Logic Programming

Georg Moser

Department of Computer Science @ UIBK
Winter 2016

Summary of Last Lecture

Example

ancestor_of(Ancestor, Descendant) :- child_of(Descendant, Ancestor). ancestor_of(Ancestor, Descendant) :child_of(Person, Ancestor), ancestor_of(Person, Descendant).

Example

ancestor_of_2 (Ancestor, Descendant) :child_of(Descendant, Ancestor). ancestor_of_2 (Ancestor, Descendant) :ancestor_of_2(Person, Descendant), child_of(Person, Ancestor).

Outline of the Lecture

Monotone Logic Programs
introduction, basic constructs, logic foundations, unification, semantics, database and recursive programming, termination, complexity

Incomplete Data Structures and Constraints

 incomplete data structures, definite clause grammars, constraint logic programming, answer set programming
Full Prolog

semantics (revisted), correctness proofs, meta-logical predicates, cuts nondeterministic programming, efficient programs, complexity

Outline of the Lecture

Monotone Logic Programs
introduction, basic constructs, logic foundations, unification, semantics, database and recursive programming, termination, complexity

Incomplete Data Structures and Constraints

 incomplete data structures, definite clause grammars, constraint logic programming, answer set programming
Full Prolog

semantics (revisted), correctness proofs, meta-logical predicates, cuts nondeterministic programming, efficient programs, complexity

Non-Monotonic Reasoning

```
Definition
an operator \(\Psi\) is called monotone if \(A \subseteq B\) implies \(\Psi(A) \subseteq \Psi(B)\)
```


Non-Monotonic Reasoning

Definition

an operator Ψ is called monotone if $A \subseteq B$ implies $\Psi(A) \subseteq \Psi(B)$

Fact

suppose Ψ acts on sets of formulas and interprets the consequence relation of a logic program P without negation, then Ψ is monotone

Definition
a monotone logic program is a logic program without negation $(\backslash+)$

Monotonicity Criticism

Example (Minsky's Example)

```
on(a,b).
on(d,a).
on(d,c).
clear(Y) :-
    not_exists_x_on(Y).
not_exists_x_on(Y) :-
    on(_X,Y), !, fail.
not_exists_x_on(_Y).
```


Monotonicity Criticism

```
Example (Minsky's Example)
on(a,b ).
on(d,a ).
on(d,c).
clear(Y) :-
    not_exists_x_on(Y).
not_exists_x_on(Y) :-
    on(_X,Y), !, fail.
not_exists_x_on(_Y).
```

Observations

- in this block-world example :- clear (d) holds
- but monotoncity doesn't; addition of the fact on(e,d). renders
:- clear (d) false

Theory of Monotone Logic Programs

Definitions

- goal clause

$$
:-B_{1}, \ldots, B_{n}
$$

consists of sequence B_{1}, \ldots, B_{n} of goals

Theory of Monotone Logic Programs

Definitions

- goal clause

$$
:-B_{1}, \ldots, B_{n}
$$

consists of sequence B_{1}, \ldots, B_{n} of goals

- empty goal clause :- is denoted by

Theory of Monotone Logic Programs

Definitions

- goal clause

$$
:-B_{1}, \ldots, B_{n}
$$

consists of sequence B_{1}, \ldots, B_{n} of goals

- empty goal clause :- is denoted by \square
- resolvent of goal clause :- $B_{1}, \ldots, B_{i}, \ldots, B_{m}$ and rule $A:-A_{1}, \ldots, A_{n}$
is goal clause

$$
:-B_{1} \sigma, \ldots, B_{i-1} \sigma, A_{1} \sigma, \ldots, A_{n} \sigma, B_{i+1} \sigma \ldots, B_{m} \sigma
$$

provided B_{i} (selected goal) and A unify with most general unifier σ

Theory of Monotone Logic Programs

Definitions

- goal clause

$$
:-B_{1}, \ldots, B_{n}
$$

consists of sequence B_{1}, \ldots, B_{n} of goals

- empty goal clause :- is denoted by \square
- resolvent of goal clause :- $B_{1}, \ldots, B_{i}, \ldots, B_{m}$ and rule $A:-A_{1}, \ldots, A_{n}$
is goal clause

$$
:-B_{1} \sigma, \ldots, B_{i-1} \sigma, A_{1} \sigma, \ldots, A_{n} \sigma, B_{i+1} \sigma \ldots, B_{m} \sigma
$$

provided B_{i} (selected goal) and A unify with most general unifier σ

Theory of Monotone Logic Programs

Definitions

- goal clause

$$
:-B_{1}, \ldots, B_{n}
$$

consists of sequence B_{1}, \ldots, B_{n} of goals

- empty goal clause :- is denoted by \square
- resolvent of goal clause :- $B_{1}, \ldots, B_{i}, \ldots, B_{m}$ and rule $A:-A_{1}, \ldots, A_{n}$
is goal clause

$$
:-B_{1} \sigma, \ldots, B_{i-1} \sigma, A_{1} \sigma, \ldots, A_{n} \sigma, B_{i+1} \sigma \ldots, B_{m} \sigma
$$

provided B_{i} (selected goal) and A unify with most general unifier σ

NB: see week 2 for the most general unifier

Selective Linear Definite Clause Resolution

Definitions

- SLD-derivation of logic program P and goal clause G consists of

Selective Linear Definite Clause Resolution

Definitions

- SLD-derivation of logic program P and goal clause G consists of

1 maximal sequence $G_{0}, G_{1}, G_{2}, \ldots$ of goal clauses

Selective Linear Definite Clause Resolution

Definitions

- SLD-derivation of logic program P and goal clause G consists of

1 maximal sequence $G_{0}, G_{1}, G_{2}, \ldots$ of goal clauses
2 sequence $C_{0}, C_{1}, C_{2}, \ldots$ of variants of rules in P

Selective Linear Definite Clause Resolution

Definitions

- SLD-derivation of logic program P and goal clause G consists of

1 maximal sequence $G_{0}, G_{1}, G_{2}, \ldots$ of goal clauses
2 sequence $C_{0}, C_{1}, C_{2}, \ldots$ of variants of rules in P
3 sequence $\sigma_{0}, \sigma_{1}, \sigma_{2}, \ldots$ of substitutions

