
Logic Programming

Georg Moser

Department of Computer Science @ UIBK

Winter 2016

http://cl-informatik.uibk.ac.at

Summary of Last Lecture

Summary of Last Lecture

Example

a n c e s t o r o f (Ancestor , Descendant) :−
c h i l d o f (Descendant , Ances to r) .

a n c e s t o r o f (Ancestor , Descendant) :−
c h i l d o f (Person , Ances to r) ,
a n c e s t o r o f (Person , Descendant) .

Example

a n c e s t o r o f 2 (Ancestor , Descendant) :−
c h i l d o f (Descendant , Ances to r) .

a n c e s t o r o f 2 (Ancestor , Descendant) :−
a n c e s t o r o f 2 (Person , Descendant) ,
c h i l d o f (Person , Ance s to r) .

GM (Department of Computer Science @ UIBK) Logic Programming 37/1

Summary of Last Lecture

Outline of the Lecture

Monotone Logic Programs

introduction, basic constructs, logic foundations, unification, semantics,
database and recursive programming, termination, complexity

Incomplete Data Structures and Constraints

incomplete data structures, definite clause grammars, constraint logic pro-
gramming, answer set programming

Full Prolog

semantics (revisted), correctness proofs, meta-logical predicates, cuts non-
deterministic programming, efficient programs, complexity

GM (Department of Computer Science @ UIBK) Logic Programming 38/1

Summary of Last Lecture

Outline of the Lecture

Monotone Logic Programs

introduction, basic constructs, logic foundations, unification, semantics,
database and recursive programming, termination, complexity

Incomplete Data Structures and Constraints

incomplete data structures, definite clause grammars, constraint logic pro-
gramming, answer set programming

Full Prolog

semantics (revisted), correctness proofs, meta-logical predicates, cuts non-
deterministic programming, efficient programs, complexity

GM (Department of Computer Science @ UIBK) Logic Programming 38/1

Monotone Logic Programs

Non-Monotonic Reasoning

Definition

an operator Ψ is called monotone if A ⊆ B implies Ψ(A) ⊆ Ψ(B)

Fact

suppose Ψ acts on sets of formulas and interprets the consequence
relation of a logic program P without negation, then Ψ is monotone

Definition

a monotone logic program is a logic program without negation (\+)

GM (Department of Computer Science @ UIBK) Logic Programming 39/1

Monotone Logic Programs

Non-Monotonic Reasoning

Definition

an operator Ψ is called monotone if A ⊆ B implies Ψ(A) ⊆ Ψ(B)

Fact

suppose Ψ acts on sets of formulas and interprets the consequence
relation of a logic program P without negation, then Ψ is monotone

Definition

a monotone logic program is a logic program without negation (\+)

GM (Department of Computer Science @ UIBK) Logic Programming 39/1

Monotone Logic Programs

Monotonicity Criticism

Example (Minsky’s Example)

on (a , b) .
on (d , a) .
on (d , c) .
c l e a r (Y) :−

n o t e x i s t s x o n (Y) .

n o t e x i s t s x o n (Y) :−
on (X ,Y) , ! , f a i l .

n o t e x i s t s x o n (Y) .

Observations
• in this block-world example :− clear (d) holds

• but monotoncity doesn’t; addition of the fact on(e,d). renders
:− clear (d) false

GM (Department of Computer Science @ UIBK) Logic Programming 40/1

Monotone Logic Programs

Monotonicity Criticism

Example (Minsky’s Example)

on (a , b) .
on (d , a) .
on (d , c) .
c l e a r (Y) :−

n o t e x i s t s x o n (Y) .

n o t e x i s t s x o n (Y) :−
on (X ,Y) , ! , f a i l .

n o t e x i s t s x o n (Y) .

Observations
• in this block-world example :− clear (d) holds

• but monotoncity doesn’t; addition of the fact on(e,d). renders
:− clear (d) false

GM (Department of Computer Science @ UIBK) Logic Programming 40/1

Theory of Monotone Logic Programs

Theory of Monotone Logic Programs

Definitions
• goal clause

:- B1, . . . ,Bn

consists of sequence B1, . . . ,Bn of goals

• empty goal clause :- is denoted by 2

• resolvent of goal clause :- B1, . . . ,Bi , . . . ,Bm and rule
A :- A1, . . . ,An

is goal clause

:- B1σ, . . . ,Bi−1σ,A1σ, . . . ,Anσ,Bi+1σ . . . ,Bmσ

provided Bi (selected goal) and A unify with most general unifier σ

NB: see week 2 for the most general unifier

GM (Department of Computer Science @ UIBK) Logic Programming 41/1

Theory of Monotone Logic Programs

Theory of Monotone Logic Programs

Definitions
• goal clause

:- B1, . . . ,Bn

consists of sequence B1, . . . ,Bn of goals

• empty goal clause :- is denoted by 2

• resolvent of goal clause :- B1, . . . ,Bi , . . . ,Bm and rule
A :- A1, . . . ,An

is goal clause

:- B1σ, . . . ,Bi−1σ,A1σ, . . . ,Anσ,Bi+1σ . . . ,Bmσ

provided Bi (selected goal) and A unify with most general unifier σ

NB: see week 2 for the most general unifier

GM (Department of Computer Science @ UIBK) Logic Programming 41/1

Theory of Monotone Logic Programs

Theory of Monotone Logic Programs

Definitions
• goal clause

:- B1, . . . ,Bn

consists of sequence B1, . . . ,Bn of goals

• empty goal clause :- is denoted by 2

• resolvent of goal clause :- B1, . . . ,Bi , . . . ,Bm and rule
A :- A1, . . . ,An

is goal clause

:- B1σ, . . . ,Bi−1σ,A1σ, . . . ,Anσ,Bi+1σ . . . ,Bmσ

provided Bi (selected goal) and A unify with most general unifier σ

NB: see week 2 for the most general unifier

GM (Department of Computer Science @ UIBK) Logic Programming 41/1

Theory of Monotone Logic Programs

Theory of Monotone Logic Programs

Definitions
• goal clause

:- B1, . . . ,Bn

consists of sequence B1, . . . ,Bn of goals

• empty goal clause :- is denoted by 2

• resolvent of goal clause :- B1, . . . ,Bi , . . . ,Bm and rule
A :- A1, . . . ,An

is goal clause

:- B1σ, . . . ,Bi−1σ,A1σ, . . . ,Anσ,Bi+1σ . . . ,Bmσ

provided Bi (selected goal) and A unify with most general unifier σ

NB: see week 2 for the most general unifier

GM (Department of Computer Science @ UIBK) Logic Programming 41/1

Theory of Monotone Logic Programs

Theory of Monotone Logic Programs

Definitions
• goal clause

:- B1, . . . ,Bn

consists of sequence B1, . . . ,Bn of goals

• empty goal clause :- is denoted by 2

• resolvent of goal clause :- B1, . . . ,Bi , . . . ,Bm and rule
A :- A1, . . . ,An

is goal clause

:- B1σ, . . . ,Bi−1σ,A1σ, . . . ,Anσ,Bi+1σ . . . ,Bmσ

provided Bi (selected goal) and A unify with most general unifier σ

NB: see week 2 for the most general unifier

GM (Department of Computer Science @ UIBK) Logic Programming 41/1

Theory of Monotone Logic Programs

Selective Linear Definite Clause Resolution

Definitions
• SLD-derivation of logic program P and goal clause G consists of

1 maximal sequence G0,G1,G2, . . . of goal clauses

2 sequence C0,C1,C2, . . . of variants of rules in P

3 sequence σ0, σ1, σ2, . . . of substitutions

such that
• G0 = G

• Gi+1 is resolvent of Gi and Ci with mgu σi

• Ci has no variables in common with G ,C0, . . . ,Ci−1

• SLD refutation is finite SLD derivation ending in 2

• computed answer substitution of SLD refutation of P and G with
substitutions σ0, σ1, . . . , σm is restriction of σ0σ1 · · ·σm to variables
in G

