Logic Programming

Georg Moser

Department of Computer Science @ UIBK
Winter 2016

Summary of Last Lecture

Definitions

- a proof tree for a program P and a goal G is a tree, whose nodes are goals and whose edges represent reduction of goals
- the root is the query G
- the edges are labelled with (partial) answer substitutions
- a proof tree for a conjunction of goals G_{1}, \ldots, G_{n} is the set of proof trees for G_{i}

Example (generate and test)

```
permutationsort(Xs,Ys) :- permutation(Xs,Ys), ordered(Ys).
permutation(Xs,[Z|Zs]) : - select(Z,Xs,Ys), permutation(Ys,Zs).
permutation([],[]).
ordered([X]).
ordered([X,Y|Ys]) : - X \leqslant Y, ordered([Y|Ys]).
```


Outline of the Lecture

Monotone Logic Programs
introduction, basic constructs, logic foundations, unification, semantics, database and recursive programming, termination, complexity

Incomplete Data Structures and Constraints

 incomplete data structures, definite clause grammars, constraint logic programming, answer set programming
Full Prolog

semantics (revisited), correctness proofs, meta-logical predicates, cuts nondeterministic programming, efficient programs, complexity

Outline of the Lecture

Monotone Logic Programs
introduction, basic constructs, logic foundations, unification, semantics, database and recursive programming, termination, complexity

Incomplete Data Structures and Constraints

 incomplete data structures, definite clause grammars, constraint logic programming, answer set programming
Full Prolog

semantics (revisited), correctness proofs, meta-logical predicates, cuts nondeterministic programming, efficient programs, complexity

Accessing compound terms

Definition

- functor(Term,F,Arity) is true, if Term is a compound term, whose principal functor is F with arity Arity

Accessing compound terms

Definition

- functor(Term, F, Arity) is true, if Term is a compound term, whose principal functor is F with arity Arity
- $\arg (N, \operatorname{Term}, \operatorname{Arg})$ is true, if Arg is the $N^{\text {th }}$ argument of Term

Accessing compound terms

Definition

- functor (Term, F, Arity) is true, if Term is a compound term, whose principal functor is F with arity Arity
- $\arg (N$, Term, $\operatorname{Arg})$ is true, if Arg is the $N^{\text {th }}$ argument of Term

Example

```
:- functor(father(haran,lot),F,A)
```

$\mathrm{F} \mapsto$ father
A $\mapsto 2$

Accessing compound terms

Definition

- functor(Term,F,Arity) is true, if Term is a compound term, whose principal functor is F with arity Arity
- $\arg (N$, Term, $\operatorname{Arg})$ is true, if Arg is the $N^{\text {th }}$ argument of Term

Example

```
:- functor(father(haran,lot),F,A)
```

$\mathrm{F} \mapsto$ father
A $\mapsto 2$

Example
$:-\arg (2, f a t h e r(h a r a n, l o t), X)$
$\mathrm{X} \mapsto$ lot

Example

```
subterm(Term,Term).
subterm(Sub,Term) : -
    compound(Term),
    functor(Term,F,N),
    subterm(N,Sub,Term).
```

subterm (N, Sub, Term) : -
$\mathrm{N}>1$,
N1 is N - 1,
subterm(N1, Sub, Term).
subterm (N, Sub, Term) : -
$\arg (\mathrm{N}, \mathrm{Term}, \mathrm{Arg})$,
subterm (Sub, Arg).
:- subterm(X,f(a,f(a,b))), X = a

Example

```
subterm(Term,Term).
subterm(Sub,Term) : -
    compound(Term),
    functor(Term,F,N),
    subterm(N,Sub,Term).
subterm(N,Sub,Term) : -
    N > 1,
    N1 is N - 1,
    subterm(N1,Sub,Term).
subterm(N,Sub,Term) : -
    arg(N,Term,Arg) ,
    subterm(Sub,Arg).
:- subterm(X,f(a,f(a,b))), X = a
:- subterm(X,f(U,f(V,W))), X = f(V,W).
```


Definition

- Term =. . List is true if List is a list whose head is the principal functor of Term, and whose tail is the list of arguments of Term
- the operator $=$. . is also called univ

Definition

- Term =. . List is true if List is a list whose head is the principal functor of Term, and whose tail is the list of arguments of Term
- the operator $=$. . is also called univ

Example

:- father (haran,lot) =.. Xs
X \mapsto [father,haran,lot]

Definition

- Term = . . List is true if List is a list whose head is the principal functor of Term, and whose tail is the list of arguments of Term
- the operator $=$. . is also called univ

