
Logic Programming

Georg Moser

Department of Computer Science @ UIBK

Winter 2016

http://cl-informatik.uibk.ac.at

Summary of Last Lecture

Summary of Last Lecture

Example (design as function)

d e l e t e ([X | Xs] ,X, Ys) :−
d e l e t e (Xs ,X, Ys) .

d e l e t e ([X | Xs] , Z , [X | Ys]) :−
d i f (X, Z) ,
d e l e t e (Xs , Z , Ys) .

d e l e t e ([] , X , []) .

Example (use as relation)

d e l e t e 2 ([X | Xs] ,X, Ys) :−
d e l e t e 2 (Xs ,X, Ys) .

d e l e t e 2 ([X | Xs] , Z , [X | Ys]) :−
d e l e t e 2 (Xs , Z , Ys) .

d e l e t e 2 ([] , X , []) .

GM (Department of Computer Science @ UIBK) Logic Programming 88/1

Overview

Outline of the Lecture

Monotone Logic Programs

introduction, basic constructs, logic foundations, unification, semantics,
database and recursive programming, termination, complexity

Incomplete Data Structures and Constraints

incomplete data structures, definite clause grammars, constraint logic pro-
gramming, answer set programming

Full Prolog

semantics (revisted), correctness proofs, meta-logical predicates, cuts non-
deterministic programming, efficient programs, complexity

GM (Department of Computer Science @ UIBK) Logic Programming 89/1

Overview

Outline of the Lecture

Monotone Logic Programs

introduction, basic constructs, logic foundations, unification, semantics,
database and recursive programming, termination, complexity

Incomplete Data Structures and Constraints

incomplete data structures, definite clause grammars, constraint logic pro-
gramming, answer set programming

Full Prolog

semantics (revisted), correctness proofs, meta-logical predicates, cuts non-
deterministic programming, efficient programs, complexity

GM (Department of Computer Science @ UIBK) Logic Programming 89/1

SWI-Prolog

SWI-Prolog

[zid-gpl.uibk.ac.at] swipl

Welcome to SWI-Prolog (Multi-threaded, 64 bits, Version 7.2.3)

Copyright (c) 1990-2009 University of Amsterdam.

SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,

and you are welcome to redistribute it under certain conditions.

Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos(Word).

?-

GM (Department of Computer Science @ UIBK) Logic Programming 90/1

SWI-Prolog

SWI-Prolog Emacs Mode

Bruda’s Prolog Mode

1 goto http://bruda.ca/emacs/prolog_mode_for_emacs

2 download prolog.el, compile and put into sub-directory site-lisp

3 put the following into .emacs:

(au to l oad ’ run−pro log ” p r o l o g ”
” S t a r t a Pro log sub−process . ” t)

(au to l oad ’ prolog−mode ” p r o l o g ”
”Major mode f o r e d i t i n g Pro log programs . ” t)

(s e t q pro log−system ’ sw i)
(s e t q auto−mode−al i st

(cons (cons ” \\ . p l ” ’ prolog−mode) auto−mode−al i st))

GM (Department of Computer Science @ UIBK) Logic Programming 91/1

http://bruda.ca/emacs/prolog_mode_for_emacs

Recursive Programming (ongoing)

Example (Xs is a subset of Ys)

members([X|Xs],Ys) : − member(X,Ys), members(Xs,Ys).

members([],Ys).

Example (Xs is a subset of Ys)

selects([X|Xs],Ys) : − select(X,Ys,Ys1), selects(Xs,Ys1).

selects([],Ys).

Observations

1 members/2 ignores the multiplicity of elements

2 members/2 terminates iff 1st argument is complete

3 the first restriction is lifted, the second altered with selects/2

4 selects/2 strongly normalises iff 2nd argument is complete; weakly
normalises iff at least one argument is complete

GM (Department of Computer Science @ UIBK) Logic Programming 92/1

Recursive Programming (ongoing)

Example (Xs is a subset of Ys)

members([X|Xs],Ys) : − member(X,Ys), members(Xs,Ys).

members([],Ys).