GM (Department of Computer Science @ UIBK) Logic Programming 42/1

Theory of Monotone Logic Programs

Selective Linear Definite Clause Resolution

Definitions
• SLD-derivation of logic program P and goal clause G consists of

1 maximal sequence G0,G1,G2, . . . of goal clauses

2 sequence C0,C1,C2, . . . of variants of rules in P

3 sequence σ0, σ1, σ2, . . . of substitutions

such that
• G0 = G

• Gi+1 is resolvent of Gi and Ci with mgu σi

• Ci has no variables in common with G ,C0, . . . ,Ci−1

• SLD refutation is finite SLD derivation ending in 2

• computed answer substitution of SLD refutation of P and G with
substitutions σ0, σ1, . . . , σm is restriction of σ0σ1 · · ·σm to variables
in G

GM (Department of Computer Science @ UIBK) Logic Programming 42/1

Theory of Monotone Logic Programs

Selective Linear Definite Clause Resolution

Definitions
• SLD-derivation of logic program P and goal clause G consists of

1 maximal sequence G0,G1,G2, . . . of goal clauses

2 sequence C0,C1,C2, . . . of variants of rules in P

3 sequence σ0, σ1, σ2, . . . of substitutions

such that
• G0 = G

• Gi+1 is resolvent of Gi and Ci with mgu σi

• Ci has no variables in common with G ,C0, . . . ,Ci−1

• SLD refutation is finite SLD derivation ending in 2

• computed answer substitution of SLD refutation of P and G with
substitutions σ0, σ1, . . . , σm is restriction of σ0σ1 · · ·σm to variables
in G

GM (Department of Computer Science @ UIBK) Logic Programming 42/1

Theory of Monotone Logic Programs

Selective Linear Definite Clause Resolution

Definitions
• SLD-derivation of logic program P and goal clause G consists of

1 maximal sequence G0,G1,G2, . . . of goal clauses

2 sequence C0,C1,C2, . . . of variants of rules in P

3 sequence σ0, σ1, σ2, . . . of substitutions

such that
• G0 = G

• Gi+1 is resolvent of Gi and Ci with mgu σi

• Ci has no variables in common with G ,C0, . . . ,Ci−1

• SLD refutation is finite SLD derivation ending in 2

• computed answer substitution of SLD refutation of P and G with
substitutions σ0, σ1, . . . , σm is restriction of σ0σ1 · · ·σm to variables
in G

GM (Department of Computer Science @ UIBK) Logic Programming 42/1

Theory of Monotone Logic Programs

Selective Linear Definite Clause Resolution

Definitions
• SLD-derivation of logic program P and goal clause G consists of

1 maximal sequence G0,G1,G2, . . . of goal clauses

2 sequence C0,C1,C2, . . . of variants of rules in P

3 sequence σ0, σ1, σ2, . . . of substitutions

such that
• G0 = G

• Gi+1 is resolvent of Gi and Ci with mgu σi

• Ci has no variables in common with G ,C0, . . . ,Ci−1

• SLD refutation is finite SLD derivation ending in 2

• computed answer substitution of SLD refutation of P and G with
substitutions σ0, σ1, . . . , σm is restriction of σ0σ1 · · ·σm to variables
in G

GM (Department of Computer Science @ UIBK) Logic Programming 42/1

Theory of Monotone Logic Programs

Selective Linear Definite Clause Resolution

Definitions
• SLD-derivation of logic program P and goal clause G consists of

1 maximal sequence G0,G1,G2, . . . of goal clauses

2 sequence C0,C1,C2, . . . of variants of rules in P

3 sequence σ0, σ1, σ2, . . . of substitutions

such that
• G0 = G

• Gi+1 is resolvent of Gi and Ci with mgu σi

• Ci has no variables in common with G ,C0, . . . ,Ci−1

• SLD refutation is finite SLD derivation ending in 2

• computed answer substitution of SLD refutation of P and G with
substitutions σ0, σ1, . . . , σm is restriction of σ0σ1 · · ·σm to variables
in G

GM (Department of Computer Science @ UIBK) Logic Programming 42/1

Theory of Monotone Logic Programs

Selective Linear Definite Clause Resolution

Definitions
• SLD-derivation of logic program P and goal clause G consists of

1 maximal sequence G0,G1,G2, . . . of goal clauses

2 sequence C0,C1,C2, . . . of variants of rules in P

3 sequence σ0, σ1, σ2, . . . of substitutions

such that
• G0 = G

• Gi+1 is resolvent of Gi and Ci with mgu σi

• Ci has no variables in common with G ,C0, . . . ,Ci−1

• SLD refutation is finite SLD derivation ending in 2

• computed answer substitution of SLD refutation of P and G with
substitutions σ0, σ1, . . . , σm is restriction of σ0σ1 · · ·σm to variables
in G

GM (Department of Computer Science @ UIBK) Logic Programming 42/1

Theory of Monotone Logic Programs

Selective Linear Definite Clause Resolution

Definitions
• SLD-derivation of logic program P and goal clause G consists of

1 maximal sequence G0,G1,G2, . . . of goal clauses

2 sequence C0,C1,C2, . . . of variants of rules in P

3 sequence σ0, σ1, σ2, . . . of substitutions

such that
• G0 = G

• Gi+1 is resolvent of Gi and Ci with mgu σi

• Ci has no variables in common with G ,C0, . . . ,Ci−1

• SLD refutation is finite SLD derivation ending in 2

• computed answer substitution of SLD refutation of P and G with
substitutions σ0, σ1, . . . , σm is restriction of σ0σ1 · · ·σm to variables
in G

GM (Department of Computer Science @ UIBK) Logic Programming 42/1

Theory of Monotone Logic Programs

Selective Linear Definite Clause Resolution

Definitions
• SLD-derivation of logic program P and goal clause G consists of

1 maximal sequence G0,G1,G2, . . . of goal clauses

2 sequence C0,C1,C2, . . . of variants of rules in P

3 sequence σ0, σ1, σ2, . . . of substitutions

such that
• G0 = G

• Gi+1 is resolvent of Gi and Ci with mgu σi

• Ci has no variables in common with G ,C0, . . . ,Ci−1

• SLD refutation is finite SLD derivation ending in 2

• computed answer substitution of SLD refutation of P and G with
substitutions σ0, σ1, . . . , σm is restriction of σ0σ1 · · ·σm to variables
in G

GM (Department of Computer Science @ UIBK) Logic Programming 42/1

Theory of Monotone Logic Programs

Example

plus(0,X,X).

plus(s(X),Y,s(Z)) : − plus(X,Y,Z).

times(0,X,0).

times(s(X),Y,Z) : − times(X,Y,U), plus(U,Y,Z).

