

Logic Programming

Georg Moser

Department of Computer Science @ UIBK

Winter 2016

Summary of Last Lecture

Definitions

- a proof tree for a program *P* and a goal *G* is a tree, whose nodes are goals and whose edges represent reduction of goals
- the root is the query G
- the edges are labelled with (partial) answer substitutions
- a proof tree for a conjunction of goals G_1, \ldots, G_n is the set of proof trees for G_i

Example (generate and test)

```
\begin{split} & \text{permutationsort(Xs,Ys)} := \text{permutation(Xs,Ys), ordered(Ys).} \\ & \text{permutation(Xs,[Z|Zs])} := \text{select(Z,Xs,Ys), permutation(Ys,Zs).} \\ & \text{permutation([],[]).} \\ & \text{ordered([X]).} \\ & \text{ordered([X,Y|Ys])} := X \leqslant Y, \text{ ordered([Y|Ys]).} \end{split}
```

Outline of the Lecture

Monotone Logic Programs

introduction, basic constructs, logic foundations, unification, semantics, database and recursive programming, termination, complexity

Incomplete Data Structures and Constraints

incomplete data structures, definite clause grammars, constraint logic programming, answer set programming

Full Prolog

semantics (revisited), correctness proofs, meta-logical predicates, cuts nondeterministic programming, efficient programs, complexity

Outline of the Lecture

Monotone Logic Programs

introduction, basic constructs, logic foundations, unification, semantics, database and recursive programming, termination, complexity

Incomplete Data Structures and Constraints

incomplete data structures, definite clause grammars, constraint logic programming, answer set programming

Full Prolog

semantics (revisited), correctness proofs, meta-logical predicates, cuts nondeterministic programming, efficient programs, complexity

Definition

• functor(*Term*,*F*,*Arity*) is true, if *Term* is a compound term, whose principal functor is *F* with arity *Arity*

Definition

- functor(*Term*,*F*,*Arity*) is true, if *Term* is a compound term, whose principal functor is *F* with arity *Arity*
- $\arg(N, Term, Arg)$ is true, if Arg is the N^{th} argument of Term

Definition

- functor(*Term*,*F*,*Arity*) is true, if *Term* is a compound term, whose principal functor is *F* with arity *Arity*
- $\arg(N, Term, Arg)$ is true, if Arg is the N^{th} argument of Term

Example

```
: - functor(father(haran,lot),F,A)
```

 $F \ \mapsto \ \texttt{father}$

 $A \mapsto 2$

Definition

- functor(*Term*,*F*,*Arity*) is true, if *Term* is a compound term, whose principal functor is *F* with arity *Arity*
- arg(N, Term, Arg) is true, if Arg is the Nth argument of Term

Example

```
: - functor(father(haran,lot),F,A)
```

```
F \ \mapsto \ \texttt{father}
```

```
\texttt{A}\ \mapsto\ \texttt{2}
```

```
: - arg(2,father(haran,lot),X)
```

```
\mathtt{X} \ \mapsto \ \mathtt{lot}
```

```
subterm(Term,Term).
subterm(Sub,Term) :-
    compound(Term),
    functor(Term,F,N),
    subterm(N,Sub,Term).
subterm(N,Sub,Term) : -
   N > 1,
   N1 is N - 1,
    subterm(N1,Sub,Term).
subterm(N,Sub,Term) : -
    arg(N,Term,Arg),
    subterm(Sub,Arg).
```

:- subterm(X,f(a,f(a,b))), X = a

```
subterm(Term,Term).
subterm(Sub,Term) :-
    compound(Term),
    functor(Term,F,N),
    subterm(N,Sub,Term).
subterm(N,Sub,Term) : -
   N > 1,
   N1 is N - 1,
    subterm(N1,Sub,Term).
subterm(N,Sub,Term) : -
    arg(N,Term,Arg),
    subterm(Sub,Arg).
```

:- subterm(X,f(a,f(a,b))), X = a

:- subterm(X, f(U, f(V, W))), X = f(V, W).