Selective Linear Definite Clause Resolution

Definitions

- SLD-derivation of logic program P and goal clause G consists of

1 maximal sequence $G_{0}, G_{1}, G_{2}, \ldots$ of goal clauses
2 sequence $C_{0}, C_{1}, C_{2}, \ldots$ of variants of rules in P
3 sequence $\sigma_{0}, \sigma_{1}, \sigma_{2}, \ldots$ of substitutions
such that

- $G_{0}=G$

Selective Linear Definite Clause Resolution

Definitions

- SLD-derivation of logic program P and goal clause G consists of

1 maximal sequence $G_{0}, G_{1}, G_{2}, \ldots$ of goal clauses
2 sequence $C_{0}, C_{1}, C_{2}, \ldots$ of variants of rules in P
3 sequence $\sigma_{0}, \sigma_{1}, \sigma_{2}, \ldots$ of substitutions
such that

- $G_{0}=G$
- G_{i+1} is resolvent of G_{i} and C_{i} with $\mathrm{mgu} \sigma_{i}$

Selective Linear Definite Clause Resolution

Definitions

- SLD-derivation of logic program P and goal clause G consists of

1 maximal sequence $G_{0}, G_{1}, G_{2}, \ldots$ of goal clauses
2 sequence $C_{0}, C_{1}, C_{2}, \ldots$ of variants of rules in P
3 sequence $\sigma_{0}, \sigma_{1}, \sigma_{2}, \ldots$ of substitutions
such that

- $G_{0}=G$
- G_{i+1} is resolvent of G_{i} and C_{i} with $\mathrm{mgu} \sigma_{i}$
- C_{i} has no variables in common with $G, C_{0}, \ldots, C_{i-1}$

Selective Linear Definite Clause Resolution

Definitions

- SLD-derivation of logic program P and goal clause G consists of

1 maximal sequence $G_{0}, G_{1}, G_{2}, \ldots$ of goal clauses
2 sequence $C_{0}, C_{1}, C_{2}, \ldots$ of variants of rules in P
3 sequence $\sigma_{0}, \sigma_{1}, \sigma_{2}, \ldots$ of substitutions
such that

- $G_{0}=G$
- G_{i+1} is resolvent of G_{i} and C_{i} with mgu σ_{i}
- C_{i} has no variables in common with $G, C_{0}, \ldots, C_{i-1}$
- SLD refutation is finite SLD derivation ending in \square

Selective Linear Definite Clause Resolution

Definitions

- SLD-derivation of logic program P and goal clause G consists of

1 maximal sequence $G_{0}, G_{1}, G_{2}, \ldots$ of goal clauses
2 sequence $C_{0}, C_{1}, C_{2}, \ldots$ of variants of rules in P
3 sequence $\sigma_{0}, \sigma_{1}, \sigma_{2}, \ldots$ of substitutions
such that

- $G_{0}=G$
- G_{i+1} is resolvent of G_{i} and C_{i} with mgu σ_{i}
- C_{i} has no variables in common with $G, C_{0}, \ldots, C_{i-1}$
- SLD refutation is finite SLD derivation ending in \square
- computed answer substitution of SLD refutation of P and G with substitutions $\sigma_{0}, \sigma_{1}, \ldots, \sigma_{m}$ is restriction of $\sigma_{0} \sigma_{1} \cdots \sigma_{m}$ to variables in G

Example

```
plus(0,X,X).
plus(s(X),Y,s(Z)) : - plus(X,Y,Z).
times(0,X,0).
times(s(X),Y,Z) : - times(X,Y,U), plus(U,Y,Z).
:- times(X,X,Y)
```


Example

```
plus(0,X,X).
plus(s(X),Y,s(Z)) : - plus(X,Y,Z).
times(0,X,0).
times(s(X),Y,Z) : - times(X,Y,U), plus(U,Y,Z).
:- times(X,X,Y)
```

SLD-refutation

```
\(G_{0}: \quad:-\operatorname{times}(\mathrm{X}, \mathrm{X}, \mathrm{Y})\)
    \(C_{0}: \operatorname{times}\left(\mathrm{s}\left(\mathrm{X}_{0}\right), \mathrm{Y}_{0}, \mathrm{Z}_{0}\right):-\operatorname{times}\left(\mathrm{X}_{0}, \mathrm{Y}_{0}, \mathrm{U}_{0}\right), \operatorname{plus}\left(\mathrm{U}_{0}, \mathrm{Y}_{0}, \mathrm{Z}_{0}\right)\)
```


Example

```
plus(0,X,X).
plus(s(X),Y,s(Z)) : - plus(X,Y,Z).
times(0,X,0).
times(s(X),Y,Z) : - times(X,Y,U), plus(U,Y,Z).
:- times(X,X,Y)
```

SLD-refutation

```
\(G_{0}: \quad:-\operatorname{times}(\mathrm{X}, \mathrm{X}, \mathrm{Y})\)
    \(C_{0}: \operatorname{times}\left(\mathrm{s}\left(\mathrm{X}_{0}\right), \mathrm{Y}_{0}, \mathrm{Z}_{0}\right):-\operatorname{times}\left(\mathrm{X}_{0}, \mathrm{Y}_{0}, \mathrm{U}_{0}\right)\), plus \(\left(\mathrm{U}_{0}, \mathrm{Y}_{0}, \mathrm{Z}_{0}\right)\)
    \(\sigma_{0}\) :
```


Example

```
plus(0,X,X).
plus(s(X),Y,s(Z)) : - plus(X,Y,Z).
times(0,X,0).
times(s(X),Y,Z) :- times(X,Y,U), plus(U,Y,Z).
:- times(X,X,Y)
```

