

Logic Programming

Georg Moser

Department of Computer Science @ UIBK

Winter 2016

Summary of Last Lecture

NB: search trees are a tree representation of SLD-derivations

Definitions

- a type is a (possible infinite) set of terms
- types are conveniently defined by unary relations
- a type is complete if closed under the instance relation
- with every complete type T one associates an incomplete type IT
 which is a set of terms with instances in T and instances not in T

Definitions

- a list is complete if every instances satisfies the above type for lists
- otherwise it is incomplete

Example

the lists [a,b,c] and [a,X,c] are complete; the list [a,b|Xs] is not

Outline of the Lecture

Monotone Logic Programs

introduction, basic constructs, logic foundations, unification, semantics, database and recursive programming, termination, complexity

Incomplete Data Structures and Constraints

incomplete data structures, definite clause grammars, constraint logic programming, answer set programming

Full Prolog

semantics (revisted), correctness proofs, meta-logical predicates, cuts nondeterministic programming, efficient programs, complexity

Outline of the Lecture

Monotone Logic Programs

introduction, basic constructs, logic foundations, unification, semantics, database and recursive programming, termination, complexity

Incomplete Data Structures and Constraints

incomplete data structures, definite clause grammars, constraint logic programming, answer set programming

Full Prolog

semantics (revisted), correctness proofs, meta-logical predicates, cuts nondeterministic programming, efficient programs, complexity

Definitions

- a proof tree for a program *P* and a goal *G* is a tree, whose nodes are goals and whose edges represent reduction of goals
- the root is the query *G*

Definitions

- a proof tree for a program *P* and a goal *G* is a tree, whose nodes are goals and whose edges represent reduction of goals
- the root is the query G
- the edges are labelled with (partial) answer substitutions

Definitions

- a proof tree for a program *P* and a goal *G* is a tree, whose nodes are goals and whose edges represent reduction of goals
- the root is the query *G*
- the edges are labelled with (partial) answer substitutions
- a proof tree for a conjunction of goals G_1, \ldots, G_n is the set of proof trees for G_i

Definitions

- a proof tree for a program *P* and a goal *G* is a tree, whose nodes are goals and whose edges represent reduction of goals
- the root is the query G
- the edges are labelled with (partial) answer substitutions
- a proof tree for a conjunction of goals G_1, \ldots, G_n is the set of proof trees for G_i

Remark

a proof tree is a different representation of one successful solution represented by a search tree combining all possible selection functions

```
\begin{array}{ll} \text{plus}(0,\textbf{X},\textbf{X})\,. & \text{times}(0,\textbf{X},0)\,. \\ \text{plus}(\textbf{s}(\textbf{X}),\textbf{Y},\textbf{s}(\textbf{Z}))\,:-\,\text{plus}(\textbf{X},\textbf{Y},\textbf{Z})\,. & \text{times}(\textbf{s}(\textbf{X}),\textbf{Y},\textbf{Z})\,:-\,\text{times}(\textbf{X},\textbf{Y},\textbf{U})\,, \\ & & \text{plus}(\textbf{U},\textbf{Y},\textbf{Z})\,. \end{array}
```

```
\begin{array}{ll} plus(0,\textbf{X},\textbf{X})\,. & times(0,\textbf{X},0)\,. \\ plus(s(\textbf{X}),\textbf{Y},s(\textbf{Z}))\,:-\,plus(\textbf{X},\textbf{Y},\textbf{Z})\,. & times(s(\textbf{X}),\textbf{Y},\textbf{Z})\,:-\,times(\textbf{X},\textbf{Y},\textbf{U})\,, \\ & plus(\textbf{U},\textbf{Y},\textbf{Z})\,. \end{array}
```



```
\begin{array}{ll} plus(0,X,X)\,. & & times(0,X,0)\,. \\ plus(s(X),Y,s(Z)) :- plus(X,Y,Z)\,. & times(s(X),Y,Z) :- times(X,Y,U)\,, \\ & & plus(U,Y,Z)\,. \end{array}
```



```
\begin{array}{ll} plus(0,X,X)\,. & times(0,X,0)\,. \\ plus(s(X),Y,s(Z))\,:-\,plus(X,Y,Z)\,. & times(s(X),Y,Z)\,:-\,times(X,Y,U)\,, \\ & plus(U,Y,Z)\,. \end{array}
```


Structured Data and Data Abstraction

Example (Unstructured Data)

course(discrete_mathematics, tuesday, 8, 11, sandor, szedmak,
 victor_franz_hess, d).

