ogic

Logic Programming

Georg Moser
Department of Computer Science @ UIBK

Winter 2016

EE——
Outline of the Lecture

introduction, basic constructs, logic foundations, unification, semantics
database and recursive programming, termination, complexity

Monotone Logic Programs }

Incomplete Data Structures and Constraints

incomplete data structures, definite clause grammars, constraint logic pro-
gramming, answer set programming

semantics (revisited), correctness proofs, meta-logical predicates, cuts non-
deterministic programming, efficient programs, complexity

Full Prolog }

GM (Department of Computer Science @ Ul Logic Programming 70/1

Summary of Last Lecture

Summary of Last Lecture

Definitions

e a proof tree for a program P and a goal G is a tree, whose nodes
are goals and whose edges represent reduction of goals

e the root is the query G
e the edges are labelled with (partial) answer substitutions

e a proof tree for a conjunction of goals G, ..., G, is the set of proof
trees for G;

Example (generate and test)

permutationsort(Xs,Y¥s) : — permutation(Xs,Ys), ordered(Ys).
permutation(Xs, [Z|Zs]) : — select(Z,Xs,Ys), permutation(Ys,Zs).
permutation([], [1).

ordered([X]).
ordered([X,Y|Ys]) : — X < Y, ordered([Y|Ys]).

GM (Department of Computer Science @ Ul Logic Programming

Accessing compound terms
Definition

e functor(Term,F Arity) is true, if Term is a compound term, whose
principal functor is F with arity Arity

o arg(N,Term,Arg) is true, if Arg is the N*' argument of Term

Example

: — functor(father(haran,lot),F,A)

F +— father
A+— 2

Example
: — arg(2,father (haran,lot),X)
X — lot

GM (Department of Computer Science @ Ul Logic Programming 71/1

http://cl-informatik.uibk.ac.at

Accessing compound terms

Example

subterm(Term, Term) .

subterm(Sub,Term) : —
compound (Term) ,
functor(Term,F,N),
subterm(N,Sub, Term) .

subterm(N,Sub,Term) : —
N>1,
N1 is N - 1,
subterm(N1,Sub,Term) .
subterm(N,Sub,Term) : —
arg(N,Term,Arg),
subterm(Sub,Arg) .

:- subterm(X,f(a,f(a,b))), X =
:— subterm(X,f(U,f(V,W))), X

|
)

£(V,W).

Logic Programming

GM (Department of Computer Science @ Ul

Composing Recursive Programs

Approach
sometimes it is useful (easier) to think of a relation as a function
use this definition for coding
afterwards see, if alternative uses make declarative sense

Example
delete/3 removes all occurrences of an element from a list

Example

delete([X1Xs],Z,7) 1= X = Z, delete(Xs,Z,Ys).
delete([X|Xs],Z,7) P — dif(X,2) , delete(Xs,Z,Ys).
delete([]1,X,[1).

delete([X|Xs],X,Ys) : — delete(Xs,X,Ys).
delete([X|Xs],Z, [X]Ys]) : — dif(X,Z), delete(Xs,Z,Ys).
delete([],X,[1).

GM (Department of Computer Science @ Ul Logic Programming

Accessing compound terms

Definition
e Term =.. List is true if List is a list whose head is the principal
functor of Term, and whose tail is the list of arguments of Term
e the operator =. . is also called univ
Example
: — father (haran,lot) =.. Xs

X — [father,haran,lot]

Remark
e programs written with functor and arg can also be written with
univ
e programs using univ are typically simpler
e programs using functor and arg are more efficient

e univ can be built from functor and arg

GM (Department of Computer Science @ Ul Logic Programming

Composing Recursive Programs

Example
delete, ([X|Xs],X,Ys) : — deleter(Xs,X,Ys).
delete, ([X|Xs],Z,[X|Ys]) : — deletey(Xs,Z,Ys).

delete, ([1,X,[1).

: — deletes([a,b,c,b],b, [a,c])
true

. — deletes([a,b,c,b],b,[a,b,c,b])
true

Example (Select ~ Delete;)

select (X, [X|Xs],Xs).
select (X, [Y|Ys],[Y|Zs]) : — select(X,Ys,Zs)
: — deletey([al,b, [al)

true

. — select(b, [al,X)

false

GM (Department of Computer Science @ Ul Logic Programming

Termination of Programs Termination of Programs

Example (non termination) Termination Analysis

% infinite <— defines an uniformly nonterminating relation Fact

infinite :— infinite. e for termination analysis only recursive calls (cycles in call tree) are
essential

Example (again, but different) e let’s remove non-recursive rules

% winfinite <— uniformly nonterminating relation
Example (specialised)
winfinite :— winfinite.

winfinite . ancestor_of_2 (Ancestor, Descendant) :— false,

child_of (Descendant, Ancestor),
ancestor_of_2 (Ancestor, Descendant) :—

Example (non termination, yet again) aE_CledStO{ngfi(PerS:n : ?esiendant)y
chni -0 erson , ncestor).