SLD-refutation

```
\(G_{0}: \quad:-\operatorname{times}(\mathrm{X}, \mathrm{X}, \mathrm{Y})\)
    \(C_{0}:\) times \(\left(\mathrm{s}\left(\mathrm{X}_{0}\right), \mathrm{Y}_{0}, \mathrm{Z}_{0}\right):-\operatorname{times}\left(\mathrm{X}_{0}, \mathrm{Y}_{0}, \mathrm{U}_{0}\right)\), plus \(\left(\mathrm{U}_{0}, \mathrm{Y}_{0}, \mathrm{Z}_{0}\right)\)
    \(\sigma_{0}: \mathrm{X} \mapsto \mathrm{s}\left(\mathrm{X}_{0}\right), \mathrm{Y}_{0} \mapsto \mathrm{~s}\left(\mathrm{X}_{0}\right), \mathrm{Z}_{0} \mapsto \mathrm{Y}\)
```


Example

```
plus(0,X,X).
plus(s(X),Y,s(Z)) : - plus(X,Y,Z).
times(0,X,0).
times(s(X),Y,Z) : - times(X,Y,U), plus(U,Y,Z).
:- times(X,X,Y)
```

SLD-refutation

```
\(G_{0}: \quad:-\operatorname{times}(\mathrm{X}, \mathrm{X}, \mathrm{Y})\)
    \(C_{0}: \operatorname{times}\left(\mathrm{s}\left(\mathrm{X}_{0}\right), \mathrm{Y}_{0}, \mathrm{Z}_{0}\right):-\operatorname{times}\left(\mathrm{X}_{0}, \mathrm{Y}_{0}, \mathrm{U}_{0}\right)\), plus \(\left(\mathrm{U}_{0}, \mathrm{Y}_{0}, \mathrm{Z}_{0}\right)\)
    \(\sigma_{0}: \mathrm{X} \mapsto \mathrm{s}\left(\mathrm{X}_{0}\right), \mathrm{Y}_{0} \mapsto \mathrm{~s}\left(\mathrm{X}_{0}\right), \mathrm{Z}_{0} \mapsto \mathrm{Y}\)
\(G_{1}: \quad-\operatorname{times}\left(\mathrm{X}_{0}, \mathrm{~s}\left(\mathrm{X}_{0}\right), \mathrm{U}_{0}\right), \mathrm{plus}\left(\mathrm{U}_{0}, \mathrm{~s}\left(\mathrm{X}_{0}\right), \mathrm{Y}\right)\)
```


Example

```
plus(0,X,X).
plus(s(X),Y,s(Z)) : - plus(X,Y,Z).
times(0,X,0).
times(s(X),Y,Z) :- times(X,Y,U), plus(U,Y,Z).
:- times(X,X,Y)
```

SLD-refutation

```
\(G_{0}: \quad:-\operatorname{times}(X, X, Y)\)
    \(C_{0}:\) times \(\left(\mathrm{s}\left(\mathrm{X}_{0}\right), \mathrm{Y}_{0}, \mathrm{Z}_{0}\right):-\operatorname{times}\left(\mathrm{X}_{0}, \mathrm{Y}_{0}, \mathrm{U}_{0}\right)\), plus \(\left(\mathrm{U}_{0}, \mathrm{Y}_{0}, \mathrm{Z}_{0}\right)\)
    \(\sigma_{0}: \mathrm{X} \mapsto \mathrm{s}\left(\mathrm{X}_{0}\right), \mathrm{Y}_{0} \mapsto \mathrm{~s}\left(\mathrm{X}_{0}\right), \mathrm{Z}_{0} \mapsto \mathrm{Y}\)
\(G_{1}: ~:-\operatorname{times}\left(\mathrm{X}_{0}, \mathrm{~s}\left(\mathrm{X}_{0}\right), \mathrm{U}_{0}\right), \mathrm{plus}\left(\mathrm{U}_{0}, \mathrm{~s}\left(\mathrm{X}_{0}\right), \mathrm{Y}\right)\)
    \(C_{1}\) : times \(\left(0, \mathrm{X}_{1}, 0\right)\).
```


Example

```
plus(0,X,X).
plus(s(X),Y,s(Z)) : - plus(X,Y,Z).
times(0,X,0).
times(s(X),Y,Z) :- times(X,Y,U), plus(U,Y,Z).
:- times(X,X,Y)
```

SLD-refutation

```
\(G_{0}: \quad:-\operatorname{times}(\mathrm{X}, \mathrm{X}, \mathrm{Y})\)
    \(C_{0}:\) times \(\left(\mathrm{s}\left(\mathrm{X}_{0}\right), \mathrm{Y}_{0}, \mathrm{Z}_{0}\right):-\operatorname{times}\left(\mathrm{X}_{0}, \mathrm{Y}_{0}, \mathrm{U}_{0}\right)\), plus \(\left(\mathrm{U}_{0}, \mathrm{Y}_{0}, \mathrm{Z}_{0}\right)\)
    \(\sigma_{0}: \mathrm{X} \mapsto \mathrm{s}\left(\mathrm{X}_{0}\right), \mathrm{Y}_{0} \mapsto \mathrm{~s}\left(\mathrm{X}_{0}\right), \mathrm{Z}_{0} \mapsto \mathrm{Y}\)
\(G_{1}: ~:-\operatorname{times}\left(\mathrm{X}_{0}, \mathrm{~s}\left(\mathrm{X}_{0}\right), \mathrm{U}_{0}\right), \mathrm{plus}\left(\mathrm{U}_{0}, \mathrm{~s}\left(\mathrm{X}_{0}\right), \mathrm{Y}\right)\)
    \(C_{1}\) : times \(\left(0, \mathrm{X}_{1}, 0\right)\).
    \(\sigma_{1}: \mathrm{X}_{0} \mapsto 0, \mathrm{X}_{1} \mapsto \mathrm{~s}(0), \mathrm{U}_{0} \mapsto 0\)
```


Example

```
plus(0,X,X).
plus(s(X),Y,s(Z)) : - plus(X,Y,Z).
times(0,X,0).
times(s(X),Y,Z) : - times(X,Y,U), plus(U,Y,Z).
:- times(X,X,Y)
```

