
Logic Programming

Georg Moser

Department of Computer Science @ UIBK

Winter 2016

http://cl-informatik.uibk.ac.at

Summary of Last Lecture

Summary of Last Lecture

Definitions
• a proof tree for a program P and a goal G is a tree, whose nodes

are goals and whose edges represent reduction of goals

• the root is the query G

• the edges are labelled with (partial) answer substitutions

• a proof tree for a conjunction of goals G1, . . . ,Gn is the set of proof
trees for Gi

Example (generate and test)

permutationsort(Xs,Ys) : − permutation(Xs,Ys), ordered(Ys).

permutation(Xs,[Z|Zs]) : − select(Z,Xs,Ys), permutation(Ys,Zs).

permutation([],[]).

ordered([X]).

ordered([X,Y|Ys]) : − X 6 Y, ordered([Y|Ys]).

GM (Department of Computer Science @ UIBK) Logic Programming 69/1

Overview

Outline of the Lecture

Monotone Logic Programs

introduction, basic constructs, logic foundations, unification, semantics,
database and recursive programming, termination, complexity

Incomplete Data Structures and Constraints

incomplete data structures, definite clause grammars, constraint logic pro-
gramming, answer set programming

Full Prolog

semantics (revisited), correctness proofs, meta-logical predicates, cuts non-
deterministic programming, efficient programs, complexity

GM (Department of Computer Science @ UIBK) Logic Programming 70/1

Overview

Outline of the Lecture

Monotone Logic Programs

introduction, basic constructs, logic foundations, unification, semantics,
database and recursive programming, termination, complexity

Incomplete Data Structures and Constraints

incomplete data structures, definite clause grammars, constraint logic pro-
gramming, answer set programming

Full Prolog

semantics (revisited), correctness proofs, meta-logical predicates, cuts non-
deterministic programming, efficient programs, complexity

GM (Department of Computer Science @ UIBK) Logic Programming 70/1

Accessing compound terms

Accessing compound terms

Definition

• functor(Term,F ,Arity) is true, if Term is a compound term, whose
principal functor is F with arity Arity

• arg(N,Term,Arg) is true, if Arg is the Nth argument of Term

Example

: − functor(father(haran,lot),F,A)

F 7→ father

A 7→ 2

Example

: − arg(2,father(haran,lot),X)

X 7→ lot

GM (Department of Computer Science @ UIBK) Logic Programming 71/1

Accessing compound terms

Accessing compound terms

Definition

• functor(Term,F ,Arity) is true, if Term is a compound term, whose
principal functor is F with arity Arity

• arg(N,Term,Arg) is true, if Arg is the Nth argument of Term

Example

: − functor(father(haran,lot),F,A)

F 7→ father

A 7→ 2

Example

: − arg(2,father(haran,lot),X)

X 7→ lot

GM (Department of Computer Science @ UIBK) Logic Programming 71/1

Accessing compound terms

Accessing compound terms

Definition

• functor(Term,F ,Arity) is true, if Term is a compound term, whose
principal functor is F with arity Arity

• arg(N,Term,Arg) is true, if Arg is the Nth argument of Term

Example

: − functor(father(haran,lot),F,A)

F 7→ father

A 7→ 2

Example

: − arg(2,father(haran,lot),X)

X 7→ lot

GM (Department of Computer Science @ UIBK) Logic Programming 71/1

Accessing compound terms

Accessing compound terms

Definition

• functor(Term,F ,Arity) is true, if Term is a compound term, whose
principal functor is F with arity Arity

• arg(N,Term,Arg) is true, if Arg is the Nth argument of Term

Example

: − functor(father(haran,lot),F,A)

F 7→ father

A 7→ 2

Example

: − arg(2,father(haran,lot),X)

X 7→ lot

GM (Department of Computer Science @ UIBK) Logic Programming 71/1

Accessing compound terms

Example

subterm(Term,Term).

subterm(Sub,Term) : −
compound(Term),

functor(Term,F,N),

subterm(N,Sub,Term).

subterm(N,Sub,Term) : −
N > 1,

N1 is N - 1,

subterm(N1,Sub,Term).

subterm(N,Sub,Term) : −
arg(N,Term,Arg),

subterm(Sub,Arg).

:- subterm(X,f(a,f(a,b))), X = a

:- subterm(X,f(U,f(V,W))), X = f(V,W).

GM (Department of Computer Science @ UIBK) Logic Programming 72/1

Accessing compound terms

Example

subterm(Term,Term).

subterm(Sub,Term) : −
compound(Term),

functor(Term,F,N),

subterm(N,Sub,Term).

subterm(N,Sub,Term) : −
N > 1,

N1 is N - 1,

subterm(N1,Sub,Term).

subterm(N,Sub,Term) : −
arg(N,Term,Arg),

subterm(Sub,Arg).

:- subterm(X,f(a,f(a,b))), X = a

:- subterm(X,f(U,f(V,W))), X = f(V,W).