: − times(X,X,Y)

SLD-refutation

G0 : : − times(X,X,Y)

C0 : times(s(X0),Y0,Z0) : − times(X0,Y0,U0), plus(U0,Y0,Z0)

σ0 : X 7→ s(X0), Y0 7→ s(X0), Z0 7→ Y

G1 : : − times(X0,s(X0),U0), plus(U0,s(X0),Y)

C1 : times(0,X1,0).

σ1 : X0 7→ 0, X1 7→ s(0), U0 7→ O

G2 : : − plus(0,s(0),Y)

C2 : plus(0,X2,X2).

σ2 : X2 7→ s(0), Y 7→ s(0)

G3 : 2 computed answer substitution: X 7→ s(0), Y 7→ s(0)

GM (Department of Computer Science @ UIBK) Logic Programming 43/1

Theory of Monotone Logic Programs

Example

plus(0,X,X).

plus(s(X),Y,s(Z)) : − plus(X,Y,Z).

times(0,X,0).

times(s(X),Y,Z) : − times(X,Y,U), plus(U,Y,Z).

: − times(X,X,Y)

SLD-refutation

G0 : : − times(X,X,Y)

C0 : times(s(X0),Y0,Z0) : − times(X0,Y0,U0), plus(U0,Y0,Z0)

σ0 : X 7→ s(X0), Y0 7→ s(X0), Z0 7→ Y

G1 : : − times(X0,s(X0),U0), plus(U0,s(X0),Y)

C1 : times(0,X1,0).

σ1 : X0 7→ 0, X1 7→ s(0), U0 7→ O

G2 : : − plus(0,s(0),Y)

C2 : plus(0,X2,X2).

σ2 : X2 7→ s(0), Y 7→ s(0)

G3 : 2 computed answer substitution: X 7→ s(0), Y 7→ s(0)

GM (Department of Computer Science @ UIBK) Logic Programming 43/1

Theory of Monotone Logic Programs

Example

plus(0,X,X).

plus(s(X),Y,s(Z)) : − plus(X,Y,Z).

times(0,X,0).

times(s(X),Y,Z) : − times(X,Y,U), plus(U,Y,Z).

: − times(X,X,Y)

SLD-refutation

G0 : : − times(X,X,Y)

C0 : times(s(X0),Y0,Z0) : − times(X0,Y0,U0), plus(U0,Y0,Z0)

σ0 :

X 7→ s(X0), Y0 7→ s(X0), Z0 7→ Y

G1 : : − times(X0,s(X0),U0), plus(U0,s(X0),Y)

C1 : times(0,X1,0).

σ1 : X0 7→ 0, X1 7→ s(0), U0 7→ O

G2 : : − plus(0,s(0),Y)

C2 : plus(0,X2,X2).

σ2 : X2 7→ s(0), Y 7→ s(0)

G3 : 2 computed answer substitution: X 7→ s(0), Y 7→ s(0)

GM (Department of Computer Science @ UIBK) Logic Programming 43/1

Theory of Monotone Logic Programs

Example

plus(0,X,X).

plus(s(X),Y,s(Z)) : − plus(X,Y,Z).

times(0,X,0).

times(s(X),Y,Z) : − times(X,Y,U), plus(U,Y,Z).

: − times(X,X,Y)

SLD-refutation

G0 : : − times(X,X,Y)

C0 : times(s(X0),Y0,Z0) : − times(X0,Y0,U0), plus(U0,Y0,Z0)

σ0 : X 7→ s(X0), Y0 7→ s(X0), Z0 7→ Y

G1 : : − times(X0,s(X0),U0), plus(U0,s(X0),Y)

C1 : times(0,X1,0).

σ1 : X0 7→ 0, X1 7→ s(0), U0 7→ O

G2 : : − plus(0,s(0),Y)

C2 : plus(0,X2,X2).

σ2 : X2 7→ s(0), Y 7→ s(0)

G3 : 2 computed answer substitution: X 7→ s(0), Y 7→ s(0)

GM (Department of Computer Science @ UIBK) Logic Programming 43/1

Theory of Monotone Logic Programs

Example

plus(0,X,X).

plus(s(X),Y,s(Z)) : − plus(X,Y,Z).

times(0,X,0).

times(s(X),Y,Z) : − times(X,Y,U), plus(U,Y,Z).

: − times(X,X,Y)

SLD-refutation

G0 : : − times(X,X,Y)

C0 : times(s(X0),Y0,Z0) : − times(X0,Y0,U0), plus(U0,Y0,Z0)

σ0 : X 7→ s(X0), Y0 7→ s(X0), Z0 7→ Y

G1 : : − times(X0,s(X0),U0), plus(U0,s(X0),Y)

C1 : times(0,X1,0).

σ1 : X0 7→ 0, X1 7→ s(0), U0 7→ O

G2 : : − plus(0,s(0),Y)

C2 : plus(0,X2,X2).

σ2 : X2 7→ s(0), Y 7→ s(0)

G3 : 2 computed answer substitution: X 7→ s(0), Y 7→ s(0)

GM (Department of Computer Science @ UIBK) Logic Programming 43/1

Theory of Monotone Logic Programs

Example

plus(0,X,X).

plus(s(X),Y,s(Z)) : − plus(X,Y,Z).

times(0,X,0).

times(s(X),Y,Z) : − times(X,Y,U), plus(U,Y,Z).

: − times(X,X,Y)

SLD-refutation

G0 : : − times(X,X,Y)

C0 : times(s(X0),Y0,Z0) : − times(X0,Y0,U0), plus(U0,Y0,Z0)

σ0 : X 7→ s(X0), Y0 7→ s(X0), Z0 7→ Y

G1 : : − times(X0,s(X0),U0), plus(U0,s(X0),Y)

C1 : times(0,X1,0).

σ1 : X0 7→ 0, X1 7→ s(0), U0 7→ O

G2 : : − plus(0,s(0),Y)

C2 : plus(0,X2,X2).

σ2 : X2 7→ s(0), Y 7→ s(0)

G3 : 2 computed answer substitution: X 7→ s(0), Y 7→ s(0)

GM (Department of Computer Science @ UIBK) Logic Programming 43/1

Theory of Monotone Logic Programs

Example

plus(0,X,X).

plus(s(X),Y,s(Z)) : − plus(X,Y,Z).

times(0,X,0).

times(s(X),Y,Z) : − times(X,Y,U), plus(U,Y,Z).

: − times(X,X,Y)

SLD-refutation

G0 : : − times(X,X,Y)

C0 : times(s(X0),Y0,Z0) : − times(X0,Y0,U0), plus(U0,Y0,Z0)

σ0 : X 7→ s(X0), Y0 7→ s(X0), Z0 7→ Y

G1 : : − times(X0,s(X0),U0), plus(U0,s(X0),Y)

C1 : times(0,X1,0).

σ1 : X0 7→ 0, X1 7→ s(0), U0 7→ O

G2 : : − plus(0,s(0),Y)

C2 : plus(0,X2,X2).