SLD-refutation

```
\(G_{0}: \quad:-\operatorname{times}(\mathrm{X}, \mathrm{X}, \mathrm{Y})\)
    \(C_{0}: \operatorname{times}\left(\mathrm{s}\left(\mathrm{X}_{0}\right), \mathrm{Y}_{0}, \mathrm{Z}_{0}\right):-\operatorname{times}\left(\mathrm{X}_{0}, \mathrm{Y}_{0}, \mathrm{U}_{0}\right)\), plus \(\left(\mathrm{U}_{0}, \mathrm{Y}_{0}, \mathrm{Z}_{0}\right)\)
    \(\sigma_{0}: \mathrm{X} \mapsto \mathrm{s}\left(\mathrm{X}_{0}\right), \mathrm{Y}_{0} \mapsto \mathrm{~s}\left(\mathrm{X}_{0}\right), \mathrm{Z}_{0} \mapsto \mathrm{Y}\)
\(G_{1}: ~:-\operatorname{times}\left(\mathrm{X}_{0}, \mathrm{~s}\left(\mathrm{X}_{0}\right), \mathrm{U}_{0}\right), \mathrm{plus}\left(\mathrm{U}_{0}, \mathrm{~s}\left(\mathrm{X}_{0}\right), \mathrm{Y}\right)\)
    \(C_{1}\) : times \(\left(0, \mathrm{X}_{1}, 0\right)\).
    \(\sigma_{1}: \mathrm{X}_{0} \mapsto 0, \mathrm{X}_{1} \mapsto \mathrm{~s}(0), \mathrm{U}_{0} \mapsto 0\)
\(G_{2}: \quad:-\operatorname{plus}(0, s(0), Y)\)
    \(C_{2}\) : plus \(\left(0, \mathrm{X}_{2}, \mathrm{X}_{2}\right)\).
    \(\sigma_{2}: \mathrm{X}_{2} \mapsto \mathrm{~s}(0), \mathrm{Y} \mapsto \mathrm{s}(0)\)
```


Example

```
plus(0,X,X).
plus(s(X),Y,s(Z)) : - plus(X,Y,Z).
times(0,X,0).
times(s(X),Y,Z) : - times(X,Y,U), plus(U,Y,Z).
:- times(X,X,Y)
```

SLD-refutation

```
\(G_{0}: \quad:-\operatorname{times}(\mathrm{X}, \mathrm{X}, \mathrm{Y})\)
    \(C_{0}:\) times \(\left(s\left(X_{0}\right), Y_{0}, Z_{0}\right):-\operatorname{times}\left(\mathrm{X}_{0}, \mathrm{Y}_{0}, \mathrm{U}_{0}\right)\), plus \(\left(\mathrm{U}_{0}, \mathrm{Y}_{0}, \mathrm{Z}_{0}\right)\)
    \(\sigma_{0}: \mathrm{X} \mapsto \mathrm{s}\left(\mathrm{X}_{0}\right), \mathrm{Y}_{0} \mapsto \mathrm{~s}\left(\mathrm{X}_{0}\right), \mathrm{Z}_{0} \mapsto \mathrm{Y}\)
\(G_{1}: ~:-\operatorname{times}\left(\mathrm{X}_{0}, \mathrm{~s}\left(\mathrm{X}_{0}\right), \mathrm{U}_{0}\right), \mathrm{plus}\left(\mathrm{U}_{0}, \mathrm{~s}\left(\mathrm{X}_{0}\right), \mathrm{Y}\right)\)
    \(C_{1}\) : times \(\left(0, \mathrm{X}_{1}, 0\right)\).
    \(\sigma_{1}: \mathrm{X}_{0} \mapsto 0, \mathrm{X}_{1} \mapsto \mathrm{~s}(0), \mathrm{U}_{0} \mapsto 0\)
\(G_{2}: \quad:-\operatorname{plus}(0, \mathrm{~s}(0), \mathrm{Y})\)
    \(C_{2}\) : plus \(\left(0, \mathrm{X}_{2}, \mathrm{X}_{2}\right)\).
    \(\sigma_{2}: \mathrm{X}_{2} \mapsto \mathrm{~s}(0), \mathrm{Y} \mapsto \mathrm{s}(0)\)
\(G_{3}\) :
```


Example

```
plus(0,X,X).
plus(s(X),Y,s(Z)) : - plus(X,Y,Z).
times(0,X,0).
times(s(X),Y,Z) : - times(X,Y,U), plus(U,Y,Z).
:- times(X,X,Y)
```

SLD-refutation

```
\(G_{0}: \quad:-\operatorname{times}(\mathrm{X}, \mathrm{X}, \mathrm{Y})\)
    \(C_{0}: \operatorname{times}\left(\mathrm{s}\left(\mathrm{X}_{0}\right), \mathrm{Y}_{0}, \mathrm{Z}_{0}\right):-\operatorname{times}\left(\mathrm{X}_{0}, \mathrm{Y}_{0}, \mathrm{U}_{0}\right)\), plus \(\left(\mathrm{U}_{0}, \mathrm{Y}_{0}, \mathrm{Z}_{0}\right)\)
    \(\sigma_{0}: \mathrm{X} \mapsto \mathrm{s}\left(\mathrm{X}_{0}\right), \mathrm{Y}_{0} \mapsto \mathrm{~s}\left(\mathrm{X}_{0}\right), \mathrm{Z}_{0} \mapsto \mathrm{Y}\)
\(G_{1}: ~:-\operatorname{times}\left(\mathrm{X}_{0}, \mathrm{~s}\left(\mathrm{X}_{0}\right), \mathrm{U}_{0}\right), \mathrm{plus}\left(\mathrm{U}_{0}, \mathrm{~s}\left(\mathrm{X}_{0}\right), \mathrm{Y}\right)\)
    \(C_{1}\) : times \(\left(0, \mathrm{X}_{1}, 0\right)\).
    \(\sigma_{1}: \mathrm{X}_{0} \mapsto 0, \mathrm{X}_{1} \mapsto \mathrm{~s}(0), \mathrm{U}_{0} \mapsto 0\)
\(G_{2}: \quad:-\operatorname{plus}(0, \mathrm{~s}(0), \mathrm{Y})\)
    \(C_{2}\) : plus \(\left(0, \mathrm{X}_{2}, \mathrm{X}_{2}\right)\).
    \(\sigma_{2}: \mathrm{X}_{2} \mapsto \mathrm{~s}(0), \mathrm{Y} \mapsto \mathrm{s}(0)\)
```