GM (Department of Computer Science @ UIBK) Logic Programming 72/1

Accessing compound terms

Definition
• Term =.. List is true if List is a list whose head is the principal

functor of Term, and whose tail is the list of arguments of Term

• the operator =.. is also called univ

Example

: − father(haran,lot) =.. Xs

X 7→ [father,haran,lot]

Remark

• programs written with functor and arg can also be written with
univ

• programs using univ are typically simpler

• programs using functor and arg are more efficient

• univ can be built from functor and arg

GM (Department of Computer Science @ UIBK) Logic Programming 73/1

Accessing compound terms

Definition
• Term =.. List is true if List is a list whose head is the principal

functor of Term, and whose tail is the list of arguments of Term

• the operator =.. is also called univ

Example

: − father(haran,lot) =.. Xs

X 7→ [father,haran,lot]

Remark

• programs written with functor and arg can also be written with
univ

• programs using univ are typically simpler

• programs using functor and arg are more efficient

• univ can be built from functor and arg

GM (Department of Computer Science @ UIBK) Logic Programming 73/1

Accessing compound terms

Definition
• Term =.. List is true if List is a list whose head is the principal

functor of Term, and whose tail is the list of arguments of Term

• the operator =.. is also called univ

Example

: − father(haran,lot) =.. Xs

X 7→ [father,haran,lot]

Remark
• programs written with functor and arg can also be written with
univ

• programs using univ are typically simpler

• programs using functor and arg are more efficient

• univ can be built from functor and arg

GM (Department of Computer Science @ UIBK) Logic Programming 73/1

Accessing compound terms

Definition
• Term =.. List is true if List is a list whose head is the principal

functor of Term, and whose tail is the list of arguments of Term

• the operator =.. is also called univ

Example

: − father(haran,lot) =.. Xs

X 7→ [father,haran,lot]

Remark
• programs written with functor and arg can also be written with
univ

• programs using univ are typically simpler

• programs using functor and arg are more efficient

• univ can be built from functor and arg

GM (Department of Computer Science @ UIBK) Logic Programming 73/1

Composing Recursive Programs

Approach

1 sometimes it is useful (easier) to think of a relation as a function

2 use this definition for coding

3 afterwards see, if alternative uses make declarative sense

Example

delete/3 removes all occurrences of an element from a list

Example

delete([X|Xs],Z,Ys) : − X = Z

, delete(Xs,Z,Ys)

.

delete([X|Xs],Z,[X|Ys]) : − dif(X,Z)

, delete(Xs,Z,Ys)

.

delete([],X,[]).

delete([X|Xs],X,Ys) : − delete(Xs,X,Ys).

delete([X|Xs],Z,[X|Ys]) : − dif(X,Z), delete(Xs,Z,Ys).

delete([],X,[]).

GM (Department of Computer Science @ UIBK) Logic Programming 74/1

Composing Recursive Programs

Approach

1 sometimes it is useful (easier) to think of a relation as a function

2 use this definition for coding

3 afterwards see, if alternative uses make declarative sense

Example

delete/3 removes all occurrences of an element from a list

Example

delete([X|Xs],Z,Ys) : − X = Z

, delete(Xs,Z,Ys)

.

delete([X|Xs],Z,[X|Ys]) : − dif(X,Z)

, delete(Xs,Z,Ys)

.

delete([],X,[]).

delete([X|Xs],X,Ys) : − delete(Xs,X,Ys).

delete([X|Xs],Z,[X|Ys]) : − dif(X,Z), delete(Xs,Z,Ys).

delete([],X,[]).

GM (Department of Computer Science @ UIBK) Logic Programming 74/1

Composing Recursive Programs

Approach

1 sometimes it is useful (easier) to think of a relation as a function

2 use this definition for coding

3 afterwards see, if alternative uses make declarative sense

Example

delete/3 removes all occurrences of an element from a list

Example

delete([X|Xs],Z,?) : − X = Z

, delete(Xs,Z,Ys)

.

delete([X|Xs],Z,?) : − dif(X,Z)

, delete(Xs,Z,Ys)

.

delete([],X,[]).

delete([X|Xs],X,Ys) : − delete(Xs,X,Ys).

delete([X|Xs],Z,[X|Ys]) : − dif(X,Z), delete(Xs,Z,Ys).

delete([],X,[]).

GM (Department of Computer Science @ UIBK) Logic Programming 74/1

Composing Recursive Programs

Approach

1 sometimes it is useful (easier) to think of a relation as a function

2 use this definition for coding

3 afterwards see, if alternative uses make declarative sense

Example

delete/3 removes all occurrences of an element from a list

Example

delete([X|Xs],Z,Ys) : − X = Z , delete(Xs,Z,Ys).

delete([X|Xs],Z,?) : − dif(X,Z)

, delete(Xs,Z,Ys)

.

delete([],X,[]).

delete([X|Xs],X,Ys) : − delete(Xs,X,Ys).

delete([X|Xs],Z,[X|Ys]) : − dif(X,Z), delete(Xs,Z,Ys).

delete([],X,[]).

GM (Department of Computer Science @ UIBK) Logic Programming 74/1

Composing Recursive Programs

Approach

1 sometimes it is useful (easier) to think of a relation as a function

2 use this definition for coding

3 afterwards see, if alternative uses make declarative sense

Example

delete/3 removes all occurrences of an element from a list

Example

delete([X|Xs],Z,Ys) : − X = Z , delete(Xs,Z,Ys).

delete([X|Xs],Z,?) : − dif(X,Z)

, delete(Xs,Z,Ys)

.

delete([],X,[]).

delete([X|Xs],X,Ys) : − delete(Xs,X,Ys).

delete([X|Xs],Z,[X|Ys]) : − dif(X,Z), delete(Xs,Z,Ys).

delete([],X,[]).