σ2 : X2 7→ s(0), Y 7→ s(0)

G3 : 2 computed answer substitution: X 7→ s(0), Y 7→ s(0)

GM (Department of Computer Science @ UIBK) Logic Programming 43/1

Theory of Monotone Logic Programs

Example

plus(0,X,X).

plus(s(X),Y,s(Z)) : − plus(X,Y,Z).

times(0,X,0).

times(s(X),Y,Z) : − times(X,Y,U), plus(U,Y,Z).

: − times(X,X,Y)

SLD-refutation

G0 : : − times(X,X,Y)

C0 : times(s(X0),Y0,Z0) : − times(X0,Y0,U0), plus(U0,Y0,Z0)

σ0 : X 7→ s(X0), Y0 7→ s(X0), Z0 7→ Y

G1 : : − times(X0,s(X0),U0), plus(U0,s(X0),Y)

C1 : times(0,X1,0).

σ1 : X0 7→ 0, X1 7→ s(0), U0 7→ O

G2 : : − plus(0,s(0),Y)

C2 : plus(0,X2,X2).

σ2 : X2 7→ s(0), Y 7→ s(0)

G3 : 2 computed answer substitution: X 7→ s(0), Y 7→ s(0)

GM (Department of Computer Science @ UIBK) Logic Programming 43/1

Theory of Monotone Logic Programs

Example

plus(0,X,X).

plus(s(X),Y,s(Z)) : − plus(X,Y,Z).

times(0,X,0).

times(s(X),Y,Z) : − times(X,Y,U), plus(U,Y,Z).

: − times(X,X,Y)

SLD-refutation

G0 : : − times(X,X,Y)

C0 : times(s(X0),Y0,Z0) : − times(X0,Y0,U0), plus(U0,Y0,Z0)

σ0 : X 7→ s(X0), Y0 7→ s(X0), Z0 7→ Y

G1 : : − times(X0,s(X0),U0), plus(U0,s(X0),Y)

C1 : times(0,X1,0).

σ1 : X0 7→ 0, X1 7→ s(0), U0 7→ O

G2 : : − plus(0,s(0),Y)

C2 : plus(0,X2,X2).

σ2 : X2 7→ s(0), Y 7→ s(0)

G3 : 2

computed answer substitution: X 7→ s(0), Y 7→ s(0)

GM (Department of Computer Science @ UIBK) Logic Programming 43/1

Theory of Monotone Logic Programs

Example

plus(0,X,X).

plus(s(X),Y,s(Z)) : − plus(X,Y,Z).

times(0,X,0).

times(s(X),Y,Z) : − times(X,Y,U), plus(U,Y,Z).

: − times(X,X,Y)

SLD-refutation

G0 : : − times(X,X,Y)

C0 : times(s(X0),Y0,Z0) : − times(X0,Y0,U0), plus(U0,Y0,Z0)

σ0 : X 7→ s(X0), Y0 7→ s(X0), Z0 7→ Y

G1 : : − times(X0,s(X0),U0), plus(U0,s(X0),Y)

C1 : times(0,X1,0).

σ1 : X0 7→ 0, X1 7→ s(0), U0 7→ O

G2 : : − plus(0,s(0),Y)

C2 : plus(0,X2,X2).

σ2 : X2 7→ s(0), Y 7→ s(0)

G3 : 2 computed answer substitution: X 7→ s(0), Y 7→ s(0)

GM (Department of Computer Science @ UIBK) Logic Programming 43/1

Theory of Monotone Logic Programs

Definition
• a selection function selects the next goal G in goal clause, where

resolution is attempted

• Prolog’s selection function proceeds left to right

Theorem

∀ logic programs P and goal clause G
∀ computed answer substitutions σ
∀ selection functions S
∃ computed answer substitution σ′ using S
such that σ′ is at least as general as σ (with respect to variables in G)

GM (Department of Computer Science @ UIBK) Logic Programming 44/1

Theory of Monotone Logic Programs

Definition
• a selection function selects the next goal G in goal clause, where

resolution is attempted

• Prolog’s selection function proceeds left to right

Theorem

∀ logic programs P and goal clause G
∀ computed answer substitutions σ
∀ selection functions S
∃ computed answer substitution σ′ using S

such that σ′ is at least as general as σ (with respect to variables in G)

GM (Department of Computer Science @ UIBK) Logic Programming 44/1

Theory of Monotone Logic Programs

Definition
• a selection function selects the next goal G in goal clause, where

resolution is attempted

• Prolog’s selection function proceeds left to right

Theorem

∀ logic programs P and goal clause G
∀ computed answer substitutions σ
∀ selection functions S
∃ computed answer substitution σ′ using S
such that σ′ is at least as general as σ (with respect to variables in G)

GM (Department of Computer Science @ UIBK) Logic Programming 44/1

Theory of Monotone Logic Programs

Search or SLD Trees

Definition

a search tree (aka SLD tree) of a goal G is a tree T such that

• the root of T is labelled with G

• the nodes of T are labelled with conjunctions of goals, where one
goal is selected (wrt a selection function)

• for each clause, whose head unifies with the selected goal ∃ edge
from node N

• edges are labelled with (partial) answer substitutions

• leaves are success nodes, if the empty goal (denoted by 2) has been
reached or failure nodes otherwise

Remark

a search tree captures all possible SLD derivations wrt a given goal and
selection function

GM (Department of Computer Science @ UIBK) Logic Programming 45/1

Theory of Monotone Logic Programs

Search or SLD Trees

Definition

a search tree (aka SLD tree) of a goal G is a tree T such that

• the root of T is labelled with G

• the nodes of T are labelled with conjunctions of goals, where one
goal is selected (wrt a selection function)

• for each clause, whose head unifies with the selected goal ∃ edge
from node N

• edges are labelled with (partial) answer substitutions

• leaves are success nodes, if the empty goal (denoted by 2) has been
reached or failure nodes otherwise

Remark

a search tree captures all possible SLD derivations wrt a given goal and
selection function

GM (Department of Computer Science @ UIBK) Logic Programming 45/1

Theory of Monotone Logic Programs

Search or SLD Trees

Definition

a search tree (aka SLD tree) of a goal G is a tree T such that

• the root of T is labelled with G

• the nodes of T are labelled with conjunctions of goals, where one
goal is selected (wrt a selection function)

• for each clause, whose head unifies with the selected goal ∃ edge
from node N

• edges are labelled with (partial) answer substitutions

• leaves are success nodes, if the empty goal (denoted by 2) has been
reached or failure nodes otherwise

Remark

a search tree captures all possible SLD derivations wrt a given goal and
selection function

GM (Department of Computer Science @ UIBK) Logic Programming 45/1

Theory of Monotone Logic Programs

Search or SLD Trees

Definition

a search tree (aka SLD tree) of a goal G is a tree T such that

• the root of T is labelled with G

• the nodes of T are labelled with conjunctions of goals, where one
goal is selected (wrt a selection function)

• for each clause, whose head unifies with the selected goal ∃ edge
from node N

• edges are labelled with (partial) answer substitutions

• leaves are success nodes, if the empty goal (denoted by 2) has been
reached or failure nodes otherwise

Remark

a search tree captures all possible SLD derivations wrt a given goal and
selection function