G_{3} :
computed answer substitution: $\mathrm{X} \mapsto \mathrm{s}(0), \mathrm{Y} \mapsto \mathrm{s}(0)$

Definition

- a selection function selects the next goal G in goal clause, where resolution is attempted
- Prolog's selection function proceeds left to right

Definition

- a selection function selects the next goal G in goal clause, where resolution is attempted
- Prolog's selection function proceeds left to right

Theorem
\forall logic programs P and goal clause G
\forall computed answer substitutions σ
\forall selection functions \mathcal{S}
\exists computed answer substitution σ^{\prime} using \mathcal{S}

Definition

- a selection function selects the next goal G in goal clause, where resolution is attempted
- Prolog's selection function proceeds left to right

Theorem
\forall logic programs P and goal clause G
\forall computed answer substitutions σ
\forall selection functions \mathcal{S}
\exists computed answer substitution σ^{\prime} using \mathcal{S}
such that σ^{\prime} is at least as general as σ (with respect to variables in G)

Search or SLD Trees

Definition
a search tree (aka SLD tree) of a goal G is a tree T such that

- the root of T is labelled with G
- the nodes of T are labelled with conjunctions of goals, where one goal is selected (wrt a selection function)

Search or SLD Trees

Definition
a search tree (aka SLD tree) of a goal G is a tree T such that

- the root of T is labelled with G
- the nodes of T are labelled with conjunctions of goals, where one goal is selected (wrt a selection function)
- for each clause, whose head unifies with the selected goal \exists edge from node N
- edges are labelled with (partial) answer substitutions

Search or SLD Trees

Definition
a search tree (aka SLD tree) of a goal G is a tree T such that

- the root of T is labelled with G
- the nodes of T are labelled with conjunctions of goals, where one goal is selected (wrt a selection function)
- for each clause, whose head unifies with the selected goal \exists edge from node N
- edges are labelled with (partial) answer substitutions
- leaves are success nodes, if the empty goal (denoted by \square) has been reached or failure nodes otherwise

Search or SLD Trees

Definition

a search tree (aka SLD tree) of a goal G is a tree T such that

- the root of T is labelled with G
- the nodes of T are labelled with conjunctions of goals, where one goal is selected (wrt a selection function)
- for each clause, whose head unifies with the selected goal \exists edge from node N
- edges are labelled with (partial) answer substitutions
- leaves are success nodes, if the empty goal (denoted by \square) has been reached or failure nodes otherwise

Remark

a search tree captures all possible SLD derivations wrt a given goal and selection function

Example (cont'd)

```
plus(0,X,X).
    times(0,X,0).
plus(s(X),Y,s(Z)) :- plus(X,Y,Z). times(s(X),Y,Z) :- times(X,Y,U),
                                    plus(U,Y,Z).
```


$$
\text { plus }(0, s(0), s(0))
$$

$$
U_{3} \mapsto 0
$$

$$
\text { times }\left(0, s(0), U_{3}\right), p l u s\left(U_{3}, s(0), s(0)\right)
$$

$$
\text { times }(s(0), s(0), s(0))
$$

$$
X_{0} \mapsto 0, Y \mapsto 0
$$

$$
\text { times }(0,0, s(0))
$$

$$
\text { plus }\left(X_{0}, Y, 0\right), \text { times }\left(s\left(X_{0}\right), s\left(X_{0}\right), s(0)\right)
$$

plus(X,Y,s(0)), times(X,X,s(0))

Example (cont'd)

```
plus(0,X,X). times(0,X,0).
plus(s(X),Y,s(Z)) :- plus(X,Y,Z). times(s(X),Y,Z) :- times(X,Y,U),
                                    plus(U,Y,Z).
```

plus $(X, Y, s(0)), \operatorname{times}(X, X, s(0))$
$X \mapsto s\left(X_{0}\right)$
$X \mapsto 0, Y \mapsto s(0)$
times ($\left.0, s(0), U_{3}\right), p l u s\left(U_{3}, s(0), s(0)\right)$

$$
\begin{array}{r}
\mid U_{3} \mapsto 0 \\
\text { plus }(0, s(0), s(0))
\end{array}
$$

Example (revisited)
ancestor_of(Ancestor, Descendant) :-
\quad child_of (Descendant, Ancestor).
ancestor_of(Ancestor, Descendant) :-
\quad child_of(Person, Ancestor),

\qquad

\qquad

Abstract

\qquad
\qquad

Example (revisited)

ancestor_of(Ancestor, Descendant) :-
child_of(Descendant, Ancestor).
ancestor_of(Ancestor, Descendant) :-
child_of(Descendant, Ancestor) .
ancestor_of(Ancestor, Descendant) :child_of(Person, Ancestor), ancestor_of(Person, Descendant).

- Ancestor

child_of(Person, Ancestor),
ancestor_of(Person, Descendant).
- Ancestor
\square

-

\qquad

Example (revisited)

ancestor_of(Ancestor, Descendant) :child_of(Descendant, Ancestor).
ancestor_of(Ancestor, Descendant) :child_of(Person, Ancestor), ancestor_of(Person, Descendant).

- Ancestor
- Descendant

Example (revisited)

ancestor_of(Ancestor, Descendant) :child_of(Descendant, Ancestor).
ancestor_of(Ancestor, Descendant) :child_of(Person, Ancestor), ancestor_of(Person, Descendant).

- Ancestor
- Descendant
- Person

Example (revisited)

```
ancestor_of(Ancestor, Descendant) :-
    child_of(Descendant, Ancestor).
ancestor_of(Ancestor, Descendant) :-
    child_of(Person, Ancestor),
    ancestor_of(Person, Descendant).
```

- Ancestor
- Descendant
- Person

In English
Someone is ancestor of a descendant, if the descendant is his (or her) child, or if he (or she) has a child and this person is the ancestor of the descendant.
binding of logical variables is expressed as references

Example (revisited)

ancestor_of(Ancestor, Descendant) :child_of(Descendant, Ancestor).
ancestor_of(Ancestor, Descendant) :child_of(Person, Ancestor), ancestor_of(Person, Descendant).