% hinfinte <— not strongly terminating, weakly terminating

equivalently
h!nf!n!te.. S ancestor_of_2(Ancestor, Descendant) :—
hinfinite :— hinfinite.
ancestor_of_2(Person, Descendant),
) P child_of (Person, Ancestor).
:— hinfinite.

e ——
GM (Department of Computer Science @ Ul Logic Programming 76/1 GM (Department of Computer Science @ Ul Logic Programming 77/1

Termination of Programs Termination of Programs

Example Fact
suppose the solution set for Goal is infinite, then the query
ancestor_of_2(Ancestor, Descendant) :—
ancestor_of_2 (Person, Descendant), ‘= Goal, false.
child_of (Person, Ancestor). .
cannot terminate
e Ancestor doesn't occur in first goal (= recursive call)
e no influence on termination behaviour Example
e Descendant remains unchanged :— hinfinite , false % false, but does not terminate
e last goal has no effect — let's remove (generalisation)
Example (ancestorof specialised)
Example (Speda“sed and generalised) ancestor_of (Ancestor, Descendant) :—
child_of (Person, Ancestor),
% ancestor_of_2 <— wuniform nontermination ancestor_of(Person' Descendant).
ancestor_of_2(Ancestor, Descendant) :— ‘— \+ child_of(X,X).
ancestor_of_2(Person, Descendant), false, :— ancestor_of (Ancestor, Descendant), false. % terminates
child_of (Person, Ancestor). :— false, ancestor_of (Ancestor, Descendant). % remark order

GM (Department of Computer Science @ Ul Logic Programming / GM (Department of Computer Science @ Ul Logic Programming 79/1

Termination of Programs

Termination Domains

Example (recall)

% infinite <— defines an uniformly nonterminating relation
infinite :— infinite.
% winfinite <— uniformly nonterminating relation

winfinite :— winfinite.
winfinite .

Observation

due to selection strategy Prolog may fail to find a solution to a goal, even
though the goal has a finite computation

GM (Department of Computer Science @ Ul Logic Programming

Termination of Programs

Example

married (X,Y) :— married(Y,X).

parent_of (X,Y) :— child_of(Y,X).
child_of (X,Y) :— parent_of(Y,X).
Definitions

e a domain is a set of goals closed under the instance relation

e a termination domain of a program P is a domain D such that P
terminates on all goals in D

Example (domain)

is_1list([]). is_list([X|Xs]) : — is_list(Xs).

:— is_list([a,X,b]).

GM (Department of Computer Science @ Ul Logic Programming

Termination of Programs

Definition
recursive (grammar) rules which have the recursive goal as the first goal
in the body are called left recursive

Example (cont'd)

are married(X,Y) : — married(X,Y).
aremarried(X,Y) : — married(Y,X).
Example

consider append/3, where the fact comes after the rule
append terminates if the first argument is a complete list

append terminates if the third argument is complete

append terminates iff the first or third argument is complete

GM (Department of Computer Science @ Ul Logic Programming 82/1

Complexity of Programs

Complexity of Programs
e as soon as we know the termination domain of a program, we can
ask about the complexity (= efficiency) of the program
e in general resource analysis is even more difficult than termination
analysis; in particular this holds for automation

Definition
suitable complexity measures are
e cardinality of the set/multiset of solutions space/time
e size of SLD tree time
e number of unification attempts time
e size of proof tree time
e logical inferences per second (LIPS) time
e size of terms space
e full cost of SLD resolution space/time
GM (Department of Computer Science @ Ul Logic Programming 83/1

Complexity of Programs Complexity of Programs

Analysis
Example (ancestor.of, specialised) e in goal ancestor_of (joseph_Il) we know the first argument: number of
ancestor_of (Ancestor, Descendant) :— false | inferences bounded by number of descendants of Joseph Il
child_of (Descendant, Ancestor). e consider goal ancestor_of (Ancestor, joseph_ll); here the 2nd argument is
ancestor_of (Ancestor, Descendant) :— irrelevant for the complexity of the program
child_of (Person, Ancestor),
e childof /2 is called with free variables, hence the solution space is

ancestor_of (Person, Descendant).
given by the whole database

:— ancestor_of(joseph_Il ,Descendant).
(J P ') e hence, all ancestors of all persons are computed
:— ancestor_of (Ancestor, joseph_I1).

Example (reversed search)

ancestor_of_3 (Ancestor, Descendant) :—

Example (cont'd)
child_of (Descendant, Ancestor).

we can ignore Descendant as it has no effect on the number of steps: ancestor_ of 3 (Ancestor , Descendant) :—
ancestor_of '(Ancestor) :— child_of (Descendant, Person),
ancestor_of_3 (Ancestor,Person).

child_of (Person, Ancestor),
ancestor_of '(Person).

:— ancestor_of (Ancestor, joseph_I1).

GM (Department of Computer Science @ Ul Logic Programming

GM (Department of Computer Science @ Ul Logic Programming