Structured Data and Data Abstraction

Example (Unstructured Data)

course(discrete_mathematics, tuesday, 8, 11, sandor, szedmak,
 victor_franz_hess, d).

Example (Structured Data)

```
course(discrete_mathematics,time(tuesday,8,11),
  lecturer(sandor,szedmak),location(victor_franz_hess,d)).
```

Structured Data and Data Abstraction

Example (Unstructured Data)

course(discrete_mathematics, tuesday, 8, 11, sandor, szedmak,
 victor_franz_hess, d).

Example (Structured Data)

```
course(discrete_mathematics,time(tuesday,8,11),
  lecturer(sandor,szedmak),location(victor_franz_hess,d)).
```

```
lecturer(Lecturer,Course) : -
  course(Course,Time,Lecturer,Location).
duration(Course,Length) : -
  course(Course,time(Day,Start,Finish),Lecturer,Location),
  plus(Start,Length,Finish).
```

Example (cont'd)

```
teaches(Lecturer,Day) : -
  course(Course,time(Day,Start,Finish),Lecturer,Location).
occupied(Location,Day,Time) : -
  course(Course,time(Day,Start,Finish),Lecturer,Location),
  Start 
  Time, Time 
  Finish.
```

NB: rules for comparision are as expected

Example (cont'd)

```
teaches(Lecturer,Day) : -
  course(Course,time(Day,Start,Finish),Lecturer,Location).
occupied(Location,Day,Time) : -
  course(Course,time(Day,Start,Finish),Lecturer,Location),
  Start 
  Time, Time 
  Finish.
```

NB: rules for comparision are as expected

Why structure Data?

- helps to organise data; databases are usually structured . . .
- rules can be written abstractly, hiding irrelevant detail
- modularity becomes possible or is improved

Logic Programs and the Relational Database Model

Observation

the basic operations of relational algebras, namely:

- 1 union
- 2 difference
- 3 cartesian product
- 4 projection
- 5 selection
- 6 intersection

can easily be expressed within logic programming

Logic Programs and the Relational Database Model

Observation

the basic operations of relational algebras, namely:

- 1 union
- 2 difference
- 3 cartesian product
- 4 projection
- 5 selection
- 6 intersection

can easily be expressed within logic programming

```
r_{union_s}(X_1,...,X_n) := r(X_1,...,X_n).

r_{union_s}(X_1,...,X_n) := s(X_1,...,X_n).
```

```
Example (Type Condition)
is_number(0).
is_number(s(X)) : - is_number(X).
```

```
Example (Type Condition)
is_number(0).
is_number(s(X)) : - is_number(X).
```

```
\begin{array}{lll} & \texttt{plus}(0,\textbf{X},\textbf{X}) : - & \texttt{is\_number}(\textbf{X}) \,. \\ & \texttt{plus}(\textbf{s}(\textbf{X}),\textbf{Y},\textbf{s}(\textbf{Z})) : - & \texttt{plus}(\textbf{X},\textbf{Y},\textbf{Z}) \,. \\ & \texttt{times}(\textbf{0},\textbf{X},\textbf{0}) \,. \\ & \texttt{times}(\textbf{s}(\textbf{X}),\textbf{Y},\textbf{Z}) : - & \texttt{times}(\textbf{X},\textbf{Y},\textbf{U}) \,, & \texttt{plus}(\textbf{U},\textbf{Y},\textbf{Z}) \,. \end{array}
```

```
Example (Type Condition)
is_number(0).
is_number(s(X)) : - is_number(X).
```

```
\begin{split} & \text{plus}(0,X,X) \,. \\ & \text{plus}(s(X),Y,s(Z)) \,:-\, \text{plus}(X,Y,Z) \,. \\ & \text{times}(0,X,0) \,. \\ & \text{times}(s(X),Y,Z) \,:-\, \text{times}(X,Y,U) \,,\, \text{plus}(U,Y,Z) \,. \end{split}
```

```
Example (Type Condition)
is_number(0).
is_number(s(X)) : - is_number(X).
```

