

Logic Programming

Georg Moser

Department of Computer Science @ UIBK

Winter 2016

Summary of Last Lecture

Example (design as function)

```
Example (use as relation)

delete2([X|Xs],X,Ys) :- \\ delete2(Xs,X,Ys).
delete2([X|Xs],Z,[X|Ys]) :- \\ delete2(Xs,Z,Ys).
delete2([],\_X,[]).
```

Outline of the Lecture

Monotone Logic Programs

introduction, basic constructs, logic foundations, unification, semantics, database and recursive programming, termination, complexity

Incomplete Data Structures and Constraints

incomplete data structures, definite clause grammars, constraint logic programming, answer set programming

Full Prolog

semantics (revisted), correctness proofs, meta-logical predicates, cuts nondeterministic programming, efficient programs, complexity

Outline of the Lecture

Monotone Logic Programs

introduction, basic constructs, logic foundations, unification, semantics, database and recursive programming, termination, complexity

Incomplete Data Structures and Constraints

incomplete data structures, definite clause grammars, constraint logic programming, answer set programming

Full Prolog

semantics (revisted), correctness proofs, meta-logical predicates, cuts nondeterministic programming, efficient programs, complexity

SWI-Prolog

```
[zid-gpl.uibk.ac.at] swipl
Welcome to SWI-Prolog (Multi-threaded, 64 bits, Version 7.2.3)
Copyright (c) 1990-2009 University of Amsterdam.
SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to redistribute it under certain conditions.
Please visit http://www.swi-prolog.org for details.
For help, use ?- help(Topic). or ?- apropos(Word).
```

SWI-Prolog Emacs Mode

Bruda's Prolog Mode

- goto http://bruda.ca/emacs/prolog_mode_for_emacs
- 2 download prolog.el, compile and put into sub-directory site-lisp
- 3 put the following into .emacs:

```
Example (Xs is a subset of Ys)
members([X|Xs],Ys) : - member(X,Ys), members(Xs,Ys).
members([],Ys).
```

```
Example (Xs is a subset of Ys) selects([X|Xs],Ys) := select([X,Ys,Ys]), selects([Xs,Ys]). \\ selects([Xs],Ys).
```

Example (Xs is a subset of Ys)

```
members([X|Xs],Ys) : - member(X,Ys), members(Xs,Ys). members([],Ys).
```

Example (Xs is a subset of Ys)

```
selects([X|Xs],Ys) : - select(X,Ys,Ys1), selects(Xs,Ys1).
selects([],Ys).
```

- 1 members/2 ignores the multiplicity of elements
- 2 members/2 terminates iff 1st argument is complete

Example (Xs is a submultiset of Ys)

```
members([X|Xs],Ys) : - member(X,Ys), members(Xs,Ys). members([],Ys).
```

Example (Xs is a subset of Ys)

```
selects([X|Xs],Ys) : - select(X,Ys,Ys1), selects(Xs,Ys1).
selects([],Ys).
```

- 1 members/2 ignores the multiplicity of elements
- 2 members/2 terminates iff 1st argument is complete
- 3 the first restriction is lifted, the second altered with selects/2

Example (Xs is a submultiset of Ys)

```
members([X|Xs],Ys): - member(X,Ys), members(Xs,Ys). members([],Ys).
```

Example (Xs is a subset of Ys)

```
selects([X|Xs],Ys) : - select(X,Ys,Ys1), selects(Xs,Ys1).
selects([],Ys).
```

- 1 members/2 ignores the multiplicity of elements
- 2 members/2 terminates iff 1st argument is complete
- \blacksquare the first restriction is lifted, the second altered with selects/2
- 4 selects/2 strongly normalises iff 2nd argument is complete; weakly normalises iff at least one argument is complete

```
% no_doubles(Xs,Ys) <—
% Ys is the list obtained by removing duplicate
% elements from the list Xs</pre>
```

Example

```
% no_doubles(Xs,Ys) <—
% Ys is the list obtained by removing duplicate
% elements from the list Xs</pre>
```

```
\label{eq:non_member} \begin{split} &\text{non\_member}(X,[Y|Ys]) : - \ \text{dif}(X,Y), \ \text{non\_member}(X,Ys). \\ &\text{non\_member}(X,[]). \end{split}
```

