Summary of Last Lecture

Summary of Last Lecture

ogic

Example (Search Tree) m
plus(0,s(0),s(0))

I_ . P . | Us — 0
OogIC Frogramming times(0,s(0),Us3), plus(Us,s(0),s(0))

times(s(0),s(0),s(0))
Xo—0,Y—0
Department of Computer Science @ UIBK times(0,0,s(0)) plus (Xo ,Y,0) ,timeS(S(Xo) s S(Xo) ,s(0))

Winter 2016 X=0Y HM /< = 5(Xo)

plus(X,Y,s(0)), times(X,X,s(0))

Georg Moser

NB: search trees are a tree representation of SLD-derivations

GM (Department of Computer Science @ Ul Logic Programming

Outline of the Lecture

Definitions
e a type is a (possible infinite) set of terms Monotone Logic Programs
e types are conveniently defined by unary relations introduction, basic constructs, logic foundations, unification, semantics,
e a type is complete if closed under the instance relation database and recursive programming, termination, complexity
e with every complete type T one associates an incomplete type /T
which is a set of terms with instances in T and instances not in T
Incomplete Data Structures and Constraints
Definitions incomp_lete data structures, defini_te clause grammars, constraint logic pro-
e a list is complete if every instances satisfies the above type for lists gramming, answer set programming
e otherwise it is incomplete
Full Prolog
Example semantics (revisted), correctness proofs, meta-logical predicates, cuts non-
the lists [a,b,c] and [a,X,c] are complete; the list [a,b|Xs] is not deterministic programming, efficient programs, complexity

GM (Department of Computer Science @ Ul Logic Programming 55/1 GM (Department of Computer Science @ Ul Logic Programming 56/1

http://cl-informatik.uibk.ac.at

Proof Trees
Example (Proof Tree)
Definitions plus(0,X,X) . times(0,X,0).
e a proof tree for a program P and a goal G is a tree, whose nodes plus(s(X),Y,s(Z)) :- plus(X,Y,Z). times(s(X),Y,Z) :- times(X,Y,U),
are goals and whose edges represent reduction of goals plus(U,Y,Z).

e the root is the query G

e the edges are labelled with (partial) answer substitutions times (0. .0) p1us(0,5(0),5(0))
s 1’ 3 3

e a proof tree for a conjunction of goals G, ..., G, is the set of proof

trees for G; Xo—0,X1—0,Up— 0

Xz — 5(0)

times (Xp,s(Xg) ,Ug) plus(Up,s(Xp),s(0))

X s(Xo)\ //0 — 5(Xo), Zo — 5(0)
Remark

times (X,X,s(0))

a proof tree is a different representation of one successful solution repre-
sented by a search tree combining all possible selection functions

GM (Department of Computer Science @ Ul Logic Programming GM (Department of Computer Science @ Ul Logic Programming

Database Programming Database Programming

Structured Data and Data Abstraction

Example (Unstructured Data) Example (cont'd)

teaches(Lecturer,Day) : —

course(discrete mathematics,tuesday,8,11,sandor, szedmak, ; o
course(Course,time(Day,Start,Finish) ,Lecturer,Location).

victor_franz_ hess,d).

occupied(Location,Day,Time) : —
course(Course,time(Day,Start,Finish) ,Lecturer,Location),
Example (Structured Data) Start < Time, Time < Finish.

course(discrete mathematics,time(tuesday,8,11),

lecturer(sandor,szedmak) ,location(victor_franz_ hess,d)). NB: rules for comparision are as expected

Why structure Data?

Example
lecturer (Lecturer,Course) : — e helps to organise data; databases are usually structured . ..
course(Course,Time,Lecturer,Location). e rules can be written abstractly, hiding irrelevant detail
duration(Course,Length) : — e modularity becomes possible or is improved

course(Course,time(Day,Start,Finish) ,Lecturer,Location),
plus(Start,Length,Finish).

GM (Department of Computer Science @ Ul Logic Programming 59/1 GM (Department of Computer Science @ Ul Logic Programming 60/1

Relational Database Model

Logic Programs and the Relational Database Model
Observation
the basic operations of relational algebras, namely:

union

difference

cartesian product

projection

selection

[@ intersection

can easily be expressed within logic programming

Example

runion.s(Xy,..., X,) :— r(X1,...,X,).
runion_s(Xi,...,X,) :— s(X1,...,X,).

GM (Department of Computer Science @ Ul Logic Programming 61/1

Recursive Programming

Example

0 < X :— is_number(X).

sX) < s(Y) :— X<V,
minimum(Ny,N,,Ny) @ — Ny < Nop.
minimum(Ny,No,No) : — Np < Nj.