Example

```
\begin{array}{l} \texttt{plus}(0,X,X)\,.\\ \texttt{plus}(\texttt{s}(X),Y,\texttt{s}(Z))\,:-\,\,\texttt{plus}(X,Y,Z)\,.\\ \texttt{times}(0,X,0)\,.\\ \texttt{times}(\texttt{s}(X),Y,Z)\,:-\,\,\texttt{times}(X,Y,U)\,,\,\,\texttt{plus}(U,Y,Z)\,. \end{array}
```

```
factorial(0,s(0)). factorial(s(N),F): - factorial(N,F<sub>1</sub>), times(s(N),F<sub>1</sub>,F).
```

```
\begin{array}{l} 0 \, \leqslant \, X \, :- \, \, \text{is.number(X).} \\ s(X) \, \leqslant \, s(Y) \, :- \, X \, \leqslant \, Y. \\ \\ \text{minimum(N1,N2,N1)} \, :- \, N_1 \, \leqslant \, N_2. \\ \\ \text{minimum(N1,N2,N2)} \, :- \, N_2 \, \leqslant \, N_1. \end{array}
```

```
\begin{array}{l} \texttt{0} \; \leqslant \; \texttt{X} . \\ \\ \texttt{s}(\texttt{X}) \; \leqslant \; \texttt{s}(\texttt{Y}) \; :- \; \texttt{X} \; \leqslant \; \texttt{Y} . \\ \\ \texttt{minimum}(\texttt{N}_1,\texttt{N}_2,\texttt{N}_1) \; :- \; \texttt{N}_1 \; \leqslant \; \texttt{N}_2 . \\ \\ \texttt{minimum}(\texttt{N}_1,\texttt{N}_2,\texttt{N}_2) \; :- \; \texttt{N}_2 \; \leqslant \; \texttt{N}_1 \, . \end{array}
```

```
\begin{array}{l} 0 \;\leqslant\; X \,. \\ \text{s}(X) \;\leqslant\; \text{s}(Y) \;:-\; X \;\leqslant\; Y \,. \\ \\ \text{minimum}(N_1,N_2,N_1) \;:-\; N_1 \;\leqslant\; N_2 \,. \\ \\ \\ \text{minimum}(N_1,N_2,N_2) \;:-\; N_2 \;\leqslant\; N_1 \,. \end{array}
```

Example

mod(X,Y,Z) : -Z < Y, times(Y,Q,W), plus(W,Z,X).

```
\begin{array}{l} 0 \;\leqslant\; X \,. \\  \text{s(X)} \;\leqslant\; \text{s(Y)} \;:-\; X \;\leqslant\; Y \,. \\  \text{minimum}(\text{N}_1,\text{N}_2,\text{N}_1) \;:-\; \text{N}_1 \;\leqslant\; \text{N}_2 \,. \\  \text{minimum}(\text{N}_1,\text{N}_2,\text{N}_2) \;:-\; \text{N}_2 \;\leqslant\; \text{N}_1 \,. \end{array}
```

```
\begin{split} & \text{mod}(X,Y,Z) \; :- \; Z \; < \; Y, \; \text{times}(Y,Q,W) \,, \; \text{plus}(W,Z,X) \,. \\ & \text{mod}(X,Y,X) \; :- \; X \; < \; Y. \\ & \text{mod}(X,Y,Z) \; :- \; \text{plus}(X1,Y,X) \,, \; \text{mod}(X1,Y,Z) \,. \end{split}
```

```
\begin{array}{l} 0 \;\leqslant\; X \,. \\ s(X) \;\leqslant\; s(Y) \;:-\; X \;\leqslant\; Y \,. \\ \\ \text{minimum} \left(N_1\,,N_2\,,N_1\right) \;:-\; N_1 \;\leqslant\; N_2\,. \\ \\ \text{minimum} \left(N_1\,,N_2\,,N_2\right) \;:-\; N_2 \;\leqslant\; N_1\,. \end{array}
```