GM (Department of Computer Science @ UIBK) Logic Programming 74/1

Composing Recursive Programs

Approach

1 sometimes it is useful (easier) to think of a relation as a function

2 use this definition for coding

3 afterwards see, if alternative uses make declarative sense

Example

delete/3 removes all occurrences of an element from a list

Example

delete([X|Xs],Z,Ys) : − X = Z , delete(Xs,Z,Ys).

delete([X|Xs],Z,[X|Ys]) : − dif(X,Z) , delete(Xs,Z,Ys).

delete([],X,[]).

delete([X|Xs],X,Ys) : − delete(Xs,X,Ys).

delete([X|Xs],Z,[X|Ys]) : − dif(X,Z), delete(Xs,Z,Ys).

delete([],X,[]).

GM (Department of Computer Science @ UIBK) Logic Programming 74/1

Composing Recursive Programs

Approach

1 sometimes it is useful (easier) to think of a relation as a function

2 use this definition for coding

3 afterwards see, if alternative uses make declarative sense

Example

delete/3 removes all occurrences of an element from a list

Example

delete([X|Xs],Z,Ys) : − X = Z , delete(Xs,Z,Ys).

delete([X|Xs],Z,[X|Ys]) : − dif(X,Z) , delete(Xs,Z,Ys).

delete([],X,[]).

delete([X|Xs],X,Ys) : − delete(Xs,X,Ys).

delete([X|Xs],Z,[X|Ys]) : − dif(X,Z), delete(Xs,Z,Ys).

delete([],X,[]).

GM (Department of Computer Science @ UIBK) Logic Programming 74/1

Composing Recursive Programs

Approach

1 sometimes it is useful (easier) to think of a relation as a function

2 use this definition for coding

3 afterwards see, if alternative uses make declarative sense

Example

delete/3 removes all occurrences of an element from a list

Example

delete([X|Xs],Z,Ys) : − X = Z , delete(Xs,Z,Ys).

delete([X|Xs],Z,[X|Ys]) : − dif(X,Z) , delete(Xs,Z,Ys).

delete([],X,[]).

delete([X|Xs],X,Ys) : − delete(Xs,X,Ys).

delete([X|Xs],Z,[X|Ys]) : − dif(X,Z), delete(Xs,Z,Ys).

delete([],X,[]).

GM (Department of Computer Science @ UIBK) Logic Programming 74/1

Composing Recursive Programs

Example

delete([X|Xs],X,Ys) : − delete(Xs,X,Ys).

delete([X|Xs],Z,[X|Ys]) : − dif(X,Z), delete(Xs,Z,Ys).

delete([],X,[]).

: − delete2([a,b,c,b],b,[a,c])

true

: − delete2([a,b,c,b],b,[a,b,c,b])

true

Example (Select ≈ Delete2)

select(X,[X|Xs],Xs).

select(X,[Y|Ys],[Y|Zs]) : − select(X,Ys,Zs)

: − delete2([a],b,[a])

true

: − select(b,[a],X)

false

GM (Department of Computer Science @ UIBK) Logic Programming 75/1

Composing Recursive Programs

Example

delete([X|Xs],X,Ys) : − delete(Xs,X,Ys).

delete([X|Xs],Z,[X|Ys]) : − delete(Xs,Z,Ys).

delete([],X,[]).

: − delete2([a,b,c,b],b,[a,c])

true

: − delete2([a,b,c,b],b,[a,b,c,b])

true

Example (Select ≈ Delete2)

select(X,[X|Xs],Xs).

select(X,[Y|Ys],[Y|Zs]) : − select(X,Ys,Zs)

: − delete2([a],b,[a])

true

: − select(b,[a],X)

false

GM (Department of Computer Science @ UIBK) Logic Programming 75/1

Composing Recursive Programs

Example

delete2([X|Xs],X,Ys) : − delete2(Xs,X,Ys).

delete2([X|Xs],Z,[X|Ys]) : − delete2(Xs,Z,Ys).

delete2([],X,[]).

: − delete2([a,b,c,b],b,[a,c])

true

: − delete2([a,b,c,b],b,[a,b,c,b])

true

Example (Select ≈ Delete2)

select(X,[X|Xs],Xs).

select(X,[Y|Ys],[Y|Zs]) : − select(X,Ys,Zs)

: − delete2([a],b,[a])

true

: − select(b,[a],X)

false

GM (Department of Computer Science @ UIBK) Logic Programming 75/1

Composing Recursive Programs

Example

delete2([X|Xs],X,Ys) : − delete2(Xs,X,Ys).

delete2([X|Xs],Z,[X|Ys]) : − delete2(Xs,Z,Ys).

delete2([],X,[]).

: − delete2([a,b,c,b],b,[a,c])

true

: − delete2([a,b,c,b],b,[a,b,c,b])

true

Example (Select ≈ Delete2)

select(X,[X|Xs],Xs).

select(X,[Y|Ys],[Y|Zs]) : − select(X,Ys,Zs)

: − delete2([a],b,[a])

true

: − select(b,[a],X)

false

GM (Department of Computer Science @ UIBK) Logic Programming 75/1

Composing Recursive Programs

Example

delete2([X|Xs],X,Ys) : − delete2(Xs,X,Ys).

delete2([X|Xs],Z,[X|Ys]) : − delete2(Xs,Z,Ys).

delete2([],X,[]).