Example

$$
:- \text { father (haran,lot) =.. Xs }
$$

$X \mapsto$ [father,haran,lot]

Remark

- programs written with functor and arg can also be written with univ

Definition

- Term =. . List is true if List is a list whose head is the principal functor of Term, and whose tail is the list of arguments of Term
- the operator $=$. . is also called univ

Example

$$
:- \text { father(haran,lot) }=\text {. . Xs }
$$

$X \mapsto$ [father,haran,lot]

Remark

- programs written with functor and arg can also be written with univ
- programs using univ are typically simpler
- programs using functor and arg are more efficient
- univ can be built from functor and arg

Approach

1 sometimes it is useful (easier) to think of a relation as a function
$\sqrt{2}$ use this definition for coding
3 afterwards see, if alternative uses make declarative sense

Approach

1 sometimes it is useful (easier) to think of a relation as a function
2 use this definition for coding
3 afterwards see, if alternative uses make declarative sense

Example

delete/3 removes all occurrences of an element from a list

Approach

1 sometimes it is useful (easier) to think of a relation as a function
2 use this definition for coding
3 afterwards see, if alternative uses make declarative sense

Example

delete/3 removes all occurrences of an element from a list

Example

```
delete([X|Xs],Z,?) :- X = Z
delete([X|Xs],Z,?) :- dif(X,Z)
```


Approach

1 sometimes it is useful (easier) to think of a relation as a function
2 use this definition for coding
3 afterwards see, if alternative uses make declarative sense

Example

delete/3 removes all occurrences of an element from a list

Example

$$
\text { delete([X|Xs],Z,Ys) } \quad:-X=Z, \operatorname{delete}(X s, Z, Y s) .
$$

Approach

1 sometimes it is useful (easier) to think of a relation as a function
2 use this definition for coding
3 afterwards see, if alternative uses make declarative sense

Example

delete/3 removes all occurrences of an element from a list

Example

$$
\begin{array}{ll}
\operatorname{delete}([X \mid X s], Z, Y s) & :-X=Z, \operatorname{delete}(X s, Z, Y s) . \\
\operatorname{delete}([X \mid X s], Z, ?) & :-\operatorname{dif}(X, Z)
\end{array}
$$

Approach

1 sometimes it is useful (easier) to think of a relation as a function
2 use this definition for coding
3 afterwards see, if alternative uses make declarative sense

Example

delete/3 removes all occurrences of an element from a list

Example

$$
\begin{array}{ll}
\operatorname{delete}([X \mid X s], Z, Y s) & :-X=Z, \operatorname{delete}(X s, Z, Y s) . \\
\operatorname{delete}([X \mid X s], Z,[X \mid Y s]) & :-\operatorname{dif}(X, Z), \operatorname{delete}(X s, Z, Y s) .
\end{array}
$$

Approach

1 sometimes it is useful (easier) to think of a relation as a function
2 use this definition for coding
3 afterwards see, if alternative uses make declarative sense

Example

delete/3 removes all occurrences of an element from a list

Example

```
delete([X|Xs],Z,Ys) : - X = Z , delete(Xs,Z,Ys).
delete([X|Xs],Z,[X|Ys]) : - dif(X,Z) , delete(Xs,Z,Ys).
delete([],X,[]).
```


Approach

1 sometimes it is useful (easier) to think of a relation as a function
2 use this definition for coding
3 afterwards see, if alternative uses make declarative sense

Example

delete/3 removes all occurrences of an element from a list

Example

```
delete([X|Xs],Z,Ys) : - X = Z , delete(Xs,Z,Ys).
delete([X|Xs],Z,[X|Ys]) : - dif(X,Z) , delete(Xs,Z,Ys).
delete([],X,[]).
delete([X|Xs],X,Ys) : - delete(Xs,X,Ys).
delete([X|Xs],Z,[X|Ys]) : - dif(X,Z), delete(Xs,Z,Ys).
delete([],X, []).
```


5
\square

.
\qquad
號

Example

```
delete2([X|Xs],X,Ys) :- delete2(Xs,X,Ys).
delete}\mp@subsup{2}{2}{([X|Xs],Z,[X|Ys]) :- delete2(Xs,Z,Ys).
delete
:- delete. ([a,b,c,b],b,[a,c])
true
:- delete.([a,b, c,b],b,[a,b,c,b])
true
```

Example (Select \approx Delete $_{2}$)
select (X, [X|Xs],Xs).
select(X,[Y|Ys],[Y|Zs]) :- select(X,Ys,Zs)
:- delete ${ }_{2}([\mathrm{a}], \mathrm{b},[\mathrm{a}])$
true
:- select(b,[a],X)
false

Example (non termination)

\% infinite $<-$ defines an uniformly nonterminating relation infinite :- infinite.