Example

```
% no_doubles(Xs,Ys) <—
% Ys is the list obtained by removing duplicate
% elements from the list Xs</pre>
```

```
non_member(X,[Y|Ys]) : - dif(X,Y), non_member(X,Ys).
non_member(X,[]).

no_doubles([X|Xs],Ys) : -
    member(X,Xs), no_doubles(Xs,Ys).
no_doubles([X|Xs],[X|Ys]) : -
    non_member(X,Xs), no_doubles(Xs,Ys).
no_doubles([],[]).
```

- append/3
- member/2

- append/3
- member/2
- last/2

```
?- last([a,b,c,d],X).
X = d
```

- append/3
- member/2
- last/2

• reverse/2

```
?- reverse([a,b,c,d],X).
X = [d,c,b,a]
```

```
?- last(X,a).

X = [a];

X = [_G324,a];

X = [_G324, G327,a]
```

- append/3
- member/2
- last/2

• reverse/2

• select/3

?- last(X,a). X = [a];

X = [G324,a];X = [G324, G327,a]

- append/3
- member/2
- last/2

• reverse/2

• select/3

$$X = [a,c,b,d]$$

- append/3
- member/2
- last/2

?- last(X,a).
X = [a];
X = [_G324,a];

X = [G324, G327,a]

• reverse/2

• select/3

• length/2

Observation

$$1 [1,2,3] = [1,2,3] \setminus []$$

Observation

$$[1,2,3] = [1,2,3] \setminus []$$

$$[1,2,3] = [1,2,3,4,5] \setminus [4,5]$$

Observation

$$[1,2,3] = [1,2,3] \setminus []$$

$$[1,2,3] = [1,2,3,4,5] \setminus [4,5]$$

$$[1,2,3] = [1,2,3,8] \setminus [8]$$

Observation

$$[1,2,3] = [1,2,3] \setminus []$$

$$[1,2,3] = [1,2,3,4,5] \setminus [4,5]$$

$$[1,2,3] = [1,2,3,8] \setminus [8]$$

$$4 [1,2,3] = [1,2,3|Xs] \setminus Xs$$

Observation

given a list [1,2,3] it can be represented as the difference of two lists

- $1 [1,2,3] = [1,2,3] \setminus []$
- $[1,2,3] = [1,2,3,4,5] \setminus [4,5]$
- $[1,2,3] = [1,2,3,8] \setminus [8]$
- $[1,2,3] = [1,2,3] \times Xs$

Definition

the difference of two lists is denotes as $As \setminus Bs$ and called difference list

Observation

given a list [1,2,3] it can be represented as the difference of two lists

- $[1,2,3] = [1,2,3] \setminus []$
- $[1,2,3] = [1,2,3,4,5] \setminus [4,5]$
- $[1,2,3] = [1,2,3,8] \setminus [8]$
- 4 $[1,2,3] = [1,2,3|Xs] \setminus Xs$

Definition

the difference of two lists is denotes as $As \setminus Bs$ and called difference list

Example

append_dl(Xs \ Ys, Ys \ Zs, Xs \ Zs).

Application of Difference Lists

```
reverse(Xs,Ys) :- reverse_dl(Xs, Ys \ []).
reverse_dl([], Xs \ Xs).
reverse_dl([X|Xs], Ys \ Zs) :-
    reverse_dl(Xs, Ys \ [X | Zs]).
```

Application of Difference Lists

Example

```
reverse(Xs,Ys) :- reverse_dl(Xs, Ys \ []).
reverse_dl([], Xs \ Xs).
reverse_dl([X|Xs], Ys \ Zs) :-
    reverse_dl(Xs, Ys \ [X | Zs]).
```

```
quicksort(Xs,Ys) :- quicksort_dl(Xs, Ys \ []).
quicksort_dl([X|Xs], Ys \ Zs) :-
    partition(Xs,X,Littles, Bigs),
    quicksort_dl(Littles,Ys \ [X|Ys1]),
    quicksort_dl(Bigs,Ys1 \ Zs).
quicksort_dl([],Xs \ Xs).
```

 difference lists are effective if independently different sections of a list are built, which are then concatenated