Example (Xs is a subset of Ys)

selects([X|Xs],Ys) : − select(X,Ys,Ys1), selects(Xs,Ys1).

selects([],Ys).

Observations

1 members/2 ignores the multiplicity of elements

2 members/2 terminates iff 1st argument is complete

3 the first restriction is lifted, the second altered with selects/2

4 selects/2 strongly normalises iff 2nd argument is complete; weakly
normalises iff at least one argument is complete

GM (Department of Computer Science @ UIBK) Logic Programming 92/1

Recursive Programming (ongoing)

Example (Xs is a subset of Ys)

members([X|Xs],Ys) : − member(X,Ys), members(Xs,Ys).

members([],Ys).

Example (Xs is a subset of Ys)

selects([X|Xs],Ys) : − select(X,Ys,Ys1), selects(Xs,Ys1).

selects([],Ys).

Observations

1 members/2 ignores the multiplicity of elements

2 members/2 terminates iff 1st argument is complete

3 the first restriction is lifted, the second altered with selects/2

4 selects/2 strongly normalises iff 2nd argument is complete; weakly
normalises iff at least one argument is complete

GM (Department of Computer Science @ UIBK) Logic Programming 92/1

Recursive Programming (ongoing)

Example (Xs is a submultiset of Ys)

members([X|Xs],Ys) : − member(X,Ys), members(Xs,Ys).

members([],Ys).

Example (Xs is a subset of Ys)

selects([X|Xs],Ys) : − select(X,Ys,Ys1), selects(Xs,Ys1).

selects([],Ys).

Observations

1 members/2 ignores the multiplicity of elements

2 members/2 terminates iff 1st argument is complete

3 the first restriction is lifted, the second altered with selects/2

4 selects/2 strongly normalises iff 2nd argument is complete; weakly
normalises iff at least one argument is complete

GM (Department of Computer Science @ UIBK) Logic Programming 92/1

Recursive Programming (ongoing)

Example (Xs is a submultiset of Ys)

members([X|Xs],Ys) : − member(X,Ys), members(Xs,Ys).

members([],Ys).

Example (Xs is a subset of Ys)

selects([X|Xs],Ys) : − select(X,Ys,Ys1), selects(Xs,Ys1).

selects([],Ys).

Observations

1 members/2 ignores the multiplicity of elements

2 members/2 terminates iff 1st argument is complete

3 the first restriction is lifted, the second altered with selects/2

4 selects/2 strongly normalises iff 2nd argument is complete; weakly
normalises iff at least one argument is complete

GM (Department of Computer Science @ UIBK) Logic Programming 92/1

Recursive Programming (ongoing)

Example

% no doub l e s (Xs , Ys) <−−
% Ys i s the l i s t ob t a i n ed by removing d u p l i c a t e
% e l ement s from the l i s t Xs

Example

non member(X,[Y|Ys]) : − dif(X,Y), non member(X,Ys).

non member(X,[]).

no doubles([X|Xs],Ys) : −
member(X,Xs), no doubles(Xs,Ys).

no doubles([X|Xs],[X|Ys]) : −
non member(X,Xs), no doubles(Xs,Ys).

no doubles([],[]).

GM (Department of Computer Science @ UIBK) Logic Programming 93/1

Recursive Programming (ongoing)

Example

% no doub l e s (Xs , Ys) <−−
% Ys i s the l i s t ob t a i n ed by removing d u p l i c a t e
% e l ement s from the l i s t Xs

Example

non member(X,[Y|Ys]) : − dif(X,Y), non member(X,Ys).

non member(X,[]).

no doubles([X|Xs],Ys) : −
member(X,Xs), no doubles(Xs,Ys).

no doubles([X|Xs],[X|Ys]) : −
non member(X,Xs), no doubles(Xs,Ys).

no doubles([],[]).

GM (Department of Computer Science @ UIBK) Logic Programming 93/1

Recursive Programming (ongoing)

Example

% no doub l e s (Xs , Ys) <−−
% Ys i s the l i s t ob t a i n ed by removing d u p l i c a t e
% e l ement s from the l i s t Xs

Example

non member(X,[Y|Ys]) : − dif(X,Y), non member(X,Ys).

non member(X,[]).

no doubles([X|Xs],Ys) : −
member(X,Xs), no doubles(Xs,Ys).

no doubles([X|Xs],[X|Ys]) : −
non member(X,Xs), no doubles(Xs,Ys).

no doubles([],[]).

