor,Person), ancestor(Person,Descendant).

ancestor(Ancestor,Descendent) :- parent(Ancestor,Descendent).

GM (Department of Computer Science @ UIBK) Logic Programming 29/1

Logic Foundations

Recursive Rules

Example

grandpartent(Ancestor,Descendant) :-

parent(Ancestor,Person), parent(Person,Descendant).

greatgrandpartent(Ancestor,Descendant) :-

parent(Ancestor,Person), grandpartent(Person,Descendant).

greatgreatgrandpartent(Ancestor,Descendant) :-

parent(Ancestor,Person), greatgrandpartent(Person,Descendant).
...

Example

ancestor(Ancestor,Descendant) :-

parent(Ancestor,Person), ancestor(Person,Descendant).

ancestor(Ancestor,Descendent) :- parent(Ancestor,Descendent).

GM (Department of Computer Science @ UIBK) Logic Programming 29/1

Logic Foundations

Definition
• a rule consists of a head and a body, separated by “:-”

mothe r o f (Mum, Ch i l d) :−
c h i l d o f (Ch i ld , Mum) ,
f ema l e (Mum) .

• a rule is recursive, if the body contains the predicate in the head

Definitions
• we distinguish between the set of solutions of a query and the

sequence of solutions

• the sequence may contain redundant solutions

• redundant solutions may be due to existential variables

GM (Department of Computer Science @ UIBK) Logic Programming 30/1

Logic Foundations

Definition
• a rule consists of a head and a body, separated by “:-”

mothe r o f (Mum, Ch i l d) :−
c h i l d o f (Ch i ld , Mum) ,
f ema l e (Mum) .

• a rule is recursive, if the body contains the predicate in the head

Definitions
• we distinguish between the set of solutions of a query and the

sequence of solutions

• the sequence may contain redundant solutions

• redundant solutions may be due to existential variables

GM (Department of Computer Science @ UIBK) Logic Programming 30/1

Logic Foundations

Example

% r e c u r s i v e r u l e
ma r r i e d w i t h (Husband , Wife) :−

husband w i f e (Husband , Wife) .
ma r r i e d w i t h (PersonA , PersonB) :−

mar r i e d w i t h (PersonB , PersonA) .

% non−r e c u r s i v e r u l e
ma r r i e d w i t h (Husband , Wife) :−

husband w i f e (Husband , Wife) .
ma r r i e d w i t h (Wife , Husband) :−

husband w i f e (Husband , Wife) .

GM (Department of Computer Science @ UIBK) Logic Programming 31/1

Logic Foundations

Example

a n c e s t o r o f (Ancestor , Descendant) :−
c h i l d o f (Descendant , Ances to r) .

a n c e s t o r o f (Ancestor , Descendant) :−
c h i l d o f (Person , Ances to r) ,
a n c e s t o r o f (Person , Descendant) .

:/− a n c e s t o r o f (X,X) .

Example

a n c e s t o r o f 2 (Ancestor , Descendant) :−
c h i l d o f (Descendant , Ances to r) .

a n c e s t o r o f 2 (Ancestor , Descendant) :−
a n c e s t o r o f 2 (Person , Descendant) ,
c h i l d o f (Person , Ance s to r) .

:/− a n c e s t o r o f 2 (X,X) .

GM (Department of Computer Science @ UIBK) Logic Programming 32/1

Logic Foundations

Example

a n c e s t o r o f (Ancestor , Descendant) :−
c h i l d o f (Descendant , Ances to r) .

a n c e s t o r o f (Ancestor , Descendant) :−
c h i l d o f (Person , Ances to r) ,
a n c e s t o r o f (Person , Descendant) .

:/− a n c e s t o r o f (X,X) .

Example

a n c e s t o r o f 2 (Ancestor , Descendant) :−
c h i l d o f (Descendant , Ances to r) .

a n c e s t o r o f 2 (Ancestor , Descendant) :−
a n c e s t o r o f 2 (Person , Descendant) ,
c h i l d o f (Person , Ance s to r) .

:/− a n c e s t o r o f 2 (X,X) .