GM (Department of Computer Science @ UIBK) Logic Programming 45/1

Theory of Monotone Logic Programs

Example (cont’d)

plus(0,X,X). times(0,X,0).

plus(s(X),Y,s(Z)) :- plus(X,Y,Z). times(s(X),Y,Z) :- times(X,Y,U),

plus(U,Y,Z).

plus(X,Y,s(0)), times(X,X,s(0))

plus(X0,Y,0),times(s(X0),s(X0),s(0))

times(s(0),s(0),s(0))

times(0,s(0),U3), plus(U3,s(0),s(0))

plus(0,s(0),s(0))

2

U3 7→ 0

X0 7→ 0,Y 7→ 0

X 7→ s(X0)

times(0,0,s(0))

X 7→ 0,Y 7→ s(0)

GM (Department of Computer Science @ UIBK) Logic Programming 46/1

Theory of Monotone Logic Programs

Example (cont’d)

plus(0,X,X). times(0,X,0).

plus(s(X),Y,s(Z)) :- plus(X,Y,Z). times(s(X),Y,Z) :- times(X,Y,U),

plus(U,Y,Z).

plus(X,Y,s(0)), times(X,X,s(0))

plus(X0,Y,0),times(s(X0),s(X0),s(0))

times(s(0),s(0),s(0))

times(0,s(0),U3), plus(U3,s(0),s(0))

plus(0,s(0),s(0))

2

U3 7→ 0

X0 7→ 0,Y 7→ 0

X 7→ s(X0)

times(0,0,s(0))

X 7→ 0,Y 7→ s(0)

GM (Department of Computer Science @ UIBK) Logic Programming 46/1

Reading of Programs

Example (revisited)

a n c e s t o r o f (Ancestor , Descendant) :−
c h i l d o f (Descendant , Ances to r) .

a n c e s t o r o f (Ancestor , Descendant) :−
c h i l d o f (Person , Ances to r) ,
a n c e s t o r o f (Person , Descendant) .

• Ancestor

• Descendant

• Person

In English

Someone is ancestor of a descendant, if the descendant is his (or
her) child, or if he (or she) has a child and this person is the
ancestor of the descendant.

binding of logical variables is expressed as references

GM (Department of Computer Science @ UIBK) Logic Programming 47/1

Reading of Programs

Example (revisited)

a n c e s t o r o f (Ancestor , Descendant) :−
c h i l d o f (Descendant , Ances to r) .

a n c e s t o r o f (Ancestor , Descendant) :−
c h i l d o f (Person , Ances to r) ,
a n c e s t o r o f (Person , Descendant) .

• Ancestor

• Descendant

• Person

In English

Someone is ancestor of a descendant, if the descendant is his (or
her) child, or if he (or she) has a child and this person is the
ancestor of the descendant.

binding of logical variables is expressed as references

GM (Department of Computer Science @ UIBK) Logic Programming 47/1

Reading of Programs

Example (revisited)

a n c e s t o r o f (Ancestor , Descendant) :−
c h i l d o f (Descendant , Ances to r) .

a n c e s t o r o f (Ancestor , Descendant) :−
c h i l d o f (Person , Ances to r) ,
a n c e s t o r o f (Person , Descendant) .

• Ancestor

• Descendant

• Person

In English

Someone is ancestor of a descendant, if the descendant is his (or
her) child, or if he (or she) has a child and this person is the
ancestor of the descendant.

binding of logical variables is expressed as references

GM (Department of Computer Science @ UIBK) Logic Programming 47/1

Reading of Programs

Example (revisited)

a n c e s t o r o f (Ancestor , Descendant) :−
c h i l d o f (Descendant , Ances to r) .

a n c e s t o r o f (Ancestor , Descendant) :−
c h i l d o f (Person , Ances to r) ,
a n c e s t o r o f (Person , Descendant) .

• Ancestor

• Descendant

• Person

In English

Someone is ancestor of a descendant, if the descendant is his (or
her) child, or if he (or she) has a child and this person is the
ancestor of the descendant.

binding of logical variables is expressed as references

GM (Department of Computer Science @ UIBK) Logic Programming 47/1

Reading of Programs

Example (revisited)

a n c e s t o r o f (Ancestor , Descendant) :−
c h i l d o f (Descendant , Ances to r) .

a n c e s t o r o f (Ancestor , Descendant) :−
c h i l d o f (Person , Ances to r) ,
a n c e s t o r o f (Person , Descendant) .

• Ancestor

• Descendant

• Person

In English

Someone is ancestor of a descendant, if the descendant is his (or
her) child, or if he (or she) has a child and this person is the
ancestor of the descendant.

binding of logical variables is expressed as references

GM (Department of Computer Science @ UIBK) Logic Programming 47/1

Reading of Programs

Example (revisited)

a n c e s t o r o f (Ancestor , Descendant) :−
c h i l d o f (Descendant , Ances to r) .

a n c e s t o r o f (Ancestor , Descendant) :−
c h i l d o f (Person , Ances to r) ,
a n c e s t o r o f (Person , Descendant) .

• Ancestor

• Descendant

• Person

In English

Someone is ancestor of a descendant, if the descendant is his (or
her) child, or if he (or she) has a child and this person is the
ancestor of the descendant.

binding of logical variables is expressed as references

GM (Department of Computer Science @ UIBK) Logic Programming 47/1

Reading of Programs

Example (revisited)

a n c e s t o r o f (Ancestor , Descendant) :−
c h i l d o f (Descendant , Ances to r) .

a n c e s t o r o f (Ancestor , Descendant) :−
c h i l d o f (Person , Ances to r) ,
a n c e s t o r o f (Person , Descendant) .

• Ancestor

• Descendant

• Person

In English

Someone is ancestor of a descendant, if the descendant is his (or
her) child, or if he (or she) has a child and this person is the
ancestor of the descendant.

binding of logical variables is expressed as references

GM (Department of Computer Science @ UIBK) Logic Programming 47/1

Reading of Programs

Example (revisited)

a n c e s t o r o f (Ancestor , Descendant) :−
c h i l d o f (Descendant , Ances to r) .

a n c e s t o r o f (Ancestor , Descendant) :−
c h i l d o f (Person , Ances to r) ,
a n c e s t o r o f (Person , Descendant) .

• Ancestor

• Descendant

• Person

In English

Someone is ancestor of a descendant, if the descendant is his (or
her) child, or if he (or she) has a child and this person is the
ancestor of the descendant.

binding of logical variables is expressed as references

GM (Department of Computer Science @ UIBK) Logic Programming 47/1

Reading of Programs

Example (revisited)

a n c e s t o r o f (Ancestor , Descendant) :−
c h i l d o f (Descendant , Ances to r) .

a n c e s t o r o f (Ancestor , Descendant) :−
c h i l d o f (Person , Ances to r) ,
a n c e s t o r o f (Person , Descendant) .