: − delete2([a,b,c,b],b,[a,c])

true

: − delete2([a,b,c,b],b,[a,b,c,b])

true

Example (Select ≈ Delete2)

select(X,[X|Xs],Xs).

select(X,[Y|Ys],[Y|Zs]) : − select(X,Ys,Zs)

: − delete2([a],b,[a])

true

: − select(b,[a],X)

false

GM (Department of Computer Science @ UIBK) Logic Programming 75/1

Termination of Programs

Example (non termination)

% i n f i n i t e <− d e f i n e s an un i f o rm l y non t e rm ina t i ng r e l a t i o n

i n f i n i t e :− i n f i n i t e .

Example (again, but different)

% w i n f i n i t e <− un i f o rm l y non t e rm ina t i ng r e l a t i o n

w i n f i n i t e :− w i n f i n i t e .
w i n f i n i t e .

Example (non termination, yet again)

% h i n f i n t e <− not s t r o n g l y t e rm ina t i n g , weak ly t e rm i n a t i n g

h i n f i n i t e .
h i n f i n i t e :− h i n f i n i t e .

:− h i n f i n i t e .

GM (Department of Computer Science @ UIBK) Logic Programming 76/1

Termination of Programs

Example (non termination)

% i n f i n i t e <− d e f i n e s an un i f o rm l y non t e rm ina t i ng r e l a t i o n

i n f i n i t e :− i n f i n i t e .

Example (again, but different)

% w i n f i n i t e <− un i f o rm l y non t e rm ina t i ng r e l a t i o n

w i n f i n i t e :− w i n f i n i t e .
w i n f i n i t e .

Example (non termination, yet again)

% h i n f i n t e <− not s t r o n g l y t e rm ina t i n g , weak ly t e rm i n a t i n g

h i n f i n i t e .
h i n f i n i t e :− h i n f i n i t e .

:− h i n f i n i t e .

GM (Department of Computer Science @ UIBK) Logic Programming 76/1

Termination of Programs

Example (non termination)

% i n f i n i t e <− d e f i n e s an un i f o rm l y non t e rm ina t i ng r e l a t i o n

i n f i n i t e :− i n f i n i t e .

Example (again, but different)

% w i n f i n i t e <− un i f o rm l y non t e rm ina t i ng r e l a t i o n

w i n f i n i t e :− w i n f i n i t e .
w i n f i n i t e .

Example (non termination, yet again)

% h i n f i n t e <− not s t r o n g l y t e rm ina t i n g , weak ly t e rm i n a t i n g

h i n f i n i t e .
h i n f i n i t e :− h i n f i n i t e .

:− h i n f i n i t e .

GM (Department of Computer Science @ UIBK) Logic Programming 76/1

Termination of Programs

Termination Analysis

Fact

• for termination analysis only recursive calls (cycles in call tree) are
essential

• let’s remove non-recursive rules

Example (specialised)

a n c e s t o r o f 2 (Ancestor , Descendant) :− f a l s e ,
c h i l d o f (Descendant , Ances to r) ,

a n c e s t o r o f 2 (Ancestor , Descendant) :−
a n c e s t o r o f 2 (Person , Descendant) ,
c h i l d o f (Person , Ance s to r) .

equivalently

a n c e s t o r o f 2 (Ancestor , Descendant) :−
a n c e s t o r o f 2 (Person , Descendant) ,
c h i l d o f (Person , Ance s to r) .

GM (Department of Computer Science @ UIBK) Logic Programming 77/1

Termination of Programs

Termination Analysis

Fact

• for termination analysis only recursive calls (cycles in call tree) are
essential

• let’s remove non-recursive rules

Example (specialised)

a n c e s t o r o f 2 (Ancestor , Descendant) :− f a l s e ,
c h i l d o f (Descendant , Ances to r) ,

a n c e s t o r o f 2 (Ancestor , Descendant) :−
a n c e s t o r o f 2 (Person , Descendant) ,
c h i l d o f (Person , Ance s to r) .

equivalently

a n c e s t o r o f 2 (Ancestor , Descendant) :−
a n c e s t o r o f 2 (Person , Descendant) ,
c h i l d o f (Person , Ance s to r) .

GM (Department of Computer Science @ UIBK) Logic Programming 77/1

Termination of Programs

Termination Analysis

Fact

• for termination analysis only recursive calls (cycles in call tree) are
essential

• let’s remove non-recursive rules

Example (specialised)

a n c e s t o r o f 2 (Ancestor , Descendant) :− f a l s e ,
c h i l d o f (Descendant , Ances to r) ,

a n c e s t o r o f 2 (Ancestor , Descendant) :−
a n c e s t o r o f 2 (Person , Descendant) ,
c h i l d o f (Person , Ance s to r) .

equivalently

a n c e s t o r o f 2 (Ancestor , Descendant) :−
a n c e s t o r o f 2 (Person , Descendant) ,
c h i l d o f (Person , Ance s to r) .

GM (Department of Computer Science @ UIBK) Logic Programming 77/1

Termination of Programs

Example

a n c e s t o r o f 2 (Ancestor , Descendant) :−
a n c e s t o r o f 2 (Person , Descendant) ,
c h i l d o f (Person , Ances to r) .