- *Term* = . . *List* is true if *List* is a list whose head is the principal functor of *Term*, and whose tail is the list of arguments of *Term*
- the operator = . . is also called univ

- *Term* = . . *List* is true if *List* is a list whose head is the principal functor of *Term*, and whose tail is the list of arguments of *Term*
- the operator = . . is also called univ

```
:- father(haran,lot) =.. Xs
```

```
X \mapsto [father,haran,lot]
```

- *Term* = . . *List* is true if *List* is a list whose head is the principal functor of *Term*, and whose tail is the list of arguments of *Term*
- the operator = . . is also called univ

Example

```
:- father(haran,lot) =.. Xs
```

```
X \mapsto [father,haran,lot]
```

Remark

 programs written with functor and arg can also be written with univ

- *Term* = . . *List* is true if *List* is a list whose head is the principal functor of *Term*, and whose tail is the list of arguments of *Term*
- the operator = . . is also called univ

Example

```
:- father(haran,lot) =.. Xs
```

```
X \mapsto [father, haran, lot]
```

Remark

- programs written with functor and arg can also be written with univ
- programs using univ are typically simpler
- programs using functor and arg are more efficient
- univ can be built from functor and arg

- **1** sometimes it is useful (easier) to think of a relation as a function
- **2** use this definition for coding
- 3 afterwards see, if alternative uses make declarative sense

- **1** sometimes it is useful (easier) to think of a relation as a function
- **2** use this definition for coding
- 3 afterwards see, if alternative uses make declarative sense

Example

delete/3 removes all occurrences of an element from a list

- **1** sometimes it is useful (easier) to think of a relation as a function
- **2** use this definition for coding
- 3 afterwards see, if alternative uses make declarative sense

Example

delete/3 removes all occurrences of an element from a list

<pre>delete([X Xs],Z,?)</pre>	: — X = Z
<pre>delete([X Xs],Z,?)</pre>	: - dif(X,Z)

- **1** sometimes it is useful (easier) to think of a relation as a function
- **2** use this definition for coding
- 3 afterwards see, if alternative uses make declarative sense

Example

delete/3 removes all occurrences of an element from a list

Example

delete([X|Xs],Z,Ys) :- X = Z, delete(Xs,Z,Ys).

- **1** sometimes it is useful (easier) to think of a relation as a function
- **2** use this definition for coding
- 3 afterwards see, if alternative uses make declarative sense

Example

delete/3 removes all occurrences of an element from a list

delete([X Xs],Z,Ys)	: - 1	X =	Ζ,	<pre>delete(Xs,Z,Ys).</pre>
delete([X Xs],Z,?)	:- 0	dif(X,Z)	

- **1** sometimes it is useful (easier) to think of a relation as a function
- **2** use this definition for coding
- 3 afterwards see, if alternative uses make declarative sense

Example

delete/3 removes all occurrences of an element from a list

- **1** sometimes it is useful (easier) to think of a relation as a function
- 2 use this definition for coding
- 3 afterwards see, if alternative uses make declarative sense

Example

delete/3 removes all occurrences of an element from a list

- **1** sometimes it is useful (easier) to think of a relation as a function
- **2** use this definition for coding
- 3 afterwards see, if alternative uses make declarative sense

Example

delete/3 removes all occurrences of an element from a list

```
delete([X|Xs],Z,Ys) :- X = Z , delete(Xs,Z,Ys).
delete([X|Xs],Z,[X|Ys]) :- dif(X,Z) , delete(Xs,Z,Ys).
delete([],X,[]).
delete([X|Xs],X,Ys) :- delete(Xs,X,Ys).
delete([X|Xs],Z,[X|Ys]) :- dif(X,Z), delete(Xs,Z,Ys).
delete([],X,[]).
```

```
delete([X|Xs],X,Ys) :- delete(Xs,X,Ys).
delete([X|Xs],Z,[X|Ys]) :- dif(X,Z), delete(Xs,Z,Ys).
delete([],X,[]).
```

```
delete([X|Xs],X,Ys) :- delete(Xs,X,Ys).
delete([X|Xs],Z,[X|Ys]) :- delete(Xs,Z,Ys).
delete([],X,[]).
```

```
delete<sub>2</sub>([X|Xs],X,Ys) : - delete<sub>2</sub>(Xs,X,Ys).
delete<sub>2</sub>([X|Xs],Z,[X|Ys]) : - delete<sub>2</sub>(Xs,Z,Ys).
delete<sub>2</sub>([],X,[]).
```

```
delete<sub>2</sub>([X|Xs],X,Ys) : - delete<sub>2</sub>(Xs,X,Ys).
delete<sub>2</sub>([X|Xs],Z,[X|Ys]) : - delete<sub>2</sub>(Xs,Z,Ys).
delete<sub>2</sub>([],X,[]).
: - delete<sub>2</sub>([a,b,c,b],b,[a,c])
```