Example

```
\begin{split} & \text{mod}(X,Y,Z) \; := \; Z \; < \; Y, \; \text{times}(Y,\mathbb{Q},\mathbb{W}) \,, \; \text{plus}(\mathbb{W},Z,X) \,. \\ & \text{mod}(X,Y,X) \; := \; X \; < \; Y. \\ & \text{mod}(X,Y,Z) \; := \; \text{plus}(X1,Y,X) \,, \; \text{mod}(X1,Y,Z) \,. \end{split}
```

```
ackermann(0,N,s(N)).
```

```
\begin{array}{l} \texttt{0} \; \leqslant \; \texttt{X} . \\ \texttt{s}(\texttt{X}) \; \leqslant \; \texttt{s}(\texttt{Y}) \; :- \; \texttt{X} \; \leqslant \; \texttt{Y} . \\ \\ \texttt{minimum}(\texttt{N}_1, \texttt{N}_2, \texttt{N}_1) \; :- \; \texttt{N}_1 \; \leqslant \; \texttt{N}_2 . \\ \\ \texttt{minimum}(\texttt{N}_1, \texttt{N}_2, \texttt{N}_2) \; :- \; \texttt{N}_2 \; \leqslant \; \texttt{N}_1 . \end{array}
```

Example

```
\begin{split} & \operatorname{mod}(X,Y,Z) \,:\, - \, Z \,<\, Y, \, \operatorname{times}(Y,\mathbb{Q},\mathbb{W}) \,, \, \operatorname{plus}(\mathbb{W},Z,\mathbb{X}) \,. \\ & \operatorname{mod}(X,Y,\mathbb{X}) \,:\, - \, X \,<\, Y. \\ & \operatorname{mod}(X,Y,Z) \,:\, - \, \operatorname{plus}(X1,Y,\mathbb{X}) \,, \, \operatorname{mod}(X1,Y,Z) \,. \end{split}
```

```
ackermann(0,N,s(N)).

ackermann(s(M),0,Val) :- ackermann(M,s(0),Val).
```

```
\begin{array}{l} \texttt{0} \; \leqslant \; \texttt{X} . \\ \texttt{s}(\texttt{X}) \; \leqslant \; \texttt{s}(\texttt{Y}) \; :- \; \texttt{X} \; \leqslant \; \texttt{Y} . \\ \\ \texttt{minimum}(\texttt{N}_1, \texttt{N}_2, \texttt{N}_1) \; :- \; \texttt{N}_1 \; \leqslant \; \texttt{N}_2 . \\ \\ \texttt{minimum}(\texttt{N}_1, \texttt{N}_2, \texttt{N}_2) \; :- \; \texttt{N}_2 \; \leqslant \; \texttt{N}_1 . \end{array}
```