Example (non termination)

\% infinite $<-$ defines an uniformly nonterminating relation infinite :- infinite.

Example (again, but different)

\% winfinite $<-$ uniformly nonterminating relation winfinite :- winfinite. winfinite.

Example (non termination)

\% infinite $<-$ defines an uniformly nonterminating relation infinite :- infinite.

Example (again, but different)

\% winfinite $<-$ uniformly nonterminating relation
winfinite :- winfinite.
winfinite.

Example (non termination, yet again)
\% hinfinte <- not strongly terminating, weakly terminating hinfinite. hinfinite :- hinfinite.
:- hinfinite.

Termination Analysis

Fact

- for termination analysis only recursive calls (cycles in call tree) are essential
- let's remove non-recursive rules

Termination Analysis

Fact

- for termination analysis only recursive calls (cycles in call tree) are essential
- let's remove non-recursive rules

Example (specialised)

```
ancestor_of_2(Ancestor, Descendant) :- false,
    child_of(Descendant, Ancestor),
ancestor_of_2(Ancestor, Descendant) :-
    ancestor_of_2(Person, Descendant),
    child_of(Person, Ancestor).
```


Termination Analysis

Fact

- for termination analysis only recursive calls (cycles in call tree) are essential
- let's remove non-recursive rules

Example (specialised)

```
ancestor_of_2(Ancestor, Descendant) :- false,
    child_of(Descendant, Ancestor),
ancestor_of_2(Ancestor, Descendant) :-
    ancestor_of_2(Person, Descendant),
    child_of(Person, Ancestor).
```

equivalently

```
ancestor_of_2(Ancestor, Descendant) :-
    ancestor_of_2(Person, Descendant),
    child_of(Person, Ancestor).
```


Example

ancestor_of_2 (Ancestor, Descendant) :ancestor_of_2(Person, Descendant), child_of(Person, Ancestor).

Example

ancestor_of_2(Ancestor, Descendant) :ancestor_of_2(Person, Descendant), child_of(Person, Ancestor).

- Ancestor doesn't occur in first goal (= recursive call)
- no influence on termination behaviour

Example

ancestor_of_2(Ancestor, Descendant) :ancestor_of_2(Person, Descendant), child_of(Person, Ancestor).

- Ancestor doesn't occur in first goal (= recursive call)
- no influence on termination behaviour
- Descendant remains unchanged

Example

```
ancestor_of_2(Ancestor, Descendant) :-
    ancestor_of_2(Person, Descendant),
    child_of(Person, Ancestor).
```

- Ancestor doesn't occur in first goal (= recursive call)
- no influence on termination behaviour
- Descendant remains unchanged
- last goal has no effect \rightarrow let's remove (generalisation)

Example

$$
\begin{gathered}
\text { ancestor_of_2(Ancestor, Descendant) :- } \\
\quad \text { ancestor_of_2(Person, Descendant), } \\
\text { child_of(Person, Ancestor). }
\end{gathered}
$$

- Ancestor doesn't occur in first goal (= recursive call)
- no influence on termination behaviour
- Descendant remains unchanged
- last goal has no effect \rightarrow let's remove (generalisation)

Example (specialised and generalised)

\% ancestor_of_2 <- uniform nontermination

$$
\begin{aligned}
& \text { ancestor_of_2(Ancestor, Descendant) :- } \\
& \quad \text { ancestor_of_2(Person, Descendant), false, } \\
& \quad \text { child_of(Person, Ancestor). }
\end{aligned}
$$

Fact

suppose the solution set for Goal is infinite, then the query
:- Goal, false.
cannot terminate

Fact

suppose the solution set for Goal is infinite, then the query
:- Goal, false.
cannot terminate

Example

:- hinfinite, false \% false, but does not terminate

Fact

suppose the solution set for Goal is infinite, then the query
:- Goal, false.

cannot terminate

Example

:- hinfinite, false \% false, but does not terminate

Example (ancestor_of specialised)

```
ancestor_of(Ancestor, Descendant) :-
``` child_of(Person, Ancestor), ancestor_of(Person, Descendant).
\(:-\quad\) + child_of \((X, X)\).
:- ancestor_of(Ancestor, Descendant), false. \% terminates
:- false, ancestor_of(Ancestor, Descendant). \% remark order

\section*{Termination Domains}

\section*{Example (recall)}
\% infinite \(<-\) defines an uniformly nonterminating relation infinite :- infinite.
\% winfinite \(<-\) uniformly nonterminating relation
winfinite :- winfinite.
winfinite.