• Ancestor

• Descendant

• Person

In English

Someone is ancestor of a descendant, if the descendant is his (or
her) child, or if he (or she) has a child and this person is the
ancestor of the descendant.

binding of logical variables is expressed as references

GM (Department of Computer Science @ UIBK) Logic Programming 47/1

Reading of Programs

Declarative Reading

Definition

the declarative reading of a program is its concept as (set of) logical
formulas

Analysis

1 specialisation
• if we remove clauses of a defined relation, then this relation becomes

smaller; the program is specialised
• if the specialisation provides wrong answers, the original program

certainly will

2 generalisation
• if we remove goals from the body of a clause, the relation is

extended; the program is generalised
• if the generalised program cannot derive correct facts, the original can

neither

GM (Department of Computer Science @ UIBK) Logic Programming 48/1

Reading of Programs

Declarative Reading

Definition

the declarative reading of a program is its concept as (set of) logical
formulas

Analysis

1 specialisation
• if we remove clauses of a defined relation, then this relation becomes

smaller; the program is specialised
• if the specialisation provides wrong answers, the original program

certainly will

2 generalisation
• if we remove goals from the body of a clause, the relation is

extended; the program is generalised
• if the generalised program cannot derive correct facts, the original can

neither

GM (Department of Computer Science @ UIBK) Logic Programming 48/1

Reading of Programs

Declarative Reading

Definition

the declarative reading of a program is its concept as (set of) logical
formulas

Analysis

1 specialisation
• if we remove clauses of a defined relation, then this relation becomes

smaller; the program is specialised
• if the specialisation provides wrong answers, the original program

certainly will

2 generalisation
• if we remove goals from the body of a clause, the relation is

extended; the program is generalised
• if the generalised program cannot derive correct facts, the original can

neither

GM (Department of Computer Science @ UIBK) Logic Programming 48/1

Reading of Programs

Procedure Reading

Example (multiplication)

logic program

plus(0,X,X).

plus(s(X),Y,s(Z)) : − plus(X,Y,Z).

times(0,X,0).

times(s(X),Y,Z) : − times(X,Y,U), plus(U,Y,Z).

ground queries

:- plus(s(s(0)),s(0),s(s(s(0))))

X 7→ s(0), Y 7→ s(0), Z 7→ s(s(0))

:- plus(s(0),s(0),s(s(0))) X 7→ 0, Y 7→ s(0), Z 7→ s(0)

:- plus(0,s(0),s(0)) X 7→ s(0)

solved

GM (Department of Computer Science @ UIBK) Logic Programming 49/1

Reading of Programs

Procedure Reading

Example (multiplication)

logic program

plus(0,X,X).

plus(s(X),Y,s(Z)) : − plus(X,Y,Z).

times(0,X,0).

times(s(X),Y,Z) : − times(X,Y,U), plus(U,Y,Z).

ground queries

:- plus(s(s(0)),s(0),s(s(s(0)))) X 7→ s(0), Y 7→ s(0), Z 7→ s(s(0))

:- plus(s(0),s(0),s(s(0))) X 7→ 0, Y 7→ s(0), Z 7→ s(0)

:- plus(0,s(0),s(0)) X 7→ s(0)

solved

GM (Department of Computer Science @ UIBK) Logic Programming 49/1

Reading of Programs

Procedure Reading

Example (multiplication)

logic program

plus(0,X,X).

plus(s(X),Y,s(Z)) : − plus(X,Y,Z).

times(0,X,0).

times(s(X),Y,Z) : − times(X,Y,U), plus(U,Y,Z).

ground queries

:- plus(s(s(0)),s(0),s(s(s(0)))) X 7→ s(0), Y 7→ s(0), Z 7→ s(s(0))

:- plus(s(0),s(0),s(s(0)))

X 7→ 0, Y 7→ s(0), Z 7→ s(0)

:- plus(0,s(0),s(0)) X 7→ s(0)

solved

GM (Department of Computer Science @ UIBK) Logic Programming 49/1

Reading of Programs

Procedure Reading

Example (multiplication)

logic program

plus(0,X,X).

plus(s(X),Y,s(Z)) : − plus(X,Y,Z).

times(0,X,0).

times(s(X),Y,Z) : − times(X,Y,U), plus(U,Y,Z).

ground queries

:- plus(s(s(0)),s(0),s(s(s(0))))

X 7→ s(0), Y 7→ s(0), Z 7→ s(s(0))

:- plus(s(0),s(0),s(s(0))) X 7→ 0, Y 7→ s(0), Z 7→ s(0)

:- plus(0,s(0),s(0)) X 7→ s(0)

solved

GM (Department of Computer Science @ UIBK) Logic Programming 49/1

Reading of Programs

Procedure Reading

Example (multiplication)

logic program

plus(0,X,X).

plus(s(X),Y,s(Z)) : − plus(X,Y,Z).

times(0,X,0).

times(s(X),Y,Z) : − times(X,Y,U), plus(U,Y,Z).

ground queries

:- plus(s(s(0)),s(0),s(s(s(0))))

X 7→ s(0), Y 7→ s(0), Z 7→ s(s(0))

:- plus(s(0),s(0),s(s(0))) X 7→ 0, Y 7→ s(0), Z 7→ s(0)

:- plus(0,s(0),s(0))

X 7→ s(0)

solved

GM (Department of Computer Science @ UIBK) Logic Programming 49/1

Reading of Programs

Procedure Reading

Example (multiplication)

logic program

plus(0,X,X).

plus(s(X),Y,s(Z)) : − plus(X,Y,Z).

times(0,X,0).

times(s(X),Y,Z) : − times(X,Y,U), plus(U,Y,Z).

ground queries

:- plus(s(s(0)),s(0),s(s(s(0))))

X 7→ s(0), Y 7→ s(0), Z 7→ s(s(0))

:- plus(s(0),s(0),s(s(0)))

X 7→ 0, Y 7→ s(0), Z 7→ s(0)

:- plus(0,s(0),s(0)) X 7→ s(0)

solved

GM (Department of Computer Science @ UIBK) Logic Programming 49/1

Reading of Programs

Procedure Reading

Example (multiplication)

logic program

plus(0,X,X).

plus(s(X),Y,s(Z)) : − plus(X,Y,Z).

times(0,X,0).

times(s(X),Y,Z) : − times(X,Y,U), plus(U,Y,Z).

ground queries

:- plus(s(s(0)),s(0),s(s(s(0))))

X 7→ s(0), Y 7→ s(0), Z 7→ s(s(0))

:- plus(s(0),s(0),s(s(0)))

X 7→ 0, Y 7→ s(0), Z 7→ s(0)

:- plus(0,s(0),s(0))

X 7→ s(0)

solved

GM (Department of Computer Science @ UIBK) Logic Programming 49/1

Reading of Programs

. . . is Too Complicated

Example (renaming is needed)

logic program

plus(0,X,X).

plus(s(X),Y,s(Z)) : − plus(X,Y,Z).

times(0,X,0).

times(s(X),Y,Z) : − times(X,Y,U), plus(U,Y,Z).

query

:- plus(s(s(0)),s(0),X)

X1 7→ s(0), Y1 7→ s(0),

X 7→ s(Z1)

:- plus(s(0),s(0),Z1)

X2 7→ 0, Y2 7→ s(0),

Z1 7→ s(Z2)

:- plus(0,s(0),Z2)

X3 7→ s(0),

Z2 7→ s(0)

solution X 7→ s(s(s(0)))

GM (Department of Computer Science @ UIBK) Logic Programming 50/1

Reading of Programs

. . . is Too Complicated

Example (renaming is needed)

logic program

plus(0,X,X).