Example

```
\begin{split} & \operatorname{mod}(X,Y,Z) \,:\, - \, Z \,<\, Y, \, \operatorname{times}(Y,\mathbb{Q},\mathbb{W}) \,, \, \operatorname{plus}(\mathbb{W},Z,\mathbb{X}) \,. \\ & \operatorname{mod}(X,Y,\mathbb{X}) \,:\, - \, X \,<\, Y. \\ & \operatorname{mod}(X,Y,Z) \,:\, - \, \operatorname{plus}(X1,Y,\mathbb{X}) \,, \, \operatorname{mod}(X1,Y,Z) \,. \end{split}
```

```
\begin{split} & \texttt{member}(\texttt{X}, \texttt{[X|Xs]}) \, . \\ & \texttt{member}(\texttt{X}, \texttt{[Y|Xs]}) \, :- \, \texttt{member}(\texttt{X}, \texttt{Xs}) \, . \end{split}
```

```
\label{eq:member} \begin{split} & \texttt{member}(\texttt{X}, [\texttt{X}|\texttt{Xs}]) \, . \\ & \texttt{member}(\texttt{X}, [\texttt{Y}|\texttt{Xs}]) \, :- \, \texttt{member}(\texttt{X}, \texttt{Xs}) \, . \\ & :- \, \texttt{member}(\texttt{X}, [\texttt{a}, \texttt{b}, \texttt{a}]) \, . \end{split}
```

```
\label{eq:member} \begin{split} & \texttt{member}(\texttt{X}, [\texttt{X}|\texttt{X}\texttt{s}]) \; . \\ & \texttt{member}(\texttt{X}, [\texttt{Y}|\texttt{X}\texttt{s}]) \; :- \; \texttt{member}(\texttt{X}, \texttt{X}\texttt{s}) \, . \\ & :- \; \texttt{member}(\texttt{X}, [\texttt{a}, \texttt{b}, \texttt{a}]) \, . \end{split}
```

```
append(Xs,Ys,Zs) : -
    Xs = [],
append(Xs,Ys,Zs) : -
    Xs = [H|Ts],
```

```
\label{eq:member} \begin{split} & \texttt{member}(\texttt{X}, [\texttt{X}|\texttt{X}\texttt{s}]) \: . \\ & \texttt{member}(\texttt{X}, [\texttt{Y}|\texttt{X}\texttt{s}]) \: : \: - \: \texttt{member}(\texttt{X}, \texttt{X}\texttt{s}) \: . \end{split} \\ & : \: - \: \texttt{member}(\texttt{X}, [\texttt{a}, \texttt{b}, \texttt{a}]) \: . \end{split}
```

```
append(Xs,Ys,Zs) : -
    Xs = [],
append(Xs,Ys,Zs) : -
    Xs = [H|Ts],
```

```
\label{eq:member} \begin{split} & \texttt{member}(\texttt{X}, [\texttt{X}|\texttt{X}\texttt{s}]) \, . \\ & \texttt{member}(\texttt{X}, [\texttt{Y}|\texttt{X}\texttt{s}]) \, :- \, \texttt{member}(\texttt{X}, \texttt{X}\texttt{s}) \, . \\ & :- \, \texttt{member}(\texttt{X}, [\texttt{a}, \texttt{b}, \texttt{a}]) \, . \end{split}
```

```
append(Xs,Ys,Zs) : -
    Xs = [],
    Zs = Ys.
append(Xs,Ys,Zs) : -
    Xs = [H|Ts],
```

```
append(Xs,Ys,Zs) : -
    Xs = [],
    Zs = Ys.
append(Xs,Ys,Zs) : -
    Xs = [H|Ts],
    append(Ts,Ys,Us),
    Zs = [H|Us].
```

```
\label{eq:member} \begin{split} & \texttt{member}(\texttt{X}, [\texttt{X}|\texttt{X}\texttt{s}]) \, . \\ & \texttt{member}(\texttt{X}, [\texttt{Y}|\texttt{X}\texttt{s}]) \, :- \, \texttt{member}(\texttt{X}, \texttt{X}\texttt{s}) \, . \\ & :- \, \texttt{member}(\texttt{X}, [\texttt{a}, \texttt{b}, \texttt{a}]) \, . \end{split}
```

Example

```
append(Xs,Ys,Zs) :- append([],Ys,Ys).
    Xs = [], append([H|Ts],Ys,[H|Zs]) :-
    Zs = Ys. append(Ts,Ys,Zs).

append(Xs,Ys,Zs) :-
    Xs = [H|Ts],
    append(Ts,Ys,Us),
    Zs = [H|Us].
```

five steps to implement relation R

 \blacksquare look up existing definitions of relation R

five steps to implement relation R

1 look up existing definitions of relation *R*

define types of individual data

five steps to implement relation R

 \blacksquare look up existing definitions of relation R

2 define types of individual data

3 think up a suitable name

five steps to implement relation R

 \blacksquare look up existing definitions of relation R

2 define types of individual data

3 think up a suitable name

write queries (use cases)

