Logic Programming

Georg Moser

Department of Computer Science @ UIBK

Winter 2016

Summary of Last Lecture
2nllNM

Notation

- $A \leftarrow A_{1}, \ldots, A_{m}$ instead of $A:-A_{1}, \ldots, A_{m}$. for rules
$\bullet \leftarrow A_{1}, \ldots, A_{m}$ instead of ?- A_{1}, \ldots, A_{m}. for queries

Summary of Last Lecture

Definition

- goals (aka formulas) are constants or compound terms
- goals are typically non-ground

Definitions

- a clause or rule is an universally quantified logical formula of the form
$A:-B 1, B 2, \ldots, B n$
where A and the B_{i} 's are goals
- A is called the head of the clause; the B_{i} 's are called the body
- a rule of the form A :- is called a fact; we write facts simply A.

Definition
a logic program is a finite set of clauses

Outline

Outline of the Lecture

Monotone Logic Programs

introduction, basic constructs, logic foundations, unification, semantics, database and recursive programming, termination, complexity

Incomplete Data Structures and Constraints
incomplete data structures, definite clause grammars, constraint logic programming, answer set programming

Full Prolog

semantics (revisted), correctness proofs, meta-logical predicates, cuts nondeterministic programming, efficient programs, complexity

Example

```
child_of(joseph_l, leopold_l)
child_of(karl_VI, leopold_I).
child_of(maria_theresia, karl_VI)
child_of(joseph_ll, maria_theresia).
child_of(joseph_ll, franz_l).
child_of(leopold_Il, maria_theresia)
child_of(leopold_ll, franz_l).
child_of(maria_antoinette, maria_theresia).
child_of(franz_ll, leopold_ll).
male(franz_l). female(maria_theresia).
male(franz_ll). female(marie_antoinette).
male(joseph_l).
male(joseph_ll).
male(kar_VI).
male(leopold_I)
male(leopold_ll).
husband_wife(franz_l, maria_theresia)
```


Choosing Names

1 describe the arguments
typ1_typ2_typ3_typ4(Arg1, Arg2, Arg3, Arg4)

2 refine the name

$$
\begin{array}{ll}
\text { person_person (X,Y). } & \text { \% too coarse } \\
\text { child_person (Child, Person) } & \text { \% better } \\
\text { child_parent (Child, Parent) } & \text { \% perfect }
\end{array}
$$

3 indicate the relation

$$
\begin{array}{ll}
\text { child_ofparent(Child, Parent) } & \text { \% preposition } \\
\text { expression_improvedprogram (Exp, IExp) } & \text { \% participle } \\
\text { expr_improved (Exp, IExp) } & \\
\text { consists_of }(X, Y) & \text { \% verb }
\end{array}
$$

4 abbreviations

$$
\text { country_ / } 8
$$

Review of Basic Constructs

Definitions

- a fact describes a relation (predicate) between terms
child_of(joseph_II, maria_theresia).
which reads "Joseph II is the child of Maria Theresia."
- child of is the name of the relation
- the arity denotes the number of arguments
- predicates are also denoted as child_of/2
- fact that do not contain variables are ground

Fact

the order of the arguments is essential, hence it is important to choose meaningful names for predicates

Logic Foundations

Definition

- a query tests whether a relation holds
:- child_of(joseph_Il, maria_theresia).
- queries are equivalent to use cases, as they are checked whenever the program is compiled

Why does a Query fail?
1 the query doesn't follow from the data represented in the program; the negation of the query does not necessarily hold
2 the program is a complete representation; the negation of the query does hold

Fact

Horn logic cannot distinguish between these options

Some Background in Logic

Fact
a rule
mother_of(Mum, Child) :-
child_of(Child, Mum),
female (Mum).
represents a logical formula:

$$
\begin{gathered}
\forall x_{\text {Mum }} \forall x_{\text {Child }}\left(\text { Child_of }\left(x_{\text {Child }}, x_{\text {Mum }}\right) \wedge \text { Female }\left(x_{\text {Mum }}\right) \rightarrow\right. \\
\\
\left.\rightarrow \operatorname{Mother_ of~}\left(x_{\text {Mum }}, x_{\text {Child }}\right)\right)
\end{gathered}
$$

Definition
formulas of this form are called Horn formulas (or Horn Clauses); thus a logic program is a set of Horn formulas

Logic Foundations

Definition

a negative query verifies that the goal fails

$$
: /-c h i l d _o f(j o s e p h-I I, ~ f r i e d r i c h-I I) .
$$

Definition

a general query with variables provide answer substitutions

$$
\begin{aligned}
& :-\quad \text { child_of(Child, maria_theresia) } \\
& :- \text { child_of(-Child, maria_theresia). } \\
& : /-\quad \text { child_of(Child, Child). }
\end{aligned}
$$

NB: occurring variables are existentially quantified (inside negation)

Definition

a complex query combines several goals and typically make use of shared variables
:- child_of(joseph_II, Mum), female(Mum).