plus(s(X),Y,s(Z)) : − plus(X,Y,Z).

times(0,X,0).

times(s(X),Y,Z) : − times(X,Y,U), plus(U,Y,Z).

query

:- plus(s(s(0)),s(0),X)

X1 7→ s(0), Y1 7→ s(0),

X 7→ s(Z1)

:- plus(s(0),s(0),Z1)

X2 7→ 0, Y2 7→ s(0),

Z1 7→ s(Z2)

:- plus(0,s(0),Z2)

X3 7→ s(0),

Z2 7→ s(0)

solution X 7→ s(s(s(0)))

GM (Department of Computer Science @ UIBK) Logic Programming 50/1

Reading of Programs

. . . is Too Complicated

Example (renaming is needed)

logic program

plus(0,X,X).

plus(s(X1),Y1,s(Z1)) : − plus(X1,Y1,Z1).

times(0,X,0).

times(s(X),Y,Z) : − times(X,Y,U), plus(U,Y,Z).

query

:- plus(s(s(0)),s(0),X) X1 7→ s(0), Y1 7→ s(0), X 7→ s(Z1)

:- plus(s(0),s(0),Z1)

X2 7→ 0, Y2 7→ s(0),

Z1 7→ s(Z2)

:- plus(0,s(0),Z2)

X3 7→ s(0),

Z2 7→ s(0)

solution X 7→ s(s(s(0)))

GM (Department of Computer Science @ UIBK) Logic Programming 50/1

Reading of Programs

. . . is Too Complicated

Example (renaming is needed)

logic program

plus(0,X,X).

plus(s(X1),Y1,s(Z1)) : − plus(X1,Y1,Z1).

times(0,X,0).

times(s(X),Y,Z) : − times(X,Y,U), plus(U,Y,Z).

query

:- plus(s(s(0)),s(0),X)

X1 7→ s(0), Y1 7→ s(0),

X 7→ s(Z1)

:- plus(s(0),s(0),Z1)

X2 7→ 0, Y2 7→ s(0),

Z1 7→ s(Z2)

:- plus(0,s(0),Z2)

X3 7→ s(0),

Z2 7→ s(0)

solution X 7→ s(s(s(0)))

GM (Department of Computer Science @ UIBK) Logic Programming 50/1

Reading of Programs

. . . is Too Complicated

Example (renaming is needed)

logic program

plus(0,X,X).

plus(s(X),Y,s(Z)) : − plus(X,Y,Z).

times(0,X,0).

times(s(X),Y,Z) : − times(X,Y,U), plus(U,Y,Z).

query

:- plus(s(s(0)),s(0),X)

X1 7→ s(0), Y1 7→ s(0),

X 7→ s(Z1)

:- plus(s(0),s(0),Z1)

X2 7→ 0, Y2 7→ s(0),

Z1 7→ s(Z2)

:- plus(0,s(0),Z2)

X3 7→ s(0),

Z2 7→ s(0)

solution X 7→ s(s(s(0)))

GM (Department of Computer Science @ UIBK) Logic Programming 50/1

Reading of Programs

. . . is Too Complicated

Example (renaming is needed)

logic program

plus(0,X,X).

plus(s(X2),Y2,s(Z2)) : − plus(X2,Y2,Z2).

times(0,X,0).

times(s(X),Y,Z) : − times(X,Y,U), plus(U,Y,Z).

query

:- plus(s(s(0)),s(0),X)

X1 7→ s(0), Y1 7→ s(0),

X 7→ s(Z1)

:- plus(s(0),s(0),Z1) X2 7→ 0, Y2 7→ s(0), Z1 7→ s(Z2)

:- plus(0,s(0),Z2)

X3 7→ s(0),

Z2 7→ s(0)

solution X 7→ s(s(s(0)))

GM (Department of Computer Science @ UIBK) Logic Programming 50/1

Reading of Programs

. . . is Too Complicated

Example (renaming is needed)

logic program

plus(0,X,X).

plus(s(X2),Y2,s(Z2)) : − plus(X2,Y2,Z2).

times(0,X,0).

times(s(X),Y,Z) : − times(X,Y,U), plus(U,Y,Z).

query

:- plus(s(s(0)),s(0),X)

X1 7→ s(0), Y1 7→ s(0),

X 7→ s(Z1)

:- plus(s(0),s(0),Z1)

X2 7→ 0, Y2 7→ s(0),

Z1 7→ s(Z2)

:- plus(0,s(0),Z2)

X3 7→ s(0),

Z2 7→ s(0)

solution X 7→ s(s(s(0)))

GM (Department of Computer Science @ UIBK) Logic Programming 50/1

Reading of Programs

. . . is Too Complicated

Example (renaming is needed)

logic program

plus(0,X,X).

plus(s(X),Y,s(Z)) : − plus(X,Y,Z).

times(0,X,0).

times(s(X),Y,Z) : − times(X,Y,U), plus(U,Y,Z).

query

:- plus(s(s(0)),s(0),X)

X1 7→ s(0), Y1 7→ s(0),

X 7→ s(Z1)

:- plus(s(0),s(0),Z1)

X2 7→ 0, Y2 7→ s(0),

Z1 7→ s(Z2)

:- plus(0,s(0),Z2)

X3 7→ s(0),

Z2 7→ s(0)

solution X 7→ s(s(s(0)))

GM (Department of Computer Science @ UIBK) Logic Programming 50/1

Reading of Programs

. . . is Too Complicated

Example (renaming is needed)

logic program

plus(0,X3,X3).

plus(s(X),Y,s(Z)) : − plus(X,Y,Z).

times(0,X,0).

times(s(X),Y,Z) : − times(X,Y,U), plus(U,Y,Z).

query

:- plus(s(s(0)),s(0),X)

X1 7→ s(0), Y1 7→ s(0),

X 7→ s(Z1)

:- plus(s(0),s(0),Z1)

X2 7→ 0, Y2 7→ s(0),

Z1 7→ s(Z2)

:- plus(0,s(0),Z2) X3 7→ s(0), Z2 7→ s(0)

solution X 7→ s(s(s(0)))

GM (Department of Computer Science @ UIBK) Logic Programming 50/1

Reading of Programs

. . . is Too Complicated

Example (renaming is needed)

logic program

plus(0,X,X).

plus(s(X),Y,s(Z)) : − plus(X,Y,Z).

times(0,X,0).

times(s(X),Y,Z) : − times(X,Y,U), plus(U,Y,Z).

query

:- plus(s(s(0)),s(0),X)

X1 7→ s(0), Y1 7→ s(0),

X 7→ s(Z1)

:- plus(s(0),s(0),Z1)

X2 7→ 0, Y2 7→ s(0),

Z1 7→ s(Z2)

:- plus(0,s(0),Z2)

X3 7→ s(0),

Z2 7→ s(0)

solution

X 7→ s(s(s(0)))

GM (Department of Computer Science @ UIBK) Logic Programming 50/1

Reading of Programs

. . . is Too Complicated

Example (renaming is needed)

logic program

plus(0,X,X).

plus(s(X),Y,s(Z)) : − plus(X,Y,Z).

times(0,X,0).

times(s(X),Y,Z) : − times(X,Y,U), plus(U,Y,Z).

query

:- plus(s(s(0)),s(0),X)

X1 7→ s(0), Y1 7→ s(0),

X 7→ s(Z1)

:- plus(s(0),s(0),Z1)

X2 7→ 0, Y2 7→ s(0),

Z1 7→ s(Z2)

:- plus(0,s(0),Z2)

X3 7→ s(0),

Z2 7→ s(0)

solution X 7→ s(s(s(0)))

GM (Department of Computer Science @ UIBK) Logic Programming 50/1

Recursive Types

Definition
• a type is a (possible infinite) set of terms

• types are conveniently defined by unary relations

Example
male(X). female(X).