GM (Department of Computer Science @ UIBK) Logic Programming 93/1

Recursive Programming (ongoing)

Built-in Predicates for List Manipulation

• append/3

• member/2

• last/2

?- last([a,b,c,d],X).

?- last(X,a).

X = d

X = [a] ;

X = [G324,a] ;

X = [G324, G327,a]

• reverse/2

?- reverse([a,b,c,d],X).

X = [d,c,b,a]

• select/3

?- select(b,[a,b,c,d],X).

?- select(b,[a,b,c,b,d],X).

X = [a,c,d]

X = [a,c,b,d]

• length/2

?- length([a,b,c,d],X).

X = 4

GM (Department of Computer Science @ UIBK) Logic Programming 94/1

Recursive Programming (ongoing)

Built-in Predicates for List Manipulation

• append/3

• member/2

• last/2

?- last([a,b,c,d],X).

?- last(X,a).

X = d

X = [a] ;

X = [G324,a] ;

X = [G324, G327,a]
• reverse/2

?- reverse([a,b,c,d],X).

X = [d,c,b,a]

• select/3

?- select(b,[a,b,c,d],X).

?- select(b,[a,b,c,b,d],X).

X = [a,c,d]

X = [a,c,b,d]

• length/2

?- length([a,b,c,d],X).

X = 4

GM (Department of Computer Science @ UIBK) Logic Programming 94/1

Recursive Programming (ongoing)

Built-in Predicates for List Manipulation

• append/3

• member/2

• last/2

?- last([a,b,c,d],X). ?- last(X,a).

X = d

X = [a] ;

X = [G324,a] ;

X = [G324, G327,a]
• reverse/2

?- reverse([a,b,c,d],X).

X = [d,c,b,a]

• select/3

?- select(b,[a,b,c,d],X).

?- select(b,[a,b,c,b,d],X).

X = [a,c,d]

X = [a,c,b,d]

• length/2

?- length([a,b,c,d],X).

X = 4

GM (Department of Computer Science @ UIBK) Logic Programming 94/1

Recursive Programming (ongoing)

Built-in Predicates for List Manipulation

• append/3

• member/2

• last/2

?- last([a,b,c,d],X). ?- last(X,a).

X = d X = [a]

;

X = [G324,a] ;

X = [G324, G327,a]
• reverse/2

?- reverse([a,b,c,d],X).

X = [d,c,b,a]

• select/3

?- select(b,[a,b,c,d],X).

?- select(b,[a,b,c,b,d],X).

X = [a,c,d]

X = [a,c,b,d]

• length/2

?- length([a,b,c,d],X).

X = 4

GM (Department of Computer Science @ UIBK) Logic Programming 94/1

Recursive Programming (ongoing)

Built-in Predicates for List Manipulation

• append/3

• member/2

• last/2

?- last([a,b,c,d],X). ?- last(X,a).

X = d X = [a] ;

X = [G324,a]

;

X = [G324, G327,a]
• reverse/2

?- reverse([a,b,c,d],X).

X = [d,c,b,a]

• select/3

?- select(b,[a,b,c,d],X).

?- select(b,[a,b,c,b,d],X).

X = [a,c,d]

X = [a,c,b,d]

• length/2

?- length([a,b,c,d],X).

X = 4

GM (Department of Computer Science @ UIBK) Logic Programming 94/1

Recursive Programming (ongoing)

Built-in Predicates for List Manipulation

• append/3

• member/2

• last/2

?- last([a,b,c,d],X). ?- last(X,a).

X = d X = [a] ;

X = [G324,a] ;

X = [G324, G327,a]

• reverse/2

?- reverse([a,b,c,d],X).

X = [d,c,b,a]

• select/3

?- select(b,[a,b,c,d],X).

?- select(b,[a,b,c,b,d],X).