- Ancestor
- Descendant
- Person

In English
Someone is ancestor of a descendant, if the descendant is his (or her) child, or if he (or she) has a child and this person is the ancestor of the descendant.
binding of logical variables is expressed as references

Example (revisited)

```
ancestor_of(Ancestor, Descendant) :-
    child_of(Descendant, Ancestor).
ancestor_of(Ancestor, Descendant) :-
    child_of(Person, Ancestor),
    ancestor_of(Person, Descendant).
```

- Ancestor
- Descendant
- Person

In English
Someone is ancestor of a descendant, if the descendant is his (or her) child, or if he (or she) has a child and this person is the ancestor of the descendant.
binding of logical variables is expressed as references

Example (revisited)

```
ancestor_of(Ancestor, Descendant) :-
    child_of(Descendant, Ancestor).
ancestor_of(Ancestor, Descendant) :-
    child_of(Person, Ancestor),
    ancestor_of(Person, Descendant).
```

- Ancestor
- Descendant
- Person

In English
Someone is ancestor of a descendant, if the descendant is his (or her) child, or if he (or she) has a child and this person is the ancestor of the descendant.
binding of logical variables is expressed as references

Example (revisited)

ancestor_of(Ancestor, Descendant) :child_of(Descendant, Ancestor).
ancestor_of(Ancestor, Descendant) :child_of(Person, Ancestor), ancestor_of(Person, Descendant).

- Ancestor
- Descendant
- Person

In English
Someone is ancestor of a descendant, if the descendant is his (or her) child, or if he (or she) has a child and this person is the ancestor of the descendant.
binding of logical variables is expressed as references

Declarative Reading

Definition

the declarative reading of a program is its concept as (set of) logical formulas

Declarative Reading

Definition

the declarative reading of a program is its concept as (set of) logical formulas

Analysis
1 specialisation

- if we remove clauses of a defined relation, then this relation becomes smaller; the program is specialised
- if the specialisation provides wrong answers, the original program certainly will

Declarative Reading

Definition

the declarative reading of a program is its concept as (set of) logical formulas

Analysis
1 specialisation

- if we remove clauses of a defined relation, then this relation becomes smaller; the program is specialised
- if the specialisation provides wrong answers, the original program certainly will
2 generalisation
- if we remove goals from the body of a clause, the relation is extended; the program is generalised
- if the generalised program cannot derive correct facts, the original can neither

Procedure Reading

Example (multiplication)

logic program

```
plus(0,X,X).
plus(s(X),Y,s(Z)) : - plus(X,Y,Z).
times(0,X,0).
times(s(X),Y,Z) : - times(X,Y,U), plus(U,Y,Z).
```

ground queries

$$
:- \text { plus }(s(s(0)), s(0), s(s(s(0))))
$$

Procedure Reading

Example (multiplication)

logic program

```
plus(0,X,X).
plus(s(X),Y,s(Z)) : - plus(X,Y,Z).
times(0,X,0).
times(s(X),Y,Z) : - times(X,Y,U), plus(U,Y,Z).
```

ground queries

$$
:-\operatorname{plus}(\mathrm{s}(\mathrm{~s}(0)), \mathrm{s}(0), \mathrm{s}(\mathrm{~s}(\mathrm{~s}(0)))) \quad X \mapsto s(0), \quad Y \mapsto s(0), \quad Z \mapsto s(s(0))
$$

Procedure Reading

Example (multiplication)

logic program

```
plus(0,X,X).
plus(s(X),Y,s(Z)) : - plus(X,Y,Z).
times(0,X,0).
times(s(X),Y,Z) : - times(X,Y,U), plus(U,Y,Z).
```

ground queries

$$
\begin{aligned}
& :-\operatorname{plus}(s(s(0)), s(0), s(s(s(0)))) \quad X \mapsto s(0), \quad Y \mapsto s(0), Z \mapsto s(s(0)) \\
& :-\operatorname{plus}(s(0), s(0), s(s(0)))
\end{aligned}
$$

Procedure Reading

Example (multiplication)

logic program

```
plus(0,X,X).
plus(s(X),Y,s(Z)) : - plus(X,Y,Z).
times(0,X,0).
times(s(X),Y,Z) : - times(X,Y,U), plus(U,Y,Z).
```

ground queries

$$
\begin{aligned}
& :-\operatorname{plus}(\mathrm{s}(\mathrm{~s}(0)), \mathrm{s}(0), \mathrm{s}(\mathrm{~s}(\mathrm{~s}(0)))) \\
& :-\mathrm{plus}(\mathrm{~s}(0), \mathrm{s}(0), \mathrm{s}(\mathrm{~s}(0))) \quad X \mapsto 0, \quad Y \mapsto s(0), Z \mapsto s(0)
\end{aligned}
$$

Procedure Reading

Example (multiplication)

logic program

```
plus(0,X,X).
plus(s(X),Y,s(Z)) : - plus(X,Y,Z).
times(0,X,0).
times(s(X),Y,Z) : - times(X,Y,U), plus(U,Y,Z).
```

ground queries

$$
\begin{aligned}
& :-\operatorname{plus}(\mathrm{s}(\mathrm{~s}(0)), \mathrm{s}(0), \mathrm{s}(\mathrm{~s}(\mathrm{~s}(0)))) \\
& :-\mathrm{plus}(\mathrm{~s}(0), \mathrm{s}(0), \mathrm{s}(\mathrm{~s}(0))) \\
& :-\operatorname{plus}(0, \mathrm{~s}(0), \mathrm{s}(0))
\end{aligned} \quad X \mapsto 0, Y \mapsto s(0), Z \mapsto s(0)
$$

Procedure Reading

Example (multiplication)

logic program

```
plus(0,X,X).
plus(s(X),Y,s(Z)) : - plus(X,Y,Z).
times(0,X,0).
times(s(X),Y,Z) : - times(X,Y,U), plus(U,Y,Z).
```

ground queries

$$
\begin{aligned}
& :-\operatorname{plus}(s(s(0)), s(0), s(s(s(0)))) \\
& :-\operatorname{plus}(s(0), s(0), s(s(0))) \\
& :-\operatorname{plus}(0, s(0), s(0)) \quad X \mapsto s(0)
\end{aligned}
$$

