ogic

Logic Programming

Georg Moser
Department of Computer Science @ UIBK

Winter 2016

Outline of the Lecture

introduction, basic constructs, logic foundations, unification, semantics

Monotone Logic Programs
database and recursive programming, termination, complexity }

Incomplete Data Structures and Constraints

incomplete data structures, definite clause grammars, constraint logic pro-
gramming, answer set programming

semantics (revisted), correctness proofs, meta-logical predicates, cuts non-
deterministic programming, efficient programs, complexity

Full Prolog }

GM (Department of Computer Science @ Ul Logic Programming 38/1

Summary of Last Lecture

Summary of Last Lecture

Example

ancestor_of (Ancestor, Descendant) :—
child_of (Descendant, Ancestor).

ancestor_of (Ancestor, Descendant) :—
child_of (Person, Ancestor),
ancestor_of (Person, Descendant).

Example

ancestor_of_2 (Ancestor, Descendant) :—
child_of (Descendant, Ancestor).

ancestor_of_2(Ancestor, Descendant) :—
ancestor_of_2(Person, Descendant),
child_of (Person, Ancestor).

GM (Department of Computer Science @ Ul Logic Programming

Monotone Logic Programs

Non-Monotonic Reasoning

Definition
an operator W is called monotone if A C B implies W(A) C W(B)

Fact

suppose V acts on sets of formulas and interprets the consequence
relation of a logic program P without negation, then V is monotone

Definition

a monotone logic program is a logic program without negation (\+)

GM (Department of Computer Science @ Ul Logic Programming

39/1

http://cl-informatik.uibk.ac.at

Monotone Logic Programs Theory of Monotone Logic Programs

Monotonicity Criticism Theory of Monotone Logic Programs
Example (Minsky's Example) Definitions
on(a,b). e goal clause
on(d,a). - By,...,B,
on(d,c).
clear(Y) :— consists of sequence By, ..., B, of goals
not_exists.x-on (V). e empty goal clause :- is denoted by [
not_exists_x_on (Y) :— e resolvent of goal clause :- By,...,B;,..., By and rule
on(_X,Y), I, fail. A=A, A,

_exi _X_ _Y). .
not_exists_x_on (_Y) is goal clause

:- Byo,...,Bi_10,A10,...,Ap0,Bit10...,Bno
Observations
o in this block-world example :— clear (d) holds provided B; (selected goal) and A unify with most general unifier o
e but monotoncity doesn’t; addition of the fact on(e,d). renders
i~ clear (d) false NB: see week 2 for the most general unifier

GM (Department of Computer Science @ Ul Logic Programming GM (Department of Computer Science @ Ul Logic Programming

Selective Linear Definite Clause Resolution Example
o plus(0,X,X).
Definitions plus(s(X),Y,s(Z)) : — plus(X,Y,Z).
e SLD-derivation of logic program P and goal clause G consists of times(0,X,0).
. times(s(X),Y,Z) : — times(X,Y,U), plus(U,Y,Z).
maximal sequence Gy, Gy, Gy, ... of goal clauses X ,
T — ti X,X,Y
sequence Cp, Cy, Gy, ... of variants of rules in P mes
sequence og, 01,02, ... of substitutions SLD-refutation
such that Go: : — times(X,X,Y)
e Go=G Co: times(s(Xo),Y0,Zo) : — times(Xo,Yo,Up), plus(Uo,Yo,Zo)
. . D X = Xo), Yo — Xo), Zo — Y
e Gjy1 is resolvent of G; and C; with mgu o; 70 s(Xo), Yo s(o), Zo
_ _ _ Gi: :— times(Xo,s(Xo),Uo), plus(Up,s(Xo),Y)
e (C; has no variables in common with G, Gy, ..., C_1 C: times(0,X1,0).
e SLD refutation is finite SLD derivation ending in O o1: Xo = 0, X1 = s(0), Uo — O
Gy: :— plus(0,s(0),Y)

e computed answer substitution of SLD refutation of P and G with

. G plus(0,X2,X2) .
substitutions og, 01, ..., 0 is restriction of ogoy - - - oy to variables

o2: X2 = s(0), Y — s(0)
in G G:: O computed answer substitution: X + s(0), Y — s(0)

GM (Department of Computer Science @ Ul Logic Programming 42/1 GM (Department of Computer Science @ Ul Logic Programming 43/1

Search or SLD Trees

Definition Definition
e a selection function selects the next goal G in goal clause, where a search tree (aka SLD tree) of a goal G is a tree T such that
resolution is attempted o the root of T is labelled with G

e the nodes of T are labelled with conjunctions of goals, where one
goal is selected (wrt a selection function)

e Prolog's selection function proceeds left to right

e for each clause, whose head unifies with the selected goal 3 edge
from node N

Theorem

V logic programs P and goal clause G

YV computed answer substitutions o

V selection functions S

3 computed answer substitution o’ using S

e edges are labelled with (partial) answer substitutions

e leaves are success nodes, if the empty goal (denoted by 00) has been
reached or failure nodes otherwise

such that o’ is at least as general as o (with respect to variables in G)