X = [a,c,d]

X = [a,c,b,d]

• length/2

?- length([a,b,c,d],X).

X = 4

GM (Department of Computer Science @ UIBK) Logic Programming 94/1

Recursive Programming (ongoing)

Built-in Predicates for List Manipulation

• append/3

• member/2

• last/2

?- last([a,b,c,d],X). ?- last(X,a).

X = d X = [a] ;

X = [G324,a] ;

X = [G324, G327,a]
• reverse/2

?- reverse([a,b,c,d],X).

X = [d,c,b,a]

• select/3

?- select(b,[a,b,c,d],X).

?- select(b,[a,b,c,b,d],X).

X = [a,c,d]

X = [a,c,b,d]

• length/2

?- length([a,b,c,d],X).

X = 4

GM (Department of Computer Science @ UIBK) Logic Programming 94/1

Recursive Programming (ongoing)

Built-in Predicates for List Manipulation

• append/3

• member/2

• last/2

?- last([a,b,c,d],X). ?- last(X,a).

X = d X = [a] ;

X = [G324,a] ;

X = [G324, G327,a]
• reverse/2

?- reverse([a,b,c,d],X).

X = [d,c,b,a]

• select/3

?- select(b,[a,b,c,d],X).

?- select(b,[a,b,c,b,d],X).

X = [a,c,d]

X = [a,c,b,d]

• length/2

?- length([a,b,c,d],X).

X = 4

GM (Department of Computer Science @ UIBK) Logic Programming 94/1

Recursive Programming (ongoing)

Built-in Predicates for List Manipulation

• append/3

• member/2

• last/2

?- last([a,b,c,d],X). ?- last(X,a).

X = d X = [a] ;

X = [G324,a] ;

X = [G324, G327,a]
• reverse/2

?- reverse([a,b,c,d],X).

X = [d,c,b,a]

• select/3

?- select(b,[a,b,c,d],X). ?- select(b,[a,b,c,b,d],X).

X = [a,c,d] X = [a,c,b,d]

• length/2

?- length([a,b,c,d],X).

X = 4

GM (Department of Computer Science @ UIBK) Logic Programming 94/1

Recursive Programming (ongoing)

Built-in Predicates for List Manipulation

• append/3

• member/2

• last/2

?- last([a,b,c,d],X). ?- last(X,a).

X = d X = [a] ;

X = [G324,a] ;

X = [G324, G327,a]
• reverse/2

?- reverse([a,b,c,d],X).

X = [d,c,b,a]

• select/3

?- select(b,[a,b,c,d],X). ?- select(b,[a,b,c,b,d],X).

X = [a,c,d] X = [a,c,b,d]

• length/2

?- length([a,b,c,d],X).

X = 4

GM (Department of Computer Science @ UIBK) Logic Programming 94/1

Incomplete Data Structures

Incomplete Data Structures

Observation

given a list [1,2,3] it can be represented as the difference of two lists

1 [1,2,3] = [1,2,3] \ []

2 [1,2,3] = [1,2,3,4,5] \ [4,5]

3 [1,2,3] = [1,2,3,8] \ [8]

4 [1,2,3] = [1,2,3|Xs] \ Xs

Definition

the difference of two lists is denotes as As \ Bs and called difference list

Example

append dl(Xs \ Ys, Ys \ Zs, Xs \ Zs).

GM (Department of Computer Science @ UIBK) Logic Programming 95/1

Incomplete Data Structures

Incomplete Data Structures

Observation

given a list [1,2,3] it can be represented as the difference of two lists

1 [1,2,3] = [1,2,3] \ []

2 [1,2,3] = [1,2,3,4,5] \ [4,5]

3 [1,2,3] = [1,2,3,8] \ [8]

4 [1,2,3] = [1,2,3|Xs] \ Xs

Definition

the difference of two lists is denotes as As \ Bs and called difference list

Example

append dl(Xs \ Ys, Ys \ Zs, Xs \ Zs).