• Ancestor doesn’t occur in first goal (= recursive call)

• no influence on termination behaviour

• Descendant remains unchanged

• last goal has no effect → let’s remove (generalisation)

Example (specialised and generalised)

% an c e s t o r o f 2 <− un i fo rm non t e rm ina t i on

a n c e s t o r o f 2 (Ancestor , Descendant) :−
a n c e s t o r o f 2 (Person , Descendant) , f a l s e ,
c h i l d o f (Person , Ance s to r) .

GM (Department of Computer Science @ UIBK) Logic Programming 78/1

Termination of Programs

Example

a n c e s t o r o f 2 (Ancestor , Descendant) :−
a n c e s t o r o f 2 (Person , Descendant) ,
c h i l d o f (Person , Ances to r) .

• Ancestor doesn’t occur in first goal (= recursive call)

• no influence on termination behaviour

• Descendant remains unchanged

• last goal has no effect → let’s remove (generalisation)

Example (specialised and generalised)

% an c e s t o r o f 2 <− un i fo rm non t e rm ina t i on

a n c e s t o r o f 2 (Ancestor , Descendant) :−
a n c e s t o r o f 2 (Person , Descendant) , f a l s e ,
c h i l d o f (Person , Ance s to r) .

GM (Department of Computer Science @ UIBK) Logic Programming 78/1

Termination of Programs

Example

a n c e s t o r o f 2 (Ancestor , Descendant) :−
a n c e s t o r o f 2 (Person , Descendant) ,
c h i l d o f (Person , Ances to r) .

• Ancestor doesn’t occur in first goal (= recursive call)

• no influence on termination behaviour

• Descendant remains unchanged

• last goal has no effect → let’s remove (generalisation)

Example (specialised and generalised)

% an c e s t o r o f 2 <− un i fo rm non t e rm ina t i on

a n c e s t o r o f 2 (Ancestor , Descendant) :−
a n c e s t o r o f 2 (Person , Descendant) , f a l s e ,
c h i l d o f (Person , Ance s to r) .

GM (Department of Computer Science @ UIBK) Logic Programming 78/1

Termination of Programs

Example

a n c e s t o r o f 2 (Ancestor , Descendant) :−
a n c e s t o r o f 2 (Person , Descendant) ,
c h i l d o f (Person , Ances to r) .

• Ancestor doesn’t occur in first goal (= recursive call)

• no influence on termination behaviour

• Descendant remains unchanged

• last goal has no effect → let’s remove (generalisation)

Example (specialised and generalised)

% an c e s t o r o f 2 <− un i fo rm non t e rm ina t i on

a n c e s t o r o f 2 (Ancestor , Descendant) :−
a n c e s t o r o f 2 (Person , Descendant) , f a l s e ,
c h i l d o f (Person , Ance s to r) .

GM (Department of Computer Science @ UIBK) Logic Programming 78/1

Termination of Programs

Example

a n c e s t o r o f 2 (Ancestor , Descendant) :−
a n c e s t o r o f 2 (Person , Descendant) ,
c h i l d o f (Person , Ances to r) .

• Ancestor doesn’t occur in first goal (= recursive call)

• no influence on termination behaviour

• Descendant remains unchanged

• last goal has no effect → let’s remove (generalisation)

Example (specialised and generalised)

% an c e s t o r o f 2 <− un i fo rm non t e rm ina t i on

a n c e s t o r o f 2 (Ancestor , Descendant) :−
a n c e s t o r o f 2 (Person , Descendant) , f a l s e ,
c h i l d o f (Person , Ance s to r) .

GM (Department of Computer Science @ UIBK) Logic Programming 78/1

Termination of Programs

Fact

suppose the solution set for Goal is infinite, then the query

:− Goal , f a l s e .

cannot terminate

Example

:− h i n f i n i t e , f a l s e % f a l s e , but does not t e rm i n a t e

Example (ancestor of specialised)

a n c e s t o r o f (Ancestor , Descendant) :−
c h i l d o f (Person , Ances to r) ,
a n c e s t o r o f (Person , Descendant) .

:− \+ c h i l d o f (X,X) .
:− a n c e s t o r o f (Ancestor , Descendant) , f a l s e . % t e rm i n a t e s
:− f a l s e , a n c e s t o r o f (Ancestor , Descendant) . % remark o r d e r

GM (Department of Computer Science @ UIBK) Logic Programming 79/1

Termination of Programs

Fact

suppose the solution set for Goal is infinite, then the query

:− Goal , f a l s e .

cannot terminate

Example

:− h i n f i n i t e , f a l s e % f a l s e , but does not t e rm i n a t e

Example (ancestor of specialised)

a n c e s t o r o f (Ancestor , Descendant) :−
c h i l d o f (Person , Ances to r) ,
a n c e s t o r o f (Person , Descendant) .

:− \+ c h i l d o f (X,X) .
:− a n c e s t o r o f (Ancestor , Descendant) , f a l s e . % t e rm i n a t e s
:− f a l s e , a n c e s t o r o f (Ancestor , Descendant) . % remark o r d e r

GM (Department of Computer Science @ UIBK) Logic Programming 79/1

Termination of Programs

Fact

suppose the solution set for Goal is infinite, then the query

:− Goal , f a l s e .

cannot terminate

Example

:− h i n f i n i t e , f a l s e % f a l s e , but does not t e rm i n a t e

Example (ancestor of specialised)

a n c e s t o r o f (Ancestor , Descendant) :−
c h i l d o f (Person , Ances to r) ,
a n c e s t o r o f (Person , Descendant) .