GM (Department of Computer Science @ UIBK) Logic Programming 32/1

Unification

Definition

composition of substitutions

θ = {X1 7→ t1, . . . ,Xn 7→ tn}
and

σ = {Y1 7→ s1, . . . ,Yk 7→ sk}

is substitution

θσ = {X1 7→ t1σ, . . . ,Xn 7→ tnσ} ∪ {Yi 7→ si | Yi /∈ {X1, . . . ,Xn}}

Example

θ = {X 7→ g(Y ,Z),Y 7→ a}

θσ = {X 7→ g(Y , f (X)),Y 7→ a,Z 7→ f (X)}

σ = {X 7→ f (Y),Z 7→ f (X)}

σθ = {X 7→ f (a),Z 7→ f (g(Y ,Z)),Y 7→ a}

GM (Department of Computer Science @ UIBK) Logic Programming 33/1

Unification

Definition

composition of substitutions

θ = {X1 7→ t1, . . . ,Xn 7→ tn}
and

σ = {Y1 7→ s1, . . . ,Yk 7→ sk}

is substitution

θσ = {X1 7→ t1σ, . . . ,Xn 7→ tnσ} ∪ {Yi 7→ si | Yi /∈ {X1, . . . ,Xn}}

Example

θ = {X 7→ g(Y ,Z),Y 7→ a}

θσ = {X 7→ g(Y , f (X)),Y 7→ a,Z 7→ f (X)}

σ = {X 7→ f (Y),Z 7→ f (X)}

σθ = {X 7→ f (a),Z 7→ f (g(Y ,Z)),Y 7→ a}

GM (Department of Computer Science @ UIBK) Logic Programming 33/1

Unification

Definition

composition of substitutions

θ = {X1 7→ t1, . . . ,Xn 7→ tn}
and

σ = {Y1 7→ s1, . . . ,Yk 7→ sk}

is substitution

θσ = {X1 7→ t1σ, . . . ,Xn 7→ tnσ} ∪ {Yi 7→ si | Yi /∈ {X1, . . . ,Xn}}

Example

θ = {X 7→ g(Y ,Z),Y 7→ a} θσ = {X 7→ g(Y , f (X)),Y 7→ a,Z 7→ f (X)}

σ = {X 7→ f (Y),Z 7→ f (X)}

σθ = {X 7→ f (a),Z 7→ f (g(Y ,Z)),Y 7→ a}

GM (Department of Computer Science @ UIBK) Logic Programming 33/1

Unification

Definition

composition of substitutions

θ = {X1 7→ t1, . . . ,Xn 7→ tn}
and

σ = {Y1 7→ s1, . . . ,Yk 7→ sk}

is substitution

θσ = {X1 7→ t1σ, . . . ,Xn 7→ tnσ} ∪ {Yi 7→ si | Yi /∈ {X1, . . . ,Xn}}

Example

θ = {X 7→ g(Y ,Z),Y 7→ a} θσ = {X 7→ g(Y , f (X)),Y 7→ a,Z 7→ f (X)}

σ = {X 7→ f (Y),Z 7→ f (X)} σθ = {X 7→ f (a),Z 7→ f (g(Y ,Z)),Y 7→ a}

GM (Department of Computer Science @ UIBK) Logic Programming 33/1

Unification

Definition
• substitution θ is at least as general as substitution σ if ∃µ θµ = σ

• unifier of set S of terms is substitution θ such that ∀s, t ∈ S sθ = tθ

• most general unifier (mgu) is at least as general as any other unifier

Example

terms f (X , g(Y),X) and f (Z , g(U), h(U)) are unifiable

:

{X 7→ h(a),Y 7→ a,Z 7→ h(a),U 7→ a}

{U 7→ a}

{X 7→ h(U),Y 7→ U,Z 7→ h(U)}

mgu

{X 7→ h(g(U)),Y 7→ g(U),Z 7→ h(g(U)),U 7→ g(U)}

{U 7→ g(U)}

Theorem
• unifiable terms have mgu

• ∃ algorithm to compute mgu

GM (Department of Computer Science @ UIBK) Logic Programming 34/1

Unification

Definition
• substitution θ is at least as general as substitution σ if ∃µ θµ = σ

• unifier of set S of terms is substitution θ such that ∀s, t ∈ S sθ = tθ

• most general unifier (mgu) is at least as general as any other unifier

Example

terms f (X , g(Y),X) and f (Z , g(U), h(U)) are unifiable

:

{X 7→ h(a),Y 7→ a,Z 7→ h(a),U 7→ a}

{U 7→ a}

{X 7→ h(U),Y 7→ U,Z 7→ h(U)}

mgu

{X 7→ h(g(U)),Y 7→ g(U),Z 7→ h(g(U)),U 7→ g(U)}

{U 7→ g(U)}

Theorem
• unifiable terms have mgu

• ∃ algorithm to compute mgu

GM (Department of Computer Science @ UIBK) Logic Programming 34/1

Unification

Definition
• substitution θ is at least as general as substitution σ if ∃µ θµ = σ

• unifier of set S of terms is substitution θ such that ∀s, t ∈ S sθ = tθ

• most general unifier (mgu) is at least as general as any other unifier

Example

terms f (X , g(Y),X) and f (Z , g(U), h(U)) are unifiable

:

{X 7→ h(a),Y 7→ a,Z 7→ h(a),U 7→ a}

{U 7→ a}

{X 7→ h(U),Y 7→ U,Z 7→ h(U)}

mgu

{X 7→ h(g(U)),Y 7→ g(U),Z 7→ h(g(U)),U 7→ g(U)}

{U 7→ g(U)}

Theorem
• unifiable terms have mgu

• ∃ algorithm to compute mgu

GM (Department of Computer Science @ UIBK) Logic Programming 34/1

Unification

Definition
• substitution θ is at least as general as substitution σ if ∃µ θµ = σ

• unifier of set S of terms is substitution θ such that ∀s, t ∈ S sθ = tθ

• most general unifier (mgu) is at least as general as any other unifier

Example

terms f (X , g(Y),X) and f (Z , g(U), h(U)) are unifiable

:

{X 7→ h(a),Y 7→ a,Z 7→ h(a),U 7→ a}

{U 7→ a}

{X 7→ h(U),Y 7→ U,Z 7→ h(U)}

mgu

{X 7→ h(g(U)),Y 7→ g(U),Z 7→ h(g(U)),U 7→ g(U)}

{U 7→ g(U)}

Theorem
• unifiable terms have mgu

• ∃ algorithm to compute mgu

GM (Department of Computer Science @ UIBK) Logic Programming 34/1

Unification

Definition
• substitution θ is at least as general as substitution σ if ∃µ θµ = σ

• unifier of set S of terms is substitution θ such that ∀s, t ∈ S sθ = tθ

• most general unifier (mgu) is at least as general as any other unifier

Example

terms f (X , g(Y),X) and f (Z , g(U), h(U)) are unifiable:

{X 7→ h(a),Y 7→ a,Z 7→ h(a),U 7→ a}

{U 7→ a}

{X 7→ h(U),Y 7→ U,Z 7→ h(U)}

mgu

{X 7→ h(g(U)),Y 7→ g(U),Z 7→ h(g(U)),U 7→ g(U)}

{U 7→ g(U)}

Theorem
• unifiable terms have mgu

• ∃ algorithm to compute mgu

GM (Department of Computer Science @ UIBK) Logic Programming 34/1

Unification

Definition
• substitution θ is at least as general as substitution σ if ∃µ θµ = σ

• unifier of set S of terms is substitution θ such that ∀s, t ∈ S sθ = tθ

• most general unifier (mgu) is at least as general as any other unifier

Example

terms f (X , g(Y),X) and f (Z , g(U), h(U)) are unifiable:

{X 7→ h(a),Y 7→ a,Z 7→ h(a),U 7→ a}

{U 7→ a}

{X 7→ h(U),Y 7→ U,Z 7→ h(U)} mgu

{X 7→ h(g(U)),Y 7→ g(U),Z 7→ h(g(U)),U 7→ g(U)}

{U 7→ g(U)}

Theorem
• unifiable terms have mgu

• ∃ algorithm to compute mgu

GM (Department of Computer Science @ UIBK) Logic Programming 34/1

Unification

Definition
• substitution θ is at least as general as substitution σ if ∃µ θµ = σ

• unifier of set S of terms is substitution θ such that ∀s, t ∈ S sθ = tθ

• most general unifier (mgu) is at least as general as any other unifier

Example

terms f (X , g(Y),X) and f (Z , g(U), h(U)) are unifiable:

{X 7→ h(a),Y 7→ a,Z 7→ h(a),U 7→ a} {U 7→ a}
{X 7→ h(U),Y 7→ U,Z 7→ h(U)} mgu

{X 7→ h(g(U)),Y 7→ g(U),Z 7→ h(g(U)),U 7→ g(U)} {U 7→ g(U)}

Theorem
• unifiable terms have mgu

• ∃ algorithm to compute mgu

GM (Department of Computer Science @ UIBK) Logic Programming 34/1

Unification

Definition
• substitution θ is at least as general as substitution σ if ∃µ θµ = σ

• unifier of set S of terms is substitution θ such that ∀s, t ∈ S sθ = tθ

• most general unifier (mgu) is at least as general as any other unifier

Example

terms f (X , g(Y),X) and f (Z , g(U), h(U)) are unifiable:

{X 7→ h(a),Y 7→ a,Z 7→ h(a),U 7→ a} {U 7→ a}
{X 7→ h(U),Y 7→ U,Z 7→ h(U)} mgu

{X 7→ h(g(U)),Y 7→ g(U),Z 7→ h(g(U)),U 7→ g(U)} {U 7→ g(U)}

Theorem
• unifiable terms have mgu

• ∃ algorithm to compute mgu

GM (Department of Computer Science @ UIBK) Logic Programming 34/1

Unification

Definition
• substitution θ is at least as general as substitution σ if ∃µ θµ = σ

• unifier of set S of terms is substitution θ such that ∀s, t ∈ S sθ = tθ

• most general unifier (mgu) is at least as general as any other unifier

Example

terms f (X , g(Y),X) and f (Z , g(U), h(U)) are unifiable:

{X 7→ h(a),Y 7→ a,Z 7→ h(a),U 7→ a} {U 7→ a}
{X 7→ h(U),Y 7→ U,Z 7→ h(U)} mgu

{X 7→ h(g(U)),Y 7→ g(U),Z 7→ h(g(U)),U 7→ g(U)} {U 7→ g(U)}

Theorem
• unifiable terms have mgu

• ∃ algorithm to compute mgu

GM (Department of Computer Science @ UIBK) Logic Programming 34/1

Unification

Definition
• sequence E = u1

?
= v1, . . . , un

?
= vn is called an equality problem

• if E = X1
?
= v1, . . . ,Xn

?
= vn, with Xi pairwise distinct and

Xi 6∈ Var(vj) for all i , j , then E is in solved form

• let E = X1
?
= v1, . . . ,Xn

?
= vn be a equality problem in solved form

E induces substitution σE = {X1 7→ v1, . . . ,Xn 7→ vn}

Unification Algorithm

u
?
= u,E ⇒ E

f (s1, . . . , sn)
?
= f (t1, . . . , tn),E ⇒ s1

?
= t1, . . . , sn

?
= tn,E

f (s1, . . . , sn)
?
= g(t1, . . . , tn),E ⇒ ⊥ f 6= g

X
?
= t,E ⇒ X

?
= t,E{X 7→ t} X ∈ Var(E),X 6∈ Var(t)

X
?
= t,E ⇒ ⊥ X 6= t,X ∈ Var(t)

t
?
= X ,E ⇒ X

?
= t,E t 6∈ V

GM (Department of Computer Science @ UIBK) Logic Programming 35/1

Unification

Definition
• sequence E = u1

?
= v1, . . . , un

?
= vn is called an equality problem

• if E = X1
?
= v1, . . . ,Xn

?
= vn, with Xi pairwise distinct and

Xi 6∈ Var(vj) for all i , j , then E is in solved form

• let E = X1
?
= v1, . . . ,Xn

?
= vn be a equality problem in solved form

E induces substitution σE = {X1 7→ v1, . . . ,Xn 7→ vn}

Unification Algorithm

u
?
= u,E ⇒ E

f (s1, . . . , sn)
?
= f (t1, . . . , tn),E ⇒ s1

?
= t1, . . . , sn

?
= tn,E

f (s1, . . . , sn)
?
= g(t1, . . . , tn),E ⇒ ⊥ f 6= g

X
?
= t,E ⇒ X

?
= t,E{X 7→ t} X ∈ Var(E),X 6∈ Var(t)