Procedure Reading

Example (multiplication)

logic program

```
plus(0,X,X).
plus(s(X),Y,s(Z)) : - plus(X,Y,Z).
times(0,X,0).
times(s(X),Y,Z) : - times(X,Y,U), plus(U,Y,Z).
```

ground queries

$$
\begin{aligned}
& :-\operatorname{plus}(s(s(0)), s(0), s(s(s(0)))) \\
& :-\operatorname{plus}(s(0), s(0), s(s(0))) \\
& :-\operatorname{plus}(0, s(0), s(0))
\end{aligned}
$$

solved

. . . is Too Complicated

Example (renaming is needed)

 logic program```
plus(0,X,X).
plus(s(X),Y,s(Z)) : - plus(X,Y,Z).
times(0,X,0).
times(s(X),Y,Z) : - times(X,Y,U), plus(U,Y,Z).
```

query
:- plus(s(s(0)),s(0),X)

## ... is Too Complicated

## Example (renaming is needed)

 logic program```
plus(0,X,X).
plus(s(X),Y,s(Z)) : - plus(X,Y,Z).
times(0,X,0).
times(s(X),Y,Z) : - times(X,Y,U), plus(U,Y,Z).
```

query
:- plus(s(s(0)),s(0),X)

. . . is Too Complicated

Example (renaming is needed)

 logic program```
plus(0,X,X).
plus(s(}\mp@subsup{X}{1}{}),\mp@subsup{Y}{1}{},s(\mp@subsup{Z}{1}{})):- plus(\mp@subsup{X}{1}{},\mp@subsup{Y}{1}{},\mp@subsup{Z}{1}{})
times(0,X,0).
times(s(X),Y,Z) : - times(X,Y,U), plus(U,Y,Z).
```

query

$$
:-\mathrm{plus}(\mathrm{~s}(\mathrm{~s}(0)), \mathrm{s}(0), \mathrm{X}) \quad X_{1} \mapsto s(0), \quad Y_{1} \mapsto s(0), X \mapsto s\left(Z_{1}\right)
$$

## . . . is Too Complicated

## Example (renaming is needed)

 logic program```
plus(0,X,X).
plus(s( }\mp@subsup{X}{1}{}),\mp@subsup{Y}{1}{},s(\mp@subsup{Z}{1}{})):- plus(\mp@subsup{X}{1}{},\mp@subsup{Y}{1}{},\mp@subsup{Z}{1}{})
times(0,X,0).
times(s(X),Y,Z) : - times(X,Y,U), plus(U,Y,Z).
```

query

$$
\begin{array}{ll}
:-\operatorname{plus}(s(s(0)), s(0), X) & X \mapsto s\left(Z_{1}\right) \\
:-\operatorname{plus}\left(s(0), s(0), Z_{1}\right) &
\end{array}
$$

. . . is Too Complicated

Example (renaming is needed)

 logic program```
plus(0,X,X).
plus(s(X),Y,s(Z)) : - plus(X,Y,Z).
times(0,X,0).
times(s(X),Y,Z) : - times(X,Y,U), plus(U,Y,Z).
```

query

$$
\begin{array}{ll}
:-\operatorname{plus}(s(s(0)), s(0), X) & X \mapsto s\left(Z_{1}\right) \\
:-\operatorname{plus}\left(s(0), s(0), Z_{1}\right) &
\end{array}
$$

## . . . is Too Complicated

## Example (renaming is needed)

 logic program```
plus(0,X,X).
```



```
times(0,X,0).
times(s(X),Y,Z) : - times(X,Y,U), plus(U,Y,Z).
```

query

$$
\begin{array}{lrl}
:- \text { plus }(s(s(0)), s(0), X) & & X \mapsto s\left(Z_{1}\right) \\
:- \text { plus }\left(s(0), s(0), Z_{1}\right) & X_{2} \mapsto 0, \quad Y_{2} \mapsto s(0), Z_{1} \mapsto s\left(Z_{2}\right)
\end{array}
$$

. . . is Too Complicated

Example (renaming is needed)

 logic program```
plus(0,X,X).
plus(s(}\mp@subsup{X}{2}{}),\mp@subsup{Y}{2}{},s(\mp@subsup{Z}{2}{})):- plus(\mp@subsup{X}{2}{},\mp@subsup{Y}{2}{},\mp@subsup{Z}{2}{})
times(0,X,0).
times(s(X),Y,Z) : - times(X,Y,U), plus(U,Y,Z).
```

query

$$
\begin{aligned}
& :-\operatorname{plus}(s(s(0)), s(0), X) \\
& :-\operatorname{plus}\left(s(0), s(0), Z_{1}\right) \\
& :-\operatorname{plus}\left(0, s(0), Z_{2}\right)
\end{aligned}
$$

## . . . is Too Complicated

## Example (renaming is needed)

 logic program```
plus(0,X,X).
plus(s(X),Y,s(Z)) : - plus(X,Y,Z).
times(0,X,0).
times(s(X),Y,Z) : - times(X,Y,U), plus(U,Y,Z).
```

query

$$
\begin{aligned}
& :-\operatorname{plus}(s(s(0)), s(0), X) \\
& :-\operatorname{plus}\left(s(0), s(0), Z_{1}\right) \\
& :-\operatorname{plus}\left(0, s(0), Z_{2}\right)
\end{aligned}
$$

. . . is Too Complicated

Example (renaming is needed)

 logic program```
plus(0, X , X X).
plus(s(X),Y,s(Z)) : - plus(X,Y,Z).
times(0,X,0).
times(s(X),Y,Z) : - times(X,Y,U), plus(U,Y,Z).
```

query

$$
\begin{aligned}
& :-\operatorname{plus}(s(s(0)), s(0), X) \\
& :-\operatorname{plus}\left(\mathrm{s}(0), \mathrm{s}(0), \mathrm{Z}_{1}\right) \\
& :-\operatorname{plus}\left(0, \mathrm{~s}(0), \mathrm{Z}_{2}\right) \quad X_{3} \mapsto s(0), Z_{2} \mapsto s(0)
\end{aligned}
$$

## . . . is Too Complicated

## Example (renaming is needed)

logic program