:− \+ c h i l d o f (X,X) .
:− a n c e s t o r o f (Ancestor , Descendant) , f a l s e . % t e rm i n a t e s
:− f a l s e , a n c e s t o r o f (Ancestor , Descendant) . % remark o r d e r

GM (Department of Computer Science @ UIBK) Logic Programming 79/1

Termination of Programs

Termination Domains

Example (recall)

% i n f i n i t e <− d e f i n e s an un i f o rm l y non t e rm ina t i ng r e l a t i o n

i n f i n i t e :− i n f i n i t e .

% w i n f i n i t e <− un i f o rm l y non t e rm ina t i ng r e l a t i o n

w i n f i n i t e :− w i n f i n i t e .
w i n f i n i t e .

Observation

due to selection strategy Prolog may fail to find a solution to a goal, even
though the goal has a finite computation

GM (Department of Computer Science @ UIBK) Logic Programming 80/1

Termination of Programs

Termination Domains

Example (recall)

% i n f i n i t e <− d e f i n e s an un i f o rm l y non t e rm ina t i ng r e l a t i o n

i n f i n i t e :− i n f i n i t e .

% w i n f i n i t e <− un i f o rm l y non t e rm ina t i ng r e l a t i o n

w i n f i n i t e :− w i n f i n i t e .
w i n f i n i t e .

Observation

due to selection strategy Prolog may fail to find a solution to a goal, even
though the goal has a finite computation

GM (Department of Computer Science @ UIBK) Logic Programming 80/1

Termination of Programs

Example

mar r i ed (X,Y) :− mar r i ed (Y,X) .

p a r e n t o f (X,Y) :− c h i l d o f (Y,X) .
c h i l d o f (X,Y) :− p a r e n t o f (Y,X) .

Definitions
• a domain is a set of goals closed under the instance relation

• a termination domain of a program P is a domain D such that P
terminates on all goals in D

Example (domain)

is list([]). is list([X|Xs]) : − is list(Xs).

:- is list([a,X,b]).

GM (Department of Computer Science @ UIBK) Logic Programming 81/1

Termination of Programs

Example

mar r i ed (X,Y) :− mar r i ed (Y,X) .

p a r e n t o f (X,Y) :− c h i l d o f (Y,X) .
c h i l d o f (X,Y) :− p a r e n t o f (Y,X) .

Definitions
• a domain is a set of goals closed under the instance relation

• a termination domain of a program P is a domain D such that P
terminates on all goals in D

Example (domain)

is list([]). is list([X|Xs]) : − is list(Xs).

:- is list([a,X,b]).

GM (Department of Computer Science @ UIBK) Logic Programming 81/1

Termination of Programs

Example

mar r i ed (X,Y) :− mar r i ed (Y,X) .

p a r e n t o f (X,Y) :− c h i l d o f (Y,X) .
c h i l d o f (X,Y) :− p a r e n t o f (Y,X) .

Definitions
• a domain is a set of goals closed under the instance relation

• a termination domain of a program P is a domain D such that P
terminates on all goals in D

Example (domain)

is list([]). is list([X|Xs]) : − is list(Xs).

:- is list([a,X,b]).

GM (Department of Computer Science @ UIBK) Logic Programming 81/1

Termination of Programs

Definition

recursive (grammar) rules which have the recursive goal as the first goal
in the body are called left recursive

Example (cont’d)

are married(X,Y) : − married(X,Y).

are married(X,Y) : − married(Y,X).

Example

consider append/3, where the fact comes after the rule

1 append terminates if the first argument is a complete list

2 append terminates if the third argument is complete

3 append terminates iff the first or third argument is complete

GM (Department of Computer Science @ UIBK) Logic Programming 82/1

Termination of Programs

Definition

recursive (grammar) rules which have the recursive goal as the first goal
in the body are called left recursive

Example (cont’d)

are married(X,Y) : − married(X,Y).

are married(X,Y) : − married(Y,X).

Example

consider append/3, where the fact comes after the rule

1 append terminates if the first argument is a complete list

2 append terminates if the third argument is complete

3 append terminates iff the first or third argument is complete

GM (Department of Computer Science @ UIBK) Logic Programming 82/1

Termination of Programs

Definition

recursive (grammar) rules which have the recursive goal as the first goal
in the body are called left recursive

Example (cont’d)

are married(X,Y) : − married(X,Y).

are married(X,Y) : − married(Y,X).

Example

consider append/3, where the fact comes after the rule

1 append terminates if the first argument is a complete list

2 append terminates if the third argument is complete

3 append terminates iff the first or third argument is complete

GM (Department of Computer Science @ UIBK) Logic Programming 82/1

Termination of Programs

Definition

recursive (grammar) rules which have the recursive goal as the first goal
in the body are called left recursive

Example (cont’d)

are married(X,Y) : − married(X,Y).

are married(X,Y) : − married(Y,X).

Example

consider append/3, where the fact comes after the rule

1 append terminates if the first argument is a complete list

2 append terminates if the third argument is complete

3 append terminates iff the first or third argument is complete

GM (Department of Computer Science @ UIBK) Logic Programming 82/1

Termination of Programs

Definition

recursive (grammar) rules which have the recursive goal as the first goal
in the body are called left recursive

Example (cont’d)

are married(X,Y) : − married(X,Y).

are married(X,Y) : − married(Y,X).