- difference lists are effective if independently different sections of a list are built, which are then concatenated
- the separation operator \backslash simplifies reading, but can be eliminated: "As \backslash Bs" \to "As , Bs"

- difference lists are effective if independently different sections of a list are built, which are then concatenated
- the separation operator \backslash simplifies reading, but can be eliminated: "As \backslash Bs" \to "As , Bs"
- the explicit constructor should be removed, if time or space efficiency is an issue

- difference lists are effective if independently different sections of a list are built, which are then concatenated
- \bullet the separation operator \backslash simplifies reading, but can be eliminated: "As \backslash Bs" \to "As , Bs"
- the explicit constructor should be removed, if time or space efficiency is an issue

More Observations

 the tail Bs of a difference list acts like a pointer to the end of the first list As

Observations

- difference lists are effective if independently different sections of a list are built, which are then concatenated
- \bullet the separation operator \backslash simplifies reading, but can be eliminated: "As \backslash Bs" \to "As , Bs"
- the explicit constructor should be removed, if time or space efficiency is an issue

More Observations

- the tail Bs of a difference list acts like a pointer to the end of the first list As
- this works as As is an incomplete list

Observations

- difference lists are effective if independently different sections of a list are built, which are then concatenated
- \bullet the separation operator \backslash simplifies reading, but can be eliminated: "As \backslash Bs" \to "As , Bs"
- the explicit constructor should be removed, if time or space efficiency is an issue

More Observations

- the tail Bs of a difference list acts like a pointer to the end of the first list As
- this works as As is an incomplete list
- thus we represent a concrete list as the difference of two incomplete data structures

Observations

- difference lists are effective if independently different sections of a list are built, which are then concatenated
- \bullet the separation operator \backslash simplifies reading, but can be eliminated: "As \backslash Bs" \to "As , Bs"
- the explicit constructor should be removed, if time or space efficiency is an issue

More Observations

- the tail Bs of a difference list acts like a pointer to the end of the first list As
- this works as As is an incomplete list
- thus we represent a concrete list as the difference of two incomplete data structures
- generalises to other recursive data types

Difference-structures

Example

convert the sum (a + b) + (c + d) into (a + (b + (c + (d + 0))))

Difference-structures

Example

convert the sum (a + b) + (c + d) into (a + (b + (c + (d + 0))))

Definition

we make use of difference-sums: E1++E2, where E1, E2 are incomplete; the empty sum is denoted by 0

Difference-structures

Example

```
convert the sum (a + b) + (c + d) into (a + (b + (c + (d + 0))))
```

Definition

we make use of difference-sums: E1++E2, where E1, E2 are incomplete; the empty sum is denoted by 0

```
normalise(Exp,Norm) :- normalise_ds(Exp,Norm ++ 0).
normalise_ds(A+B, Norm ++ Norm0) :-
    normalise_ds(A, Norm ++ NormB),
    normalise_ds(B, NormB ++ Norm0).
normalise_ds(A,(A + Norm) ++ Norm) :-
    constant(A).
```

Context-Free Grammars

Definition

- a grammar G is a tuple $G = (V, \Sigma, R, S)$, where
 - \mathbf{I} V finite set of variables (or nonterminals)
 - **2** Σ alphabet, the terminal symbols, $V \cap \Sigma = \emptyset$
 - R finite set of rules
 - 4 $S \in \mathcal{V}$ the start symbol of G

Context-Free Grammars

Definition

- a grammar G is a tuple $G = (V, \Sigma, R, S)$, where
 - 1 V finite set of variables (or nonterminals)
 - **2** Σ alphabet, the terminal symbols, $V \cap \Sigma = \emptyset$
 - R finite set of rules
 - $S \in \mathcal{V}$ the start symbol of G

a rule is a pair $P \to Q$ of words, such that $P, Q \in (V \cup \Sigma)^*$ and there is at least one variable in P

Context-Free Grammars

Definition

- a grammar G is a tuple $G = (V, \Sigma, R, S)$, where
 - V finite set of variables (or nonterminals)
 - Σ alphabet, the terminal symbols, $V \cap \Sigma = \emptyset$
 - **3** *R* finite set of rules
 - 4 $S \in \mathcal{V}$ the start symbol of G

a rule is a pair $P \to Q$ of words, such that $P, Q \in (V \cup \Sigma)^*$ and there is at least one variable in P