five steps to implement relation R

 \blacksquare look up existing definitions of relation R

define types of individual data

3 think up a suitable name

- 4 write queries (use cases)
- 5 write the actual program

five steps to implement relation R

- \blacksquare look up existing definitions of relation R
 - family relations
 - train tables
- 2 define types of individual data

think up a suitable name

- 4 write queries (use cases)
- 5 write the actual program

five steps to implement relation R

- \blacksquare look up existing definitions of relation R
 - family relations
 - train tables
- 2 define types of individual data
 - is_number
 - · mainly for documentation
- 3 think up a suitable name

- 4 write queries (use cases)
- 5 write the actual program

five steps to implement relation R

- \blacksquare look up existing definitions of relation R
 - family relations
 - train tables
- 2 define types of individual data
 - is_number
 - · mainly for documentation
- think up a suitable name
 - convert a verbose description into a name
 - child_of
- 4 write queries (use cases)
- 5 write the actual program

```
prefix(Xs,Ys) : - append(Xs,As,Ys).
suffix(Xs,Ys) : - append(As,Xs,Ys).
member(X,Ys) : - append(As,[X|Xs],Ys).
```

```
prefix(Xs,Ys) : - append(Xs,As,Ys).
suffix(Xs,Ys) : - append(As,Xs,Ys).
member(X,Ys) : - append(As,[X|Xs],Ys).
```

```
reverse([],[]).
reverse([X|Xs],Zs) : - reverse(Xs,Ys), append(Ys,[X],Zs).
```

```
prefix(Xs,Ys) : - append(Xs,As,Ys).
suffix(Xs,Ys) : - append(As,Xs,Ys).
member(X,Ys) : - append(As,[X|Xs],Ys).
```

```
reverse([],[]).
reverse([X|Xs],Zs) : - reverse(Xs,Ys), append(Ys,[X],Zs).
reverse(Xs,Ys) : - reverse(Xs,[],Ys).
reverse([X|Xs],Acc,Ys) : - reverse(Xs,[X|Acc],Ys).
reverse([],Ys,Ys).
```

```
prefix(Xs,Ys) : - append(Xs,As,Ys).
suffix(Xs,Ys) : - append(As,Xs,Ys).
member(X,Ys) : - append(As,[X|Xs],Ys).
```