\section*{Termination Domains}

\section*{Example (recall)}
\% infinite \(<-\) defines an uniformly nonterminating relation infinite :- infinite.
\% winfinite <- uniformly nonterminating relation
winfinite :- winfinite.
winfinite.

Observation
due to selection strategy Prolog may fail to find a solution to a goal, even though the goal has a finite computation

\section*{Example}
```

married (X,Y) :- married (Y,X).
parent_of(X,Y) :- child_of(Y,X).
child_of(X,Y) :- parent_of(Y,X).

```

\section*{Example}
```

married(X,Y) :- married (Y,X).
parent_of (X,Y) :- child_of(Y,X).
child_of(X,Y) :- parent_of(Y,X).

```

Definitions
- a domain is a set of goals closed under the instance relation
- a termination domain of a program \(P\) is a domain \(D\) such that \(P\) terminates on all goals in \(D\)

\section*{Example}
```

married(X,Y) :- married(Y,X).
parent_of(X,Y) :- child_of(Y,X).
child_of(X,Y) :- parent_of(Y,X).

```

\section*{Definitions}
- a domain is a set of goals closed under the instance relation
- a termination domain of a program \(P\) is a domain \(D\) such that \(P\) terminates on all goals in \(D\)

\section*{Example (domain)}
\[
\begin{array}{ll}
\text { is_list }([]) . & \text { is_list }([\mathrm{X} \mid \mathrm{Xs}]):- \text { is_list(Xs). } \\
:- \text { is_list }([\mathrm{a}, \mathrm{X}, \mathrm{~b}]) .
\end{array}
\]

\section*{Definition}
recursive (grammar) rules which have the recursive goal as the first goal in the body are called left recursive

\section*{Definition}
recursive (grammar) rules which have the recursive goal as the first goal in the body are called left recursive
```

Example (cont'd)
are_married(X,Y) :- married(X,Y).
are_married(X,Y) :- married(Y,X).

```

\section*{Definition}
recursive (grammar) rules which have the recursive goal as the first goal in the body are called left recursive
```

Example (cont'd)
are_married(X,Y) :- married(X,Y).
are_married(X,Y) :- married(Y,X).

```

\section*{Example}
consider append/3, where the fact comes after the rule
1 append terminates if the first argument is a complete list

\section*{Definition}
recursive (grammar) rules which have the recursive goal as the first goal in the body are called left recursive
```

Example (cont'd)
are_married(X,Y) :- married(X,Y).
are_married(X,Y) :- married(Y,X).

```

\section*{Example}
consider append/3, where the fact comes after the rule
1 append terminates if the first argument is a complete list
2 append terminates if the third argument is complete

\section*{Definition}
recursive (grammar) rules which have the recursive goal as the first goal in the body are called left recursive
```

Example (cont'd)
are_married(X,Y) :- married(X,Y).
are_married(X,Y) :- married(Y,X).

```

\section*{Example}
consider append/3, where the fact comes after the rule
1 append terminates if the first argument is a complete list
2 append terminates if the third argument is complete
3 append terminates iff the first or third argument is complete

\section*{Complexity of Programs}
- as soon as we know the termination domain of a program, we can ask about the complexity (= efficiency) of the program
- in general resource analysis is even more difficult than termination analysis; in particular this holds for automation

\section*{Complexity of Programs}
- as soon as we know the termination domain of a program, we can ask about the complexity (= efficiency) of the program
- in general resource analysis is even more difficult than termination analysis; in particular this holds for automation

\section*{Definition}
suitable complexity measures are
- cardinality of the set/multiset of solutions

\section*{Complexity of Programs}
- as soon as we know the termination domain of a program, we can ask about the complexity (= efficiency) of the program
- in general resource analysis is even more difficult than termination analysis; in particular this holds for automation

\section*{Definition}
suitable complexity measures are
- cardinality of the set/multiset of solutions
- size of SLD tree

\section*{Complexity of Programs}
- as soon as we know the termination domain of a program, we can ask about the complexity (= efficiency) of the program
- in general resource analysis is even more difficult than termination analysis; in particular this holds for automation

\section*{Definition}
suitable complexity measures are
- cardinality of the set/multiset of solutions
- size of SLD tree
- number of unification attempts