X
?
= t,E ⇒ ⊥ X 6= t,X ∈ Var(t)

t
?
= X ,E ⇒ X

?
= t,E t 6∈ V

GM (Department of Computer Science @ UIBK) Logic Programming 35/1

Unification

Definition
• sequence E = u1

?
= v1, . . . , un

?
= vn is called an equality problem

• if E = X1
?
= v1, . . . ,Xn

?
= vn, with Xi pairwise distinct and

Xi 6∈ Var(vj) for all i , j , then E is in solved form

• let E = X1
?
= v1, . . . ,Xn

?
= vn be a equality problem in solved form

E induces substitution σE = {X1 7→ v1, . . . ,Xn 7→ vn}

Unification Algorithm

u
?
= u,E ⇒ E

f (s1, . . . , sn)
?
= f (t1, . . . , tn),E ⇒ s1

?
= t1, . . . , sn

?
= tn,E

f (s1, . . . , sn)
?
= g(t1, . . . , tn),E ⇒ ⊥ f 6= g

X
?
= t,E ⇒ X

?
= t,E{X 7→ t} X ∈ Var(E),X 6∈ Var(t)

X
?
= t,E ⇒ ⊥ X 6= t,X ∈ Var(t)

t
?
= X ,E ⇒ X

?
= t,E t 6∈ V

GM (Department of Computer Science @ UIBK) Logic Programming 35/1

Unification

Definition
• sequence E = u1

?
= v1, . . . , un

?
= vn is called an equality problem

• if E = X1
?
= v1, . . . ,Xn

?
= vn, with Xi pairwise distinct and

Xi 6∈ Var(vj) for all i , j , then E is in solved form

• let E = X1
?
= v1, . . . ,Xn

?
= vn be a equality problem in solved form

E induces substitution σE = {X1 7→ v1, . . . ,Xn 7→ vn}

Unification Algorithm

u
?
= u,E ⇒ E

f (s1, . . . , sn)
?
= f (t1, . . . , tn),E ⇒ s1

?
= t1, . . . , sn

?
= tn,E

f (s1, . . . , sn)
?
= g(t1, . . . , tn),E ⇒ ⊥ f 6= g

X
?
= t,E ⇒ X

?
= t,E{X 7→ t} X ∈ Var(E),X 6∈ Var(t)

X
?
= t,E ⇒ ⊥ X 6= t,X ∈ Var(t)

t
?
= X ,E ⇒ X

?
= t,E t 6∈ V

GM (Department of Computer Science @ UIBK) Logic Programming 35/1

Unification

Theorem

1 equality problems E is unifiable iff the unification algorithm stops
with a solved form

2 if E ⇒∗ E ′ such that E ′ is a solved form, then σE ′ is mgu of E

Example

f (X , g(Y),X)
?
= f (Z , g(U), h(U))

⇒ X
?
= Z , g(Y)

?
= g(U),X

?
= h(U)

⇒ X
?
= Z , g(Y)

?
= g(U),Z

?
= h(U)

⇒ X
?
= Z ,Y

?
= U,Z

?
= h(U)

⇒ X
?
= h(U),Y

?
= U,Z

?
= h(U) mgu

GM (Department of Computer Science @ UIBK) Logic Programming 36/1

Unification

Theorem

1 equality problems E is unifiable iff the unification algorithm stops
with a solved form

2 if E ⇒∗ E ′ such that E ′ is a solved form, then σE ′ is mgu of E

Example

f (X , g(Y),X)
?
= f (Z , g(U), h(U))

⇒ X
?
= Z , g(Y)

?
= g(U),X

?
= h(U)

⇒ X
?
= Z , g(Y)

?
= g(U),Z

?
= h(U)

⇒ X
?
= Z ,Y

?
= U,Z

?
= h(U)

⇒ X
?
= h(U),Y

?
= U,Z

?
= h(U) mgu

GM (Department of Computer Science @ UIBK) Logic Programming 36/1

Unification

Theorem

1 equality problems E is unifiable iff the unification algorithm stops
with a solved form

2 if E ⇒∗ E ′ such that E ′ is a solved form, then σE ′ is mgu of E

Example

f (X , g(Y),X)
?
= f (Z , g(U), h(U))

⇒ X
?
= Z , g(Y)

?
= g(U),X

?
= h(U)

⇒ X
?
= Z , g(Y)

?
= g(U),Z

?
= h(U)

⇒ X
?
= Z ,Y

?
= U,Z

?
= h(U)