true

```
:- delete<sub>2</sub>([a,b,c,b],b,[a,b,c,b]) true
```

```
delete<sub>2</sub>([X|Xs],X,Ys) : - delete<sub>2</sub>(Xs,X,Ys).
delete<sub>2</sub>([X|Xs],Z,[X|Ys]) : - delete<sub>2</sub>(Xs,Z,Ys).
delete<sub>2</sub>([],X,[]).
: - delete<sub>2</sub>([a,b,c,b],b,[a,c])
true
```

```
: - delete<sub>2</sub>([a,b,c,b],b,[a,b,c,b])
true
```

```
Example (Select \approx Delete<sub>2</sub>)
```

```
select(X,[X|Xs],Xs).
select(X,[Y|Ys],[Y|Zs]) : - select(X,Ys,Zs)
: - delete<sub>2</sub>([a],b,[a])
true
: - select(b,[a],X)
false
```

Example (non termination)

% infinite <- defines an uniformly nonterminating relation

infinite :- infinite.

```
Example (non termination)
% infinite <- defines an uniformly nonterminating relation
infinite :- infinite.
```

```
Example (again, but different)
% winfinite <-- uniformly nonterminating relation
winfinite :-- winfinite.
winfinite.
```

```
Example (non termination)
% infinite <- defines an uniformly nonterminating relation
infinite :- infinite.
```

```
Example (again, but different)
% winfinite <- uniformly nonterminating relation
winfinite :- winfinite.
```

winfinite.

```
Example (non termination, yet again)
% hinfinte <- not strongly terminating , weakly terminating
hinfinite .
hinfinite :- hinfinite .
:- hinfinite .</pre>
```

Termination Analysis

Fact

- for termination analysis only recursive calls (cycles in call tree) are essential
- let's remove non-recursive rules

Termination Analysis

Fact

- for termination analysis only recursive calls (cycles in call tree) are essential
- let's remove non-recursive rules

```
Example (specialised)
ancestor_of_2 (Ancestor, Descendant) :- false,
    child_of (Descendant, Ancestor),
ancestor_of_2 (Ancestor, Descendant) :-
    ancestor_of_2 (Person, Descendant),
    child_of (Person, Ancestor).
```

Termination Analysis

Fact

- for termination analysis only recursive calls (cycles in call tree) are essential
- let's remove non-recursive rules

```
Example (specialised)
ancestor_of_2(Ancestor, Descendant) :- false,
    child_of(Descendant, Ancestor),
ancestor_of_2(Ancestor, Descendant) :-
    ancestor_of_2(Person, Descendant),
    child_of(Person, Ancestor).
equivalently
```

```
ancestor_of_2(Ancestor, Descendant) :-
ancestor_of_2(Person, Descendant),
child_of(Person, Ancestor).
```

```
ancestor_of_2(Ancestor, Descendant) :-
ancestor_of_2(Person, Descendant),
child_of(Person, Ancestor).
```

```
ancestor_of_2(Ancestor, Descendant) :-
ancestor_of_2(Person, Descendant),
child_of(Person, Ancestor).
```

- Ancestor doesn't occur in first goal (= recursive call)
- no influence on termination behaviour

```
ancestor_of_2(Ancestor, Descendant) :-
ancestor_of_2(Person, Descendant),
child_of(Person, Ancestor).
```

- Ancestor doesn't occur in first goal (= recursive call)
- no influence on termination behaviour
- Descendant remains unchanged

```
ancestor_of_2(Ancestor, Descendant) :-
ancestor_of_2(Person, Descendant),
child_of(Person, Ancestor).
```

- Ancestor doesn't occur in first goal (= recursive call)
- no influence on termination behaviour
- Descendant remains unchanged
- last goal has no effect \rightarrow let's remove (generalisation)

```
ancestor_of_2(Ancestor, Descendant) :-
ancestor_of_2(Person, Descendant),
child_of(Person, Ancestor).
```

- Ancestor doesn't occur in first goal (= recursive call)
- no influence on termination behaviour
- Descendant remains unchanged
- last goal has no effect \rightarrow let's remove (generalisation)

```
Example (specialised and generalised)
```

```
\% ancestor_of_2 <\!\!- uniform nontermination
```

```
ancestor_of_2(Ancestor, Descendant) :-
    ancestor_of_2(Person, Descendant), false,
    child_of(Person, Ancestor).
```

Fact

suppose the solution set for Goal is infinite, then the query

:- Goal, false.

cannot terminate

Fact

suppose the solution set for Goal is infinite, then the query

:- Goal, false.