\section*{Complexity of Programs}
- as soon as we know the termination domain of a program, we can ask about the complexity (= efficiency) of the program
- in general resource analysis is even more difficult than termination analysis; in particular this holds for automation

\section*{Definition}
suitable complexity measures are
- cardinality of the set/multiset of solutions
- size of SLD tree
- number of unification attempts
- size of proof tree

\section*{Complexity of Programs}
- as soon as we know the termination domain of a program, we can ask about the complexity (= efficiency) of the program
- in general resource analysis is even more difficult than termination analysis; in particular this holds for automation

\section*{Definition}
suitable complexity measures are
- cardinality of the set/multiset of solutions
- size of SLD tree
- number of unification attempts
- size of proof tree
- logical inferences per second (LIPS)

\section*{Complexity of Programs}
- as soon as we know the termination domain of a program, we can ask about the complexity (= efficiency) of the program
- in general resource analysis is even more difficult than termination analysis; in particular this holds for automation

\section*{Definition}
suitable complexity measures are
- cardinality of the set/multiset of solutions
- size of SLD tree
- number of unification attempts
- size of proof tree
- logical inferences per second (LIPS)
- size of terms
time time time
space

\section*{Complexity of Programs}
- as soon as we know the termination domain of a program, we can ask about the complexity (= efficiency) of the program
- in general resource analysis is even more difficult than termination analysis; in particular this holds for automation

\section*{Definition}
suitable complexity measures are
- cardinality of the set/multiset of solutions
- size of SLD tree
- number of unification attempts
- size of proof tree
- logical inferences per second (LIPS)
space/time time
time time time
- size of terms
- full cost of SLD resolution

\author{
space \\ space/time
}

\section*{Example (ancestor_of, specialised)}
ancestor_of(Ancestor, Descendant) :child_of(Descendant, Ancestor). ancestor_of(Ancestor, Descendant) :child_of(Person, Ancestor), ancestor_of(Person, Descendant).
:- ancestor_of(joseph_II, Descendant).
:- ancestor_of(Ancestor, joseph_ll).

\section*{Example (ancestor_of, specialised)}
ancestor_of(Ancestor, Descendant) :- false, child_of(Descendant, Ancestor). ancestor_of(Ancestor, Descendant) :child_of(Person, Ancestor), ancestor_of(Person, Descendant).
:- ancestor_of(joseph_II, Descendant).
:- ancestor_of(Ancestor, joseph_ll).

\section*{Example (ancestor_of, specialised)}
ancestor_of(Ancestor, Descendant) :- false, child_of(Descendant, Ancestor).
ancestor_of(Ancestor, Descendant) :-
child_of(Person, Ancestor), ancestor_of(Person, Descendant).
:- ancestor_of(joseph_II, Descendant).
:- ancestor_of(Ancestor, joseph_ll).

\section*{Example (cont'd)}
we can ignore Descendant as it has no effect on the number of steps:
```

ancestor_of'(Ancestor) :-
child_of(Person, Ancestor),
ancestor_of'(Person).

```

\section*{Analysis}
- in goal ancestor_of (joseph_II) we know the first argument: number of inferences bounded by number of descendants of Joseph II

\section*{Analysis}
- in goal ancestor_of (joseph_II) we know the first argument: number of inferences bounded by number of descendants of Joseph II
- consider goal ancestor_of (Ancestor, joseph_II); here the 2nd argument is irrelevant for the complexity of the program

\section*{Analysis}
- in goal ancestor_of (joseph_II) we know the first argument: number of inferences bounded by number of descendants of Joseph II
- consider goal ancestor_of (Ancestor, joseph_II); here the 2nd argument is irrelevant for the complexity of the program
- child_of / 2 is called with free variables, hence the solution space is given by the whole database
- hence, all ancestors of all persons are computed

\section*{Analysis}
- in goal ancestor_of (joseph_II) we know the first argument: number of inferences bounded by number of descendants of Joseph II
- consider goal ancestor_of (Ancestor, joseph_II); here the 2nd argument is irrelevant for the complexity of the program
- child_of / 2 is called with free variables, hence the solution space is given by the whole database
- hence, all ancestors of all persons are computed

\section*{Example (reversed search)}
ancestor_of_3(Ancestor, Descendant) :child_of(Descendant, Ancestor).
ancestor_of 3(Ancestor, Descendant) :child_of(Descendant, Person), ancestor_of_3(Ancestor, Person).
:- ancestor_of(Ancestor, joseph_ll).```