Computation is Inference

Fact
let P be a program and G a goal; a computation of G from P is the verification of a logical consequence: $P \models G$

Fact (revisited)
Horn logic cannot distinguish whether or not P represents the specification completely

Why only Horn formulas?
consider the "program":

$$
\forall x(\operatorname{Even}(x) \vee \operatorname{Odd}(x))
$$

then Even(1) or $\operatorname{Odd}(1)$ follows as consequence; that is, the program semantic is non-deterministic

GM (Department of Computer Science © UI

Logic Foundations

How to Read a Program

- procedurally: look at the inference steps
- declarative: look at the consequence relation

Tower of Hanoi in Prolog

hanoi($0,,_{,},,_{\text {, }}$).
hanoi ($\mathrm{N}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}$) :-
$\mathrm{N}>0, \mathrm{M}$ is $\mathrm{N}-1$,
hanoi (M, X, Z, Y),
move($\mathrm{N}, \mathrm{X}, \mathrm{Y}$)
hanoi ($\mathrm{M}, \mathrm{Z}, \mathrm{Y}, \mathrm{X}$).
move(D,X,Y) :-
write('move disk '), write(D),
write(' from '), write(X)
write(' to '), write(Y), nl.
?- hanoi(4, a, c,b).

Recursive Rules

```
Example
grandpartent(Ancestor,Descendant) :-
    parent(Ancestor, Person), parent(Person,Descendant).
greatgrandpartent(Ancestor, Descendant) :-
    parent(Ancestor,Person), grandpartent(Person,Descendant).
greatgreatgrandpartent(Ancestor,Descendant) :-
    parent(Ancestor,Person), greatgrandpartent(Person, Descendant)
\(\vdots\)
```


Example

ancestor(Ancestor,Descendant) :parent(Ancestor, Person), ancestor(Person, Descendant).
ancestor(Ancestor, Descendent) :- parent(Ancestor, Descendent).

Example

\% recursive rule
married_with (Husband, Wife) :-
husband_wife (Husband, Wife).
married_with (PersonA, PersonB) :-
married_with (PersonB, PersonA).
\% non-recursive rule
married_with (Husband, Wife) :-
husband_wife (Husband, Wife).
married_with (Wife, Husband) :-
husband_wife(Husband, Wife).

Definition

- a rule consists of a head and a body, separated by ":-"

```
mother_of(Mum, Child) :-
    child_of(Child, Mum),
    female (Mum).
```

- a rule is recursive, if the body contains the predicate in the head

Definitions

- we distinguish between the set of solutions of a query and the sequence of solutions
- the sequence may contain redundant solutions
- redundant solutions may be due to existential variables

Example

$$
\begin{aligned}
& \text { ancestor_of(Ancestor, Descendant): } \begin{array}{l}
\text { child_of(Descendant, Ancestor). } \\
\text { ancestor_of(Ancestor, Descendant): } \\
\quad \text { child_of(Person, Ancestor), } \\
\quad \text { ancestor_of(Person, Descendant). } \\
: /-\quad \text { ancestor_of }(X, X) .
\end{array} .
\end{aligned}
$$

Example

ancestor_of_2(Ancestor, Descendant) :child_of(Descendant, Ancestor).
ancestor_of_2 (Ancestor, Descendant) :ancestor_of_2(Person, Descendant), child_of(Person, Ancestor).
:/ - ancestor_of_2 (X,X).