cannot terminate

Example

:- hinfinite , false % false , but does not terminate

Fact

suppose the solution set for Goal is infinite, then the query

```
:- Goal, false.
```

cannot terminate

Example

:- hinfinite, false % false, but does not terminate

```
Example (ancestor_of specialised)
ancestor_of(Ancestor, Descendant) :-
    child_of(Person, Ancestor),
    ancestor_of(Person, Descendant).
:- \+ child_of(X,X).
:- ancestor_of(Ancestor, Descendant), false. % terminates
:- false, ancestor_of(Ancestor, Descendant). % remark order
```

Termination Domains

Example (recall)

% infinite $<\!\!-$ defines an uniformly nonterminating relation

infinite :- infinite.

% winfinite <- uniformly nonterminating relation

```
winfinite :- winfinite.
winfinite.
```

Termination Domains

```
Example (recall)
```

% infinite $<\!\!-$ defines an uniformly nonterminating relation

```
infinite :- infinite.
```

% winfinite <- uniformly nonterminating relation

```
winfinite :- winfinite.
winfinite.
```

Observation

due to selection strategy Prolog may fail to find a solution to a goal, even though the goal has a finite computation

```
married(X,Y) := married(Y,X).
```

```
parent_of(X,Y) := child_of(Y,X).
child_of(X,Y) := parent_of(Y,X).
```

```
married(X,Y) := married(Y,X).
```

```
parent_of(X,Y) := child_of(Y,X).
child_of(X,Y) := parent_of(Y,X).
```

Definitions

- a domain is a set of goals closed under the instance relation
- a termination domain of a program *P* is a domain *D* such that *P* terminates on all goals in *D*

```
married(X,Y) := married(Y,X).
```

```
parent_of(X,Y) := child_of(Y,X).
child_of(X,Y) := parent_of(Y,X).
```

Definitions

- a domain is a set of goals closed under the instance relation
- a termination domain of a program *P* is a domain *D* such that *P* terminates on all goals in *D*

```
Example (domain)
```

is_list([]).

```
is_list([X|Xs]) :- is_list(Xs).
```

:- is_list([a,X,b]).

recursive (grammar) rules which have the recursive goal as the first goal in the body are called left recursive

recursive (grammar) rules which have the recursive goal as the first goal in the body are called left recursive

```
Example (cont'd)
```

```
are_married(X,Y) :- married(X,Y).
are_married(X,Y) :- married(Y,X).
```

recursive (grammar) rules which have the recursive goal as the first goal in the body are called left recursive

```
Example (cont'd)
are_married(X,Y) : - married(X,Y).
are_married(X,Y) : - married(Y,X).
```

Example

consider *append/3*, where the fact comes after the rule **1** *append* terminates if the first argument is a complete list

recursive (grammar) rules which have the recursive goal as the first goal in the body are called left recursive

```
Example (cont'd)
are_married(X,Y) : - married(X,Y).
are_married(X,Y) : - married(Y,X).
```

Example

consider append/3, where the fact comes after the rule

- **1** append terminates if the first argument is a complete list
- **2** append terminates if the third argument is complete

recursive (grammar) rules which have the recursive goal as the first goal in the body are called left recursive

```
Example (cont'd)
are_married(X,Y) : - married(X,Y).
are_married(X,Y) : - married(Y,X).
```

Example

consider append/3, where the fact comes after the rule

- **1** append terminates if the first argument is a complete list
- **2** append terminates if the third argument is complete
- **3** *append* terminates iff the first or third argument is complete

- as soon as we know the termination domain of a program, we can ask about the complexity (= efficiency) of the program
- in general resource analysis is even more difficult than termination analysis; in particular this holds for automation

- as soon as we know the termination domain of a program, we can ask about the complexity (= efficiency) of the program
- in general resource analysis is even more difficult than termination analysis; in particular this holds for automation

Definition

suitable complexity measures are

cardinality of the set/multiset of solutions

space/time

- as soon as we know the termination domain of a program, we can ask about the complexity (= efficiency) of the program
- in general resource analysis is even more difficult than termination analysis; in particular this holds for automation

Definition

suitable complexity measures are

- cardinality of the set/multiset of solutions
- size of SLD tree

space/time time

- as soon as we know the termination domain of a program, we can ask about the complexity (= efficiency) of the program
- in general resource analysis is even more difficult than termination analysis; in particular this holds for automation