Example
mod(X,Y,Z) : — Z <Y, times(Y,Q,W), plus(W,Z,X).

mod(X,Y,X) : — X < Y.
mod(X,Y,Z) : — plus(X1,Y,X), mod(X1,Y,Z).

Example
ackermann(0,N,s(N)).
ackermann(s(M),0,Val) : — ackermann(M,s(0),Val).

ackermann(s(M),s(N),Val) : — ackermann(s(M),N,Val;),
ackermann(M,Val;,Val).

GM (Department of Computer Science @ Ul Logic Programming 63/1

Arithmetic

Example (Type Condition)

is_number(0).

is_number(s(X)) : — is_number(X).

Example

plus(0,X,X) : — is_number(X)..
plus(s(X),Y,s(Z)) : — plus(X,Y,Z).
times(0,X,0).

times(s(X),Y,Z) : — times(X,Y,U), plus(U,Y,Z).
Example

factorial(0,s(0)).

factorial(s(N),F) : — factorial(N,F;), times(s(N),F;,F).

Recursive Programming

Example
member (X, [X|Xs]) .
member (X, [Y|Xs]) : — member(X,Xs). : — member (X, [a,b,a]).
Example
append(Xs,Ys,Zs) : — append([],Ys,¥s).
Xs = [], append ([H|Ts],Ys, [H|Zs]) : —
Zs = Ys. append(Ts,Ys,Zs) .
append(Xs,Ys,Zs) : —
Xs = [H|Ts],
append(Ts,Ys,Us),
Zs = [H|Us].
Example
prefix([],Xs). suffix(Xs,Xs).
prefix([X|Xs], [XIYs]) : — suffix(Xs, [Y|Ys]) : —
prefix(Xs,Ys). suffix(Xs,Ys).

GM (Department of Computer Science @ Ul

Logic Programming

Composition of Programs

Composition of Programs

five steps to implement relation R

look up existing definitions of relation R
e family relations
e train tables

define types of individual data
® is_number
e mainly for documentation

think up a suitable name

e convert a verbose description into a name
e child_of

write queries (use cases)

write the actual program

GM (Department of Computer Science @ Ul Logic Programming 65/1

Recursive Programming Revisited

Example (Permutation Sort)

permutationsort(Xs,Ys) : — permutation(Xs,Ys), ordered(Ys).
permutation(Xs, [Z|Zs]) : — select(Z,Xs,Ys), permutation(Vs,Zs).
permutation([], [1).

ordered([X]).

ordered([X,Y|Ys]) : — X < Y, ordered([Y|Ys]).
select (X, [X|Xs],Xs).

select (X, [Y|Ys],[Y|Zs]) : — select(X,Ys,Zs).

Example (Insertion Sort)

insertionsort([X|Xs],Ys) : — insertionsort(Xs,Zs),
insert(X,Zs,Ys).

insertionsort ([],[]).

insert (X, [1, [X]1).

insert (X, [Y|Ys],[YIZs]) : — X > Y, insert(X,Ys,Zs).

insert (X, [Y|Ys], [X,YlYs]) : — X < Y.

GM (Department of Computer Science @ Ul Logic Programming 67/1

Recursive Programming Revisited

Example (Uses of append)

prefix(Xs,Y¥s) : — append(Xs,As,Ys).

suffix(Xs,Ys) : — append(As,Xs,Ys).

member (X,Ys) : — append(As, [X|Xs],Y¥s).
Example

reverse([],[]).

reverse([X|Xs],Zs) : — reverse(Xs,Ys), append(Ys, [X],Zs).
reverse(Xs,Ys) : — reverse(Xs,[],Ys).
reverse([X|Xs],Acc,Ys) : — reverse(Xs, [X|Acc],Ys).

reverse([],Ys,¥s).

Example
length([],0).
length([X[Xs],s(N)) : — length(Xs,N).

Recursive Programming Revisited

Example (Quick Sort)

quicksort ([X|Xs],¥s) : —
partition(Xs,X,Littles,Bigs),
quicksort(Littles,Ls), quicksort(Bigs,Rs),
append(Ls, [X|Rs],Ys).

partition([X|Xs],Y, [X|Ls],Bs) : —
X =< Y, partition(Xs,Y,Ls,Bs).
partition([X|Xs],Y,Ls, [XIBs]) : —
X>Y, partition(Xs,Y,Ls,Bs).
partition([],Y,[1,[1).

Example

isotree(nil,nil).

isotree(tree(X,Leftl,Rightl) ,tree(X,Left2,Right2)) : —
isotree(Leftl,Left2), isotree(Rightl,Right2).

isotree(tree(X,Leftl,Rightl) ,tree(X,Left2,Right2)) : —
isotree(Leftl,Right2), isotree(Rightl,Left2).

GM (Department of Computer Science @ Ul Logic Programming 68/1