Definition

composition of substitutions

$$
\theta=\left\{X_{1} \mapsto t_{1}, \ldots, X_{n} \mapsto t_{n}\right\}
$$

and

$$
\sigma=\left\{Y_{1} \mapsto s_{1}, \ldots, Y_{k} \mapsto s_{k}\right\}
$$

is substitution

$$
\theta \sigma=\left\{X_{1} \mapsto t_{1} \sigma, \ldots, X_{n} \mapsto t_{n} \sigma\right\} \cup\left\{Y_{i} \mapsto s_{i} \mid Y_{i} \notin\left\{X_{1}, \ldots, X_{n}\right\}\right\}
$$

Example

$$
\begin{array}{rlrl}
\theta & =\{X \mapsto g(Y, Z), Y \mapsto a\} & \theta \sigma & =\{X \mapsto g(Y, f(X)), Y \mapsto a, Z \mapsto f(X)\} \\
\sigma & =\{X \mapsto f(Y), Z \mapsto f(X)\} & \sigma \theta=\{X \mapsto f(a), Z \mapsto f(g(Y, Z)), Y \mapsto a\}
\end{array}
$$

Unification

Definition

- sequence $E=u_{1} \stackrel{?}{=} v_{1}, \ldots, u_{n} \stackrel{?}{=} v_{n}$ is called an equality problem
- if $E=X_{1} \stackrel{?}{=} v_{1}, \ldots, X_{n} \stackrel{?}{=} v_{n}$, with X_{i} pairwise distinct and $X_{i} \notin \operatorname{Var}\left(v_{j}\right)$ for all i, j, then E is in solved form
- let $E=X_{1} \stackrel{?}{=} v_{1}, \ldots, X_{n} \stackrel{?}{=} v_{n}$ be a equality problem in solved form E induces substitution $\sigma_{E}=\left\{X_{1} \mapsto v_{1}, \ldots, X_{n} \mapsto v_{n}\right\}$

Unification Algorithm

$$
u \stackrel{?}{=} u, E \Rightarrow E
$$

$$
\begin{aligned}
& f\left(s_{1}, \ldots, s_{n}\right) \stackrel{?}{=} f\left(t_{1}, \ldots, t_{n}\right), E \Rightarrow s_{1} \stackrel{?}{=} t_{1}, \ldots, s_{n} \stackrel{?}{=} t_{n}, E \\
& f\left(s_{1}, \ldots, s_{n}\right) \stackrel{?}{=} g\left(t_{1}, \ldots, t_{n}\right), E \Rightarrow \perp \quad f \neq g \\
& X \stackrel{?}{=} t, E \Rightarrow X \stackrel{?}{=} t, E\{X \mapsto t\} \quad X \in \operatorname{Var}(E), X \notin \operatorname{V} \operatorname{ar}(t) \\
& X \stackrel{?}{=} t, E \Rightarrow \perp \quad X \neq t, X \in \operatorname{Var}(t) \\
& t \stackrel{?}{=} X, E \Rightarrow X \stackrel{?}{=} t, E \quad t \notin \mathcal{V}
\end{aligned}
$$

Definition

- substitution θ is at least as general as substitution σ if $\exists \mu \theta \mu=\sigma$
- unifier of set S of terms is substitution θ such that $\forall s, t \in S s \theta=t \theta$
- most general unifier (mgu) is at least as general as any other unifier

Example
terms $f(X, g(Y), X)$ and $f(Z, g(U), h(U))$ are unifiable:

$$
\begin{aligned}
& \{X \mapsto h(a), Y \mapsto a, Z \mapsto h(a), U \mapsto a\} \\
& \{X \mapsto h(U), Y \mapsto U, Z \mapsto h(U)\} \\
& \{X \mapsto h(g(U)), Y \mapsto g(U), Z \mapsto h(g(U)), U \mapsto g(U)\}
\end{aligned}
$$

Theorem

- unifiable terms have mgu
- \exists algorithm to compute mgu

GM (Department of Computer Science @ UI

Theorem

1 equality problems E is unifiable iff the unification algorithm stops with a solved form
2 if $E \Rightarrow^{*} E^{\prime}$ such that E^{\prime} is a solved form, then $\sigma_{E^{\prime}}$ is mgu of E

Example

$$
\begin{aligned}
f(X, g(Y), X) \stackrel{?}{=} f(Z, g(U), h(U)) & \Rightarrow X \stackrel{?}{=} Z, g(Y) \stackrel{?}{=} g(U), X \stackrel{?}{=} h(U) \\
& \Rightarrow X \stackrel{?}{=} Z, g(Y) \stackrel{?}{=} g(U), Z \stackrel{?}{=} h(U) \\
& \Rightarrow X \stackrel{?}{=} Z, Y \stackrel{?}{=} U, Z \stackrel{?}{=} h(U) \\
& \Rightarrow X \stackrel{?}{=} h(U), Y \stackrel{?}{=} U, Z \stackrel{?}{=} h(U) \text { mgu }
\end{aligned}
$$