Definition

suitable complexity measures are

- cardinality of the set/multiset of solutions
- size of SLD tree
- number of unification attempts

space/time time time

- as soon as we know the termination domain of a program, we can ask about the complexity (= efficiency) of the program
- in general resource analysis is even more difficult than termination analysis; in particular this holds for automation

Definition

suitable complexity measures are

- cardinality of the set/multiset of solutions
- size of SLD tree
- number of unification attempts
- size of proof tree

space/time time time time

- as soon as we know the termination domain of a program, we can ask about the complexity (= efficiency) of the program
- in general resource analysis is even more difficult than termination analysis; in particular this holds for automation

Definition

suitable complexity measures are

- cardinality of the set/multiset of solutions
- size of SLD tree time time
- number of unification attempts
- size of proof tree
- logical inferences per second (LIPS)

space/time

time

time

- as soon as we know the termination domain of a program, we can ask about the complexity (= efficiency) of the program
- in general resource analysis is even more difficult than termination analysis; in particular this holds for automation

Definition

suitable complexity measures are	
 cardinality of the set/multiset of solutions 	space/time
 size of SLD tree 	time
 number of unification attempts 	time
• size of proof tree	time
 logical inferences per second (LIPS) 	time
• size of terms	space

- as soon as we know the termination domain of a program, we can ask about the complexity (= efficiency) of the program
- in general resource analysis is even more difficult than termination analysis; in particular this holds for automation

Definition

suitable complexity measures are	
 cardinality of the set/multiset of solutions 	space/time
• size of SLD tree	time
 number of unification attempts 	time
size of proof tree	time
 logical inferences per second (LIPS) 	time
• size of terms	space
full cost of SLD resolution	space/time

```
Example (ancestor_of, specialised)
```

```
ancestor_of(Ancestor, Descendant) :-
    child_of(Descendant, Ancestor).
ancestor_of(Ancestor, Descendant) :-
    child_of(Person, Ancestor),
    ancestor_of(Person, Descendant).
```

```
:- ancestor_of(joseph_II, Descendant).
:- ancestor_of(Ancestor, joseph_II).
```

```
Example (ancestor_of, specialised)
```

```
ancestor_of(Ancestor, Descendant) :- false,
    child_of(Descendant, Ancestor).
ancestor_of(Ancestor, Descendant) :-
    child_of(Person, Ancestor),
    ancestor_of(Person, Descendant).
```

```
:- ancestor_of(joseph_II, Descendant).
:- ancestor_of(Ancestor, joseph_II).
```

```
Example (ancestor_of, specialised)
```

```
ancestor_of(Ancestor, Descendant) :- false,
    child_of(Descendant, Ancestor).
ancestor_of(Ancestor, Descendant) :-
    child_of(Person, Ancestor),
    ancestor_of(Person, Descendant).
```

```
    :- ancestor_of(joseph_II, Descendant).
    :- ancestor_of(Ancestor, joseph_II).
```

Example (cont'd)

we can ignore Descendant as it has no effect on the number of steps:

```
ancestor_of '(Ancestor) :-
    child_of(Person, Ancestor),
    ancestor_of '(Person).
```

 in goal ancestor_of (joseph_II) we know the first argument: number of inferences bounded by number of descendants of Joseph II

- in goal ancestor_of(joseph_II) we know the first argument: number of inferences bounded by number of descendants of Joseph II
- consider goal ancestor_of (Ancestor, joseph_II); here the 2nd argument is irrelevant for the complexity of the program

- in goal ancestor_of (joseph_II) we know the first argument: number of inferences bounded by number of descendants of Joseph II
- consider goal ancestor_of (Ancestor, joseph_II); here the 2nd argument is irrelevant for the complexity of the program
- child_of /2 is called with free variables, hence the solution space is given by the whole database
- hence, all ancestors of all persons are computed

- in goal ancestor_of(joseph_II) we know the first argument: number of inferences bounded by number of descendants of Joseph II
- consider goal ancestor_of (Ancestor, joseph_II); here the 2nd argument is irrelevant for the complexity of the program
- child_of /2 is called with free variables, hence the solution space is given by the whole database
- hence, all ancestors of all persons are computed

```
Example (reversed search)
ancestor_of_3 (Ancestor, Descendant) :-
    child_of (Descendant, Ancestor).
ancestor_of_3 (Ancestor, Descendant) :-
    child_of (Descendant, Person),
    ancestor_of_3 (Ancestor, Person).
```

```
:- ancestor_of(Ancestor,joseph_II).
```