Example

```
reverse([],[]).
reverse([X|Xs],Zs) : - reverse(Xs,Ys), append(Ys,[X],Zs).
reverse([Xs,Ys) : - reverse(Xs,[],Ys).
reverse([X|Xs],Acc,Ys) : - reverse(Xs,[X|Acc],Ys).
reverse([],Ys,Ys).
```

```
length([],0).
length([X|Xs],s(N)) : - length(Xs,N).
```

```
\begin{split} & \texttt{select}(\texttt{X}, [\texttt{X}|\texttt{Xs}], \texttt{Xs}) \,. \\ & \texttt{select}(\texttt{X}, [\texttt{Y}|\texttt{Ys}], [\texttt{Y}|\texttt{Zs}]) \,:-\, \texttt{select}(\texttt{X}, \texttt{Ys}, \texttt{Zs}) \,. \end{split}
```

```
permutationsort(Xs,Ys) : - permutation(Xs,Ys), ordered(Ys).
```

```
\begin{split} & \texttt{select}(\texttt{X}, [\texttt{X}|\texttt{Xs}], \texttt{Xs}) \,. \\ & \texttt{select}(\texttt{X}, [\texttt{Y}|\texttt{Ys}], [\texttt{Y}|\texttt{Zs}]) \,:-\, \texttt{select}(\texttt{X}, \texttt{Ys}, \texttt{Zs}) \,. \end{split}
```

```
\label{eq:permutation} \begin{split} & \text{permutationsort(Xs,Ys)} : - \text{ permutation(Xs,Ys), ordered(Ys).} \\ & \text{permutation(Xs,[Z|Zs])} : - \text{ select(Z,Xs,Ys), permutation(Ys,Zs).} \\ & \text{permutation([],[]).} \end{split}
```

```
select(X,[X|Xs],Xs).

select(X,[Y|Ys],[Y|Zs]) : - select(X,Ys,Zs).
```

```
\begin{split} & \text{permutationsort}(Xs,Ys) : - \text{ permutation}(Xs,Ys), \text{ ordered}(Ys). \\ & \text{permutation}(Xs,[Z|Zs]) : - \text{ select}(Z,Xs,Ys), \text{ permutation}(Ys,Zs). \\ & \text{permutation}([],[]). \\ & \text{ordered}([X]). \\ & \text{ordered}([X,Y|Ys]) : - X \leqslant Y, \text{ ordered}([Y|Ys]). \\ & \text{select}(X,[X|Xs],Xs). \\ & \text{select}(X,[Y|Ys],[Y|Zs]) : - \text{ select}(X,Ys,Zs). \end{split}
```

```
Example (Permutation Sort)  \begin{array}{lll} & \text{permutationsort}(Xs,Ys) : - \text{ permutation}(Xs,Ys), \text{ ordered}(Ys). \\ & \text{permutation}(Xs,[Z|Zs]) : - \text{ select}(Z,Xs,Ys), \text{ permutation}(Ys,Zs). \\ & \text{permutation}([],[]). \\ & \text{ordered}([X]). \\ & \text{ordered}([X,Y|Ys]) : - X \leqslant Y, \text{ ordered}([Y|Ys]). \\ & \text{select}(X,[X|Xs],Xs). \\ & \text{select}(X,[Y|Ys],[Y|Zs]) : - \text{ select}(X,Ys,Zs). \\ \end{array}
```

```
Example (Permutation Sort)  \begin{array}{lll} & \text{permutationsort}(Xs,Ys) : - \text{ permutation}(Xs,Ys), \text{ ordered}(Ys). \\ & \text{permutation}(Xs,[Z|Zs]) : - \text{ select}(Z,Xs,Ys), \text{ permutation}(Ys,Zs). \\ & \text{permutation}([],[]). \\ & \text{ordered}([X]). \\ & \text{ordered}([X,Y|Ys]) : - X \leqslant Y, \text{ ordered}([Y|Ys]). \\ & \text{select}(X,[X|Xs],Xs). \end{array}
```

select(X,[Y|Ys],[Y|Zs]) : - select(X,Ys,Zs).

```
Example (Quick Sort)
quicksort([X|Xs],Ys) : -
   partition(Xs,X,Littles,Bigs),
   quicksort(Littles,Ls), quicksort(Bigs,Rs),
   append(Ls,[X|Rs],Ys).
```

```
Example (Quick Sort)
quicksort([X|Xs],Ys) : -
    partition(Xs,X,Littles,Bigs),
    quicksort(Littles,Ls), quicksort(Bigs,Rs),
    append(Ls,[X|Rs],Ys).

partition([X|Xs],Y,[X|Ls],Bs) : -
    X =< Y, partition(Xs,Y,Ls,Bs).
partition([X|Xs],Y,Ls,[X|Bs]) : -
    X > Y, partition(Xs,Y,Ls,Bs).
partition([],Y,[],[]).
```

```
Example (Quick Sort)
 quicksort([X|Xs],Ys):-
     partition(Xs,X,Littles,Bigs),
     quicksort(Littles, Ls), quicksort(Bigs, Rs),
     append(Ls, [X|Rs], Ys).
 partition([X|Xs],Y,[X|Ls],Bs):-
     X =< Y, partition(Xs,Y,Ls,Bs).</pre>
 partition([X|Xs],Y,Ls,[X|Bs]):-
     X > Y, partition(Xs, Y, Ls, Bs).
 partition([],Y,[],[]).
```

```
isotree(nil,nil).
isotree(tree(X,Left1,Right1),tree(X,Left2,Right2)) : -
    isotree(Left1,Left2), isotree(Right1,Right2).
isotree(tree(X,Left1,Right1),tree(X,Left2,Right2)) : -
    isotree(Left1,Right2), isotree(Right1,Left2).
```