Remark

a search tree captures all possible SLD derivations wrt a given goal and
selection function

GM (Department of Computer Science @ Ul Logic Programming GM (Department of Computer Science @ Ul Logic Programming

Example (cont'd) Example (revisited)
plus(0,X,X). times(0,X,0).

ancestor_of (Ancestor, Descendant) :—
child_of (Descendant, Ancestor).

ancestor_of (Ancestor, Descendant) :—

0 child_of (Person, Ancestor),

‘ ancestor_of (Person, Descendant).

plus(s(X),Y,s(Z)) :- plus(X,Y,Z). times(s(X),Y,Z) :- times(X,Y,U),
plus(U,Y,Z).

plus(0,s(0),s(0)) e Ancestor
| Us 0 o Descendant
times(0,s(0),Us3), plus(Us,s(0),s(0)) e Person
times(s(0),s(0),s(0)) In English
X000 s i tor of a descendant, if the descendant is his (.
omeone is ancestor of a descendant, if the descendant is his (or
i lus(Xo,Y,0),ti Xo) ,s(Xo) ,s(0 : . " . .
tines(0,0,8(0)) plus (Xo), tines(s(Xo),s(Xo),5(0)) her) child, or if he (or she) has a child and this person is the
X—=0,Y HM /(— 5(Xo) ancestor of the descendant.
plus(X,Y,s(0)), times(X,X,s(0)) binding of logical variables is expressed as references

GM (Department of Computer Science @ Ul Logic Programming 46/1 GM (Department of Computer Science @ Ul Logic Programming 47/1

Reading of Programs Reading of Programs

Declarative Reading Procedure Reading
Definition Example (multiplication)
the declarative reading of a program is its concept as (set of) logical logic program
formulas
plus(0,X,X).
. plus(s(X),Y,s(Z)) : — plus(X,Y,Z).
AnalySIS_ o times (0,X,0).
specialisation times(s(X),Y,Z) : — times(X,Y,U), plus(U,Y,Z).
o if we remove clauses of a defined relation, then this relation becomes
smaller; the program is specialised ground queries
o if the specialisation provides wrong answers, the original program
certainly will := plus(s(s(0)),s(0),s(s(s(0)))) X —s(0), Y+ s(0), Z+ s(s(0
generalisation :- plus(s(0),s(0),s(s(0))) X0, Y—s(0), Z~— s(0)
e if we remove goals from the body of a clause, the relation is := plus(0,s(0),s(0)) X — 5(0)
extended; the program is generalised
o if the generalised program cannot derive correct facts, the original can solved
neither

GM (Department of Computer Science @ Ul Logic Programming GM (Department of Computer Science @ Ul Logic Programming

Reading of Programs Recursive Types

...is Too Complicated Definition

e a type is a (possible infinite) set of terms

Example (renaming is needed) e types are conveniently defined by unary relations
logic program

plus(0,X3,X3) . Example

plus(s(X2),Y2,s(Z2)) : — plus(Xp,Ys,Z5). male(X). female (X) .

times(0,X,0).

times(s(X),Y,Z) : — times(X,Y,U), plus(U,Y,Z).

Definition

query e to define complex types, recursive logic programs may be necessary

:— plus(s(s(0)),s(0),X) X1+ 5(0), Y1+ 5(0), X — s(Z1) e the latter types are called recursive types

:= plus(s(0),s(0),21) Xo =0, Yo 5(0), 21 s(2) e recursive types, defined by unary recursive programs, are called

:= plus(0,s(0),22) X3+ 5(0), 22— s(0) simple recursive types

_ e a program defining a type is a type definition; a call to a predicate

solution X+ s(s(s(0))) defining a type is a type condition

GM (Department of Computer Science @ Ul Logic Programming 50/1 GM (Department of Computer Science @ Ul Logic Programming 51/1

Recursive Types Recursive Types

Simple Recursive Types Lists
Examble Notation
P (i1 o [] empty list
is_tree(nil). . . .
is_tree(tree(Element,Left,Right)) : — o [HIT] list with head /1 and tail T
is_tree(Left), e [A] [Al[]1] list with one element
is-tree(Right). e [A,B] [AI[BI[11] list with two elements
e [A,BIT] T[AI[BIT]] list with at least two elements
Definition
e a type is complete if closed under the instance.relation Example
o W|t.h every complete type. T one assou.ates an |n.complete type. IT is 1ist([]). islist([X|Xs]) : — is list(Xs).
which is a set of terms with instances in T and instances not in T
Example Notation
P _ formal object cons pair syntax element syntax
e the type {0, s(0),s(s(0)),...} is complete (a, D [al[1] [a]
e the type {X,0,5(0),5(s(0)),. ..} is incomplete (a,.(b,[1)) [allbl[1]1] [a,b]

GM (Department of Computer Science @ Ul Logic Programming

GM (Department of Computer Science @ Ul Logic Programming 53/1