⇒ X
?
= h(U),Y

?
= U,Z

?
= h(U) mgu

GM (Department of Computer Science @ UIBK) Logic Programming 36/1

Unification

Theorem

1 equality problems E is unifiable iff the unification algorithm stops
with a solved form

2 if E ⇒∗ E ′ such that E ′ is a solved form, then σE ′ is mgu of E

Example

f (X , g(Y),X)
?
= f (Z , g(U), h(U))

⇒ X
?
= Z , g(Y)

?
= g(U),X

?
= h(U)

⇒ X
?
= Z , g(Y)

?
= g(U),Z

?
= h(U)

⇒ X
?
= Z ,Y

?
= U,Z

?
= h(U)

⇒ X
?
= h(U),Y

?
= U,Z

?
= h(U) mgu

GM (Department of Computer Science @ UIBK) Logic Programming 36/1

Unification

Theorem

1 equality problems E is unifiable iff the unification algorithm stops
with a solved form

2 if E ⇒∗ E ′ such that E ′ is a solved form, then σE ′ is mgu of E

Example

f (X , g(Y),X)
?
= f (Z , g(U), h(U)) ⇒ X

?
= Z , g(Y)

?
= g(U),X

?
= h(U)

⇒ X
?
= Z , g(Y)

?
= g(U),Z

?
= h(U)

⇒ X
?
= Z ,Y

?
= U,Z

?
= h(U)

⇒ X
?
= h(U),Y

?
= U,Z

?
= h(U) mgu

GM (Department of Computer Science @ UIBK) Logic Programming 36/1

Unification

Theorem

1 equality problems E is unifiable iff the unification algorithm stops
with a solved form

2 if E ⇒∗ E ′ such that E ′ is a solved form, then σE ′ is mgu of E

Example

f (X , g(Y),X)
?
= f (Z , g(U), h(U)) ⇒ X

?
= Z , g(Y)

?
= g(U),X

?
= h(U)

⇒ X
?
= Z , g(Y)

?
= g(U),Z

?
= h(U)

⇒ X
?
= Z ,Y

?
= U,Z

?
= h(U)

⇒ X
?
= h(U),Y

?
= U,Z

?
= h(U) mgu

GM (Department of Computer Science @ UIBK) Logic Programming 36/1

Unification

Theorem

1 equality problems E is unifiable iff the unification algorithm stops
with a solved form

2 if E ⇒∗ E ′ such that E ′ is a solved form, then σE ′ is mgu of E

Example

f (X , g(Y),X)
?
= f (Z , g(U), h(U)) ⇒ X

?
= Z , g(Y)

?
= g(U),X

?
= h(U)

⇒ X
?
= Z , g(Y)

?
= g(U),Z

?
= h(U)

⇒ X
?
= Z ,Y

?
= U,Z

?
= h(U)

⇒ X
?
= h(U),Y

?
= U,Z

?
= h(U) mgu

GM (Department of Computer Science @ UIBK) Logic Programming 36/1

Unification

Theorem

1 equality problems E is unifiable iff the unification algorithm stops
with a solved form

2 if E ⇒∗ E ′ such that E ′ is a solved form, then σE ′ is mgu of E

Example

f (X , g(Y),X)
?
= f (Z , g(U), h(U)) ⇒ X

?
= Z , g(Y)

?
= g(U),X

?
= h(U)

⇒ X
?
= Z , g(Y)

?
= g(U),Z

?
= h(U)

⇒ X
?
= Z ,Y

?
= U,Z

?
= h(U)

⇒ X
?
= h(U),Y

?
= U,Z

?
= h(U)

mgu

GM (Department of Computer Science @ UIBK) Logic Programming 36/1

Unification

Theorem

1 equality problems E is unifiable iff the unification algorithm stops
with a solved form

2 if E ⇒∗ E ′ such that E ′ is a solved form, then σE ′ is mgu of E

Example

f (X , g(Y),X)
?
= f (Z , g(U), h(U)) ⇒ X

?
= Z , g(Y)

?
= g(U),X

?
= h(U)

⇒ X
?
= Z , g(Y)

?
= g(U),Z

?
= h(U)

⇒ X
?
= Z ,Y

?
= U,Z

?
= h(U)

⇒ X
?
= h(U),Y

?
= U,Z

?
= h(U) mgu

GM (Department of Computer Science @ UIBK) Logic Programming 36/1