Example

consider append/3, where the fact comes after the rule

1 append terminates if the first argument is a complete list

2 append terminates if the third argument is complete

3 append terminates iff the first or third argument is complete

GM (Department of Computer Science @ UIBK) Logic Programming 82/1

Complexity of Programs

Complexity of Programs

• as soon as we know the termination domain of a program, we can
ask about the complexity (= efficiency) of the program

• in general resource analysis is even more difficult than termination
analysis; in particular this holds for automation

Definition

suitable complexity measures are

• cardinality of the set/multiset of solutions space/time

• size of SLD tree time

• number of unification attempts time

• size of proof tree time

• logical inferences per second (LIPS) time

• size of terms space

• full cost of SLD resolution space/time

GM (Department of Computer Science @ UIBK) Logic Programming 83/1

Complexity of Programs

Complexity of Programs

• as soon as we know the termination domain of a program, we can
ask about the complexity (= efficiency) of the program

• in general resource analysis is even more difficult than termination
analysis; in particular this holds for automation

Definition

suitable complexity measures are

• cardinality of the set/multiset of solutions space/time

• size of SLD tree time

• number of unification attempts time

• size of proof tree time

• logical inferences per second (LIPS) time

• size of terms space

• full cost of SLD resolution space/time

GM (Department of Computer Science @ UIBK) Logic Programming 83/1

Complexity of Programs

Complexity of Programs

• as soon as we know the termination domain of a program, we can
ask about the complexity (= efficiency) of the program

• in general resource analysis is even more difficult than termination
analysis; in particular this holds for automation

Definition

suitable complexity measures are

• cardinality of the set/multiset of solutions space/time

• size of SLD tree time

• number of unification attempts time

• size of proof tree time

• logical inferences per second (LIPS) time

• size of terms space

• full cost of SLD resolution space/time

GM (Department of Computer Science @ UIBK) Logic Programming 83/1

Complexity of Programs

Complexity of Programs

• as soon as we know the termination domain of a program, we can
ask about the complexity (= efficiency) of the program

• in general resource analysis is even more difficult than termination
analysis; in particular this holds for automation

Definition

suitable complexity measures are

• cardinality of the set/multiset of solutions space/time

• size of SLD tree time

• number of unification attempts time

• size of proof tree time

• logical inferences per second (LIPS) time

• size of terms space

• full cost of SLD resolution space/time

GM (Department of Computer Science @ UIBK) Logic Programming 83/1

Complexity of Programs

Complexity of Programs

• as soon as we know the termination domain of a program, we can
ask about the complexity (= efficiency) of the program

• in general resource analysis is even more difficult than termination
analysis; in particular this holds for automation

Definition

suitable complexity measures are

• cardinality of the set/multiset of solutions space/time

• size of SLD tree time

• number of unification attempts time

• size of proof tree time

• logical inferences per second (LIPS) time

• size of terms space

• full cost of SLD resolution space/time

GM (Department of Computer Science @ UIBK) Logic Programming 83/1

Complexity of Programs

Complexity of Programs

• as soon as we know the termination domain of a program, we can
ask about the complexity (= efficiency) of the program

• in general resource analysis is even more difficult than termination
analysis; in particular this holds for automation

Definition

suitable complexity measures are

• cardinality of the set/multiset of solutions space/time

• size of SLD tree time

• number of unification attempts time

• size of proof tree time

• logical inferences per second (LIPS) time

• size of terms space

• full cost of SLD resolution space/time

GM (Department of Computer Science @ UIBK) Logic Programming 83/1

Complexity of Programs

Complexity of Programs

• as soon as we know the termination domain of a program, we can
ask about the complexity (= efficiency) of the program

• in general resource analysis is even more difficult than termination
analysis; in particular this holds for automation

Definition

suitable complexity measures are

• cardinality of the set/multiset of solutions space/time

• size of SLD tree time

• number of unification attempts time

• size of proof tree time

• logical inferences per second (LIPS) time

• size of terms space

• full cost of SLD resolution space/time

GM (Department of Computer Science @ UIBK) Logic Programming 83/1

Complexity of Programs

Complexity of Programs

• as soon as we know the termination domain of a program, we can
ask about the complexity (= efficiency) of the program

• in general resource analysis is even more difficult than termination
analysis; in particular this holds for automation

Definition

suitable complexity measures are

• cardinality of the set/multiset of solutions space/time

• size of SLD tree time

• number of unification attempts time

• size of proof tree time

• logical inferences per second (LIPS) time

• size of terms space

• full cost of SLD resolution space/time

GM (Department of Computer Science @ UIBK) Logic Programming 83/1

Complexity of Programs

Example (ancestor of , specialised)

a n c e s t o r o f (Ancestor , Descendant) :−
c h i l d o f (Descendant , Ances to r) .

a n c e s t o r o f (Ancestor , Descendant) :−
c h i l d o f (Person , Ances to r) ,
a n c e s t o r o f (Person , Descendant) .

:− a n c e s t o r o f (j o s e p h I I , Descendant) .
:− a n c e s t o r o f (Ancestor , j o s e p h I I) .