Definition
• to define complex types, recursive logic programs may be necessary

• the latter types are called recursive types

• recursive types, defined by unary recursive programs, are called
simple recursive types

• a program defining a type is a type definition; a call to a predicate
defining a type is a type condition

GM (Department of Computer Science @ UIBK) Logic Programming 51/1

Recursive Types

Definition
• a type is a (possible infinite) set of terms

• types are conveniently defined by unary relations

Example
male(X). female(X).

Definition
• to define complex types, recursive logic programs may be necessary

• the latter types are called recursive types

• recursive types, defined by unary recursive programs, are called
simple recursive types

• a program defining a type is a type definition; a call to a predicate
defining a type is a type condition

GM (Department of Computer Science @ UIBK) Logic Programming 51/1

Recursive Types

Definition
• a type is a (possible infinite) set of terms

• types are conveniently defined by unary relations

Example
male(X). female(X).

Definition
• to define complex types, recursive logic programs may be necessary

• the latter types are called recursive types

• recursive types, defined by unary recursive programs, are called
simple recursive types

• a program defining a type is a type definition; a call to a predicate
defining a type is a type condition

GM (Department of Computer Science @ UIBK) Logic Programming 51/1

Recursive Types

Simple Recursive Types

Example

is tree(nil).

is tree(tree(Element,Left,Right)) : −
is tree(Left),

is tree(Right).

Definition
• a type is complete if closed under the instance relation

• with every complete type T one associates an incomplete type IT
which is a set of terms with instances in T and instances not in T

Example

• the type {0, s(0), s(s(0)), . . . } is complete

• the type {X , 0, s(0), s(s(0)), . . . } is incomplete

GM (Department of Computer Science @ UIBK) Logic Programming 52/1

Recursive Types

Simple Recursive Types

Example

is tree(nil).

is tree(tree(Element,Left,Right)) : −
is tree(Left),

is tree(Right).

Definition
• a type is complete if closed under the instance relation

• with every complete type T one associates an incomplete type IT
which is a set of terms with instances in T and instances not in T

Example

• the type {0, s(0), s(s(0)), . . . } is complete

• the type {X , 0, s(0), s(s(0)), . . . } is incomplete

GM (Department of Computer Science @ UIBK) Logic Programming 52/1

Recursive Types

Simple Recursive Types

Example

is tree(nil).

is tree(tree(Element,Left,Right)) : −
is tree(Left),

is tree(Right).

Definition
• a type is complete if closed under the instance relation

• with every complete type T one associates an incomplete type IT
which is a set of terms with instances in T and instances not in T

Example

• the type {0, s(0), s(s(0)), . . . } is complete

• the type {X , 0, s(0), s(s(0)), . . . } is incomplete

GM (Department of Computer Science @ UIBK) Logic Programming 52/1

Recursive Types

Lists
Notation
• [] empty list

• [H|T] list with head H and tail T

• [A] [A|[]] list with one element

• [A,B] [A|[B|[]]] list with two elements

• [A,B|T] [A|[B|T]] list with at least two elements

Example

is list([]). is list([X|Xs]) : − is list(Xs).

Notation
formal object cons pair syntax element syntax
.(a,[]) [a|[]] [a]

.(a,.(b,[])) [a|[b|[]]] [a,b]

GM (Department of Computer Science @ UIBK) Logic Programming 53/1

Recursive Types

Lists
Notation
• [] empty list

• [H|T] list with head H and tail T

• [A] [A|[]] list with one element

• [A,B] [A|[B|[]]] list with two elements

• [A,B|T] [A|[B|T]] list with at least two elements

Example

is list([]). is list([X|Xs]) : − is list(Xs).

Notation
formal object cons pair syntax element syntax
.(a,[]) [a|[]] [a]

.(a,.(b,[])) [a|[b|[]]] [a,b]

GM (Department of Computer Science @ UIBK) Logic Programming 53/1

Recursive Types

Lists
Notation
• [] empty list

• [H|T] list with head H and tail T

• [A] [A|[]] list with one element

• [A,B] [A|[B|[]]] list with two elements

• [A,B|T] [A|[B|T]] list with at least two elements

Example

is list([]). is list([X|Xs]) : − is list(Xs).

Notation
formal object cons pair syntax element syntax
.(a,[]) [a|[]] [a]

.(a,.(b,[])) [a|[b|[]]] [a,b]

GM (Department of Computer Science @ UIBK) Logic Programming 53/1

Recursive Types

Lists
Notation
• [] empty list

• [H|T] list with head H and tail T

• [A] [A|[]] list with one element

• [A,B] [A|[B|[]]] list with two elements

• [A,B|T] [A|[B|T]] list with at least two elements

Example

is list([]). is list([X|Xs]) : − is list(Xs).

Notation
formal object cons pair syntax element syntax
.(a,[]) [a|[]] [a]

.(a,.(b,[])) [a|[b|[]]] [a,b]

GM (Department of Computer Science @ UIBK) Logic Programming 53/1

Recursive Types

Lists
Notation
• [] empty list

• [H|T] list with head H and tail T

• [A] [A|[]] list with one element

• [A,B] [A|[B|[]]] list with two elements

• [A,B|T] [A|[B|T]] list with at least two elements

Example

is list([]). is list([X|Xs]) : − is list(Xs).

Notation
formal object cons pair syntax element syntax
.(a,[]) [a|[]] [a]

.(a,.(b,[])) [a|[b|[]]] [a,b]

GM (Department of Computer Science @ UIBK) Logic Programming 53/1

Recursive Types

Lists
Notation
• [] empty list

• [H|T] list with head H and tail T

• [A] [A|[]] list with one element

• [A,B] [A|[B|[]]] list with two elements

• [A,B|T] [A|[B|T]] list with at least two elements

Example

is list([]). is list([X|Xs]) : − is list(Xs).

Notation
formal object cons pair syntax element syntax
.(a,[]) [a|[]] [a]

.(a,.(b,[])) [a|[b|[]]] [a,b]

GM (Department of Computer Science @ UIBK) Logic Programming 53/1

Recursive Types

Lists
Notation
• [] empty list

• [H|T] list with head H and tail T

• [A] [A|[]] list with one element

• [A,B] [A|[B|[]]] list with two elements

• [A,B|T] [A|[B|T]] list with at least two elements

Example

is list([]). is list([X|Xs]) : − is list(Xs).

Notation
formal object cons pair syntax element syntax
.(a,[]) [a|[]] [a]

.(a,.(b,[])) [a|[b|[]]] [a,b]

GM (Department of Computer Science @ UIBK) Logic Programming 53/1