```
plus(0,X,X).
plus(s(X),Y,s(Z)) : - plus(X,Y,Z).
times(0,X,0).
times(s(X),Y,Z) : - times(X,Y,U), plus(U,Y,Z).
```

query

$$
\begin{array}{ll}
:- \text { plus }(\mathrm{s}(\mathrm{~s}(0)), \mathrm{s}(0), \mathrm{X}) \\
:-\mathrm{plus}\left(\mathrm{~s}(0), \mathrm{s}(0), \mathrm{Z}_{1}\right) & \\
:- \text { plus }\left(0, \mathrm{~s}(0), \mathrm{Z}_{2}\right) & Z_{2} \mapsto s(0)
\end{array}
$$

solution

## . . . is Too Complicated

## Example (renaming is needed)

 logic program```
plus(0,X,X).
plus(s(X),Y,s(Z)) : - plus(X,Y,Z).
times(0,X,0).
times(s(X),Y,Z) : - times(X,Y,U), plus(U,Y,Z).
```

query

$$
\begin{array}{lrl}
:- & \text { plus }(s(s(0)), s(0), X) & X \mapsto s\left(Z_{1}\right) \\
\text { :- plus }\left(s(0), s(0), Z_{1}\right) & Z_{1} \mapsto s\left(Z_{2}\right) \\
\text { :- plus }\left(0, s(0), Z_{2}\right) & Z_{2} \mapsto s(0)
\end{array}
$$

solution $X \mapsto s(s(s(0)))$

Definition

- a type is a (possible infinite) set of terms
- types are conveniently defined by unary relations

Definition

- a type is a (possible infinite) set of terms
- types are conveniently defined by unary relations

Example

```
male(X). female(X).
```


Definition

- a type is a (possible infinite) set of terms
- types are conveniently defined by unary relations

```
Example
    male(X). female(X).
```


Definition

- to define complex types, recursive logic programs may be necessary
- the latter types are called recursive types
- recursive types, defined by unary recursive programs, are called simple recursive types
- a program defining a type is a type definition; a call to a predicate defining a type is a type condition

Simple Recursive Types
 Simple Recursive Types

Simple Recursive ypes
Example
is＿tree（nil）．
is＿tree（tree（Element ，Left ，Right））：－
\quad is＿tree（Left），
\quad is＿tree（Right）．

Example
is＿tree（nil）．
is＿tree（tree（Element，Left，Right））：－
is＿tree（Left），
is＿tree（Right）．
GM（Department of Computer Science © Ul

$$
\begin{aligned}
& \text { is_tree(Left) } \\
& \text { is_tree(Right). }
\end{aligned}
$$

```
```

```
is_tree(nil).
```

```
is_tree(nil).
```

```
is_tree(nil).
```

```
is_tree(nil).
is_tree(tree(Element,Left,Right)) : -
    is_tree(Left),
    is_tree(Left),
    is_tree(Left),
    is_tree(Left),
    is_tree(Left),
    is_tree(Left),
    is_tree(Left),
```

```
    is_tree(Left),
```

```
\(\qquad\)




\(\qquad\)



\section*{}

\section*{\(\qquad\) \\ Example}

Elmple Recursive ypes
Example
is＿tree（nil）．
is＿tree（tree（Element ，Left ，Right））：－
is＿tree（Left），
is＿tree（Right）．
Logic Programming
LM（Department of Computer Science e ul

\(\qquad\)

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(=\)



共


1s_tree(R1ght).
\(\qquad\)
\(\qquad\)




\section*{Simple Recursive Types}
```

Example
is_tree(nil).
is_tree(tree(Element,Left,Right)) : -
is_tree(Left),
is_tree(Right).

```

Definition
- a type is complete if closed under the instance relation
- with every complete type \(T\) one associates an incomplete type \(I T\) which is a set of terms with instances in \(T\) and instances not in \(T\)

\section*{Simple Recursive Types}
```

Example
is_tree(nil).
is_tree(tree(Element,Left,Right)) : -
is_tree(Left),
is_tree(Right).

```

Definition
- a type is complete if closed under the instance relation
- with every complete type \(T\) one associates an incomplete type IT which is a set of terms with instances in \(T\) and instances not in \(T\)

\section*{Example}
- the type \(\{0, s(0), s(s(0)), \ldots\}\) is complete
- the type \(\{X, 0, s(0), s(s(0)), \ldots\}\) is incomplete

Lists
Notation
- [] empty list

Lists
Notation
- [] empty list
- [H|T] list with head \(H\) and tail \(T\)

Lists
Notation
- [] empty list
- [H|T] list with head \(H\) and tail \(T\)
- [A]
list with one element

Lists
Notation
- [] empty list
- [H|T] list with head \(H\) and tail \(T\)
- [A]
- \([A, B]\)
[AI []] list with one element
\([A \mid[B \mid[]]]\) list with two elements

Notation
- [] empty list
- [H|T] list with head \(H\) and tail \(T\)
- [A]
- \([A, B]\)
- \([A, B \mid T]\)
[ \(A \mid[]\) list with one element
\([A \mid[B \mid[]]]\) list with two elements
\([A \mid[B \mid T]]\) list with at least two elements

Lists
Notation
- [] empty list
- [H|T] list with head \(H\) and tail \(T\)
- [A]
[ \(A \mid[]\) list with one element
- \([A, B] \quad[A \mid[B \mid[]]]\) list with two elements
- \([A, B \mid T] \quad[A \mid[B \mid T]]\) list with at least two elements

\section*{Example}
```

is_list([]). is_list([X|Xs]) :- is_list(Xs).

```

Notation
- [] empty list
- [H|T] list with head \(H\) and tail \(T\)
- \([A]\)
[ \(A \mid[]\) list with one element
- \([A, B] \quad[A \mid[B \mid[]]]\) list with two elements
- \([A, B \mid T] \quad[A \mid[B \mid T]]\) list with at least two elements

\section*{Example}
```

is_list([]). is_list([X|Xs]) :- is_list(Xs).

```

Notation
formal object cons pair syntax element syntax
. (a, []) [a| []]
[a]
. (a,. (b, [])) [a|[b|[]]] [a,b]```