Example (cont’d)

we can ignore Descendant as it has no effect on the number of steps:

a n c e s t o r o f ’ (Ances to r) :−
c h i l d o f (Person , Ance s to r) ,
a n c e s t o r o f ’ (Person) .

GM (Department of Computer Science @ UIBK) Logic Programming 84/1

Complexity of Programs

Example (ancestor of , specialised)

a n c e s t o r o f (Ancestor , Descendant) :− f a l s e ,
c h i l d o f (Descendant , Ances to r) .

a n c e s t o r o f (Ancestor , Descendant) :−
c h i l d o f (Person , Ances to r) ,
a n c e s t o r o f (Person , Descendant) .

:− a n c e s t o r o f (j o s e p h I I , Descendant) .
:− a n c e s t o r o f (Ancestor , j o s e p h I I) .

Example (cont’d)

we can ignore Descendant as it has no effect on the number of steps:

a n c e s t o r o f ’ (Ances to r) :−
c h i l d o f (Person , Ance s to r) ,
a n c e s t o r o f ’ (Person) .

GM (Department of Computer Science @ UIBK) Logic Programming 84/1

Complexity of Programs

Example (ancestor of , specialised)

a n c e s t o r o f (Ancestor , Descendant) :− f a l s e ,
c h i l d o f (Descendant , Ances to r) .

a n c e s t o r o f (Ancestor , Descendant) :−
c h i l d o f (Person , Ances to r) ,
a n c e s t o r o f (Person , Descendant) .

:− a n c e s t o r o f (j o s e p h I I , Descendant) .
:− a n c e s t o r o f (Ancestor , j o s e p h I I) .

Example (cont’d)

we can ignore Descendant as it has no effect on the number of steps:

a n c e s t o r o f ’ (Ances to r) :−
c h i l d o f (Person , Ance s to r) ,
a n c e s t o r o f ’ (Person) .

GM (Department of Computer Science @ UIBK) Logic Programming 84/1

Complexity of Programs

Analysis

• in goal ancestor of (joseph II) we know the first argument: number of
inferences bounded by number of descendants of Joseph II

• consider goal ancestor of (Ancestor, joseph II); here the 2nd argument is
irrelevant for the complexity of the program

• child of /2 is called with free variables, hence the solution space is
given by the whole database

• hence, all ancestors of all persons are computed

Example (reversed search)
a n c e s t o r o f 3 (Ancestor , Descendant) :−

c h i l d o f (Descendant , Ances to r) .
a n c e s t o r o f 3 (Ancestor , Descendant) :−

c h i l d o f (Descendant , Person) ,
a n c e s t o r o f 3 (Ancestor , Person) .

:− a n c e s t o r o f (Ancestor , j o s e p h I I) .

GM (Department of Computer Science @ UIBK) Logic Programming 85/1

Complexity of Programs

Analysis

• in goal ancestor of (joseph II) we know the first argument: number of
inferences bounded by number of descendants of Joseph II

• consider goal ancestor of (Ancestor, joseph II); here the 2nd argument is
irrelevant for the complexity of the program

• child of /2 is called with free variables, hence the solution space is
given by the whole database

• hence, all ancestors of all persons are computed

Example (reversed search)
a n c e s t o r o f 3 (Ancestor , Descendant) :−

c h i l d o f (Descendant , Ances to r) .
a n c e s t o r o f 3 (Ancestor , Descendant) :−

c h i l d o f (Descendant , Person) ,
a n c e s t o r o f 3 (Ancestor , Person) .

:− a n c e s t o r o f (Ancestor , j o s e p h I I) .

GM (Department of Computer Science @ UIBK) Logic Programming 85/1

Complexity of Programs

Analysis

• in goal ancestor of (joseph II) we know the first argument: number of
inferences bounded by number of descendants of Joseph II

• consider goal ancestor of (Ancestor, joseph II); here the 2nd argument is
irrelevant for the complexity of the program

• child of /2 is called with free variables, hence the solution space is
given by the whole database

• hence, all ancestors of all persons are computed

Example (reversed search)
a n c e s t o r o f 3 (Ancestor , Descendant) :−

c h i l d o f (Descendant , Ances to r) .
a n c e s t o r o f 3 (Ancestor , Descendant) :−

c h i l d o f (Descendant , Person) ,
a n c e s t o r o f 3 (Ancestor , Person) .

:− a n c e s t o r o f (Ancestor , j o s e p h I I) .

GM (Department of Computer Science @ UIBK) Logic Programming 85/1

Complexity of Programs

Analysis

• in goal ancestor of (joseph II) we know the first argument: number of
inferences bounded by number of descendants of Joseph II

• consider goal ancestor of (Ancestor, joseph II); here the 2nd argument is
irrelevant for the complexity of the program

• child of /2 is called with free variables, hence the solution space is
given by the whole database

• hence, all ancestors of all persons are computed

Example (reversed search)
a n c e s t o r o f 3 (Ancestor , Descendant) :−

c h i l d o f (Descendant , Ances to r) .
a n c e s t o r o f 3 (Ancestor , Descendant) :−

c h i l d o f (Descendant , Person) ,
a n c e s t o r o f 3 (Ancestor , Person) .

:− a n c e s t o r o f (Ancestor , j o s e p h I I) .

GM (Department of Computer Science @ UIBK) Logic Programming 85/1