Definition

grammar $G = (V, \Sigma, R, S)$ is context-free, if \forall rules $P \rightarrow Q$:

- **1** *P* ∈ *V*
- 2 $Q \in (V \cup \Sigma)^*$

```
sentence \rightarrow noun_phrase, verb_phrase.
noun\_phrase \rightarrow determiner, noun\_phrase2.
noun\_phrase \rightarrow noun\_phrase2.
noun\_phrase2 \rightarrow adjective, noun\_phrase2.
noun\_phrase2 \rightarrow noun.
verb_phrase \rightarrow verb, noun_phrase.
verb\_phrase \rightarrow verb.
determiner \rightarrow [the].
determiner \rightarrow [a].
noun \rightarrow [pie-plate].
noun \rightarrow [surprise].
adjective \rightarrow [decorated].
verb \rightarrow [contains].
sentence \stackrel{*}{\Rightarrow} "the decorated pie-plate contains a surprise"
```

```
sentence(S \setminus S0) := noun_phrase(S \setminus S1), verb_phrase(S1 \setminus S0).
noun_phrase(S \ S0) :-
    determiner(S \setminus S1), noun_phrase2(S1 \setminus S0).
noun_phrase(S) :- noun_phrase2(S).
noun_phrase2(S \ S0) :-
    adjective(S \setminus S1), noun\_phrase2(S1 \setminus S0).
noun_phrase2(S) :- noun(S).
verb_phrase(S \setminus S0) := verb(S \setminus S1), noun_phrase(S1 \setminus S0).
verb_phrase(S) :- verb(S).
determiner([the|S] \ S).
determiner([a|S] \ S).
noun([pie-plate|S] \ S).
noun([surprise|S] \ S).
adjective([decorated|S] \ S).
verb([contains|S] \setminus S).
```

Extension: Add Parsetree

```
\begin{tabular}{ll} sentence(sentence(N,V), S \setminus S0) :- \\ noun\_phrase(N, S \setminus S1), \\ verb\_phrase(V, S1 \setminus S0). \end{tabular}
```

Extension: Add Parsetree

Example

```
\begin{tabular}{ll} sentence(sentence(N,V), S \setminus S0) :- \\ noun\_phrase(N, S \setminus S1), \\ verb\_phrase(V, S1 \setminus S0). \end{tabular}
```

Example (Definite Clause Grammars)

```
\begin{split} & \mathtt{sentence}(\mathtt{sentence}(\mathbb{N},\mathbb{V})) \ \to \ \mathtt{noun\_phrase}(\mathbb{N}) \,, \ \mathtt{verb\_phrase}(\mathbb{V}) \,. \\ & \mathtt{noun\_phrase}(\mathtt{np}(\mathbb{D},\mathbb{N})) \ \to \ \mathtt{determiner}(\mathbb{D}) \,, \ \mathtt{noun\_phrase2}(\mathbb{N}) \,. \\ & \mathtt{noun\_phrase}(\mathtt{np}(\mathbb{N})) \ \to \ \mathtt{noun\_phrase2}(\mathbb{N}) \,. \\ & \mathtt{noun\_phrase2}(\mathtt{np2}(\mathbb{A},\mathbb{N})) \ \to \ \mathtt{adjective}(\mathbb{A}) \,, \ \mathtt{noun\_phrase2}(\mathbb{N}) \,. \\ & \mathtt{noun\_phrase2}(\mathtt{np2}(\mathbb{N})) \ \to \ \mathtt{noun}(\mathbb{N}) \,. \\ & \mathtt{verb\_phrase}(\mathtt{vp}(\mathbb{V},\mathbb{N})) \ \to \ \mathtt{verb}(\mathbb{V}) \,, \ \mathtt{noun\_phrase}(\mathbb{N}) \,. \\ & \mathtt{verb\_phrase}(\mathtt{vp}(\mathbb{V})) \ \to \ \mathtt{verb}(\mathbb{V}) \,. \\ \end{split}
```