GM (Department of Computer Science @ UIBK) Logic Programming 95/1

Incomplete Data Structures

Incomplete Data Structures

Observation

given a list [1,2,3] it can be represented as the difference of two lists

1 [1,2,3] = [1,2,3] \ []

2 [1,2,3] = [1,2,3,4,5] \ [4,5]

3 [1,2,3] = [1,2,3,8] \ [8]

4 [1,2,3] = [1,2,3|Xs] \ Xs

Definition

the difference of two lists is denotes as As \ Bs and called difference list

Example

append dl(Xs \ Ys, Ys \ Zs, Xs \ Zs).

GM (Department of Computer Science @ UIBK) Logic Programming 95/1

Incomplete Data Structures

Incomplete Data Structures

Observation

given a list [1,2,3] it can be represented as the difference of two lists

1 [1,2,3] = [1,2,3] \ []

2 [1,2,3] = [1,2,3,4,5] \ [4,5]

3 [1,2,3] = [1,2,3,8] \ [8]

4 [1,2,3] = [1,2,3|Xs] \ Xs

Definition

the difference of two lists is denotes as As \ Bs and called difference list

Example

append dl(Xs \ Ys, Ys \ Zs, Xs \ Zs).

GM (Department of Computer Science @ UIBK) Logic Programming 95/1

Incomplete Data Structures

Incomplete Data Structures

Observation

given a list [1,2,3] it can be represented as the difference of two lists

1 [1,2,3] = [1,2,3] \ []

2 [1,2,3] = [1,2,3,4,5] \ [4,5]

3 [1,2,3] = [1,2,3,8] \ [8]

4 [1,2,3] = [1,2,3|Xs] \ Xs

Definition

the difference of two lists is denotes as As \ Bs and called difference list

Example

append dl(Xs \ Ys, Ys \ Zs, Xs \ Zs).

GM (Department of Computer Science @ UIBK) Logic Programming 95/1

Incomplete Data Structures

Incomplete Data Structures

Observation

given a list [1,2,3] it can be represented as the difference of two lists

1 [1,2,3] = [1,2,3] \ []

2 [1,2,3] = [1,2,3,4,5] \ [4,5]

3 [1,2,3] = [1,2,3,8] \ [8]

4 [1,2,3] = [1,2,3|Xs] \ Xs

Definition

the difference of two lists is denotes as As \ Bs and called difference list

Example

append dl(Xs \ Ys, Ys \ Zs, Xs \ Zs).

GM (Department of Computer Science @ UIBK) Logic Programming 95/1

Incomplete Data Structures

Application of Difference Lists

Example

reverse(Xs,Ys) :- reverse dl(Xs, Ys \ []).

reverse dl([], Xs \ Xs).

reverse dl([X|Xs], Ys \ Zs) :-

reverse dl(Xs, Ys \ [X | Zs]).

Example

quicksort(Xs,Ys) :- quicksort dl(Xs, Ys \ []).

quicksort dl([X|Xs], Ys \ Zs) :-

partition(Xs,X,Littles, Bigs),

quicksort dl(Littles,Ys \ [X|Ys1]),

quicksort dl(Bigs,Ys1 \ Zs).

quicksort dl([],Xs \ Xs).

GM (Department of Computer Science @ UIBK) Logic Programming 96/1

Incomplete Data Structures

Application of Difference Lists

Example

reverse(Xs,Ys) :- reverse dl(Xs, Ys \ []).

reverse dl([], Xs \ Xs).

reverse dl([X|Xs], Ys \ Zs) :-

reverse dl(Xs, Ys \ [X | Zs]).

Example

quicksort(Xs,Ys) :- quicksort dl(Xs, Ys \ []).

quicksort dl([X|Xs], Ys \ Zs) :-

partition(Xs,X,Littles, Bigs),

quicksort dl(Littles,Ys \ [X|Ys1]),

quicksort dl(Bigs,Ys1 \ Zs).

quicksort dl([],Xs \ Xs).

GM (Department of Computer Science @ UIBK) Logic Programming 96/1

Incomplete Data Structures

Observations
• difference lists are effective if independently different sections of a

list are built, which are then concatenated

• the separation operator \ simplifies reading, but can be eliminated:
“As \ Bs” → “As , Bs”

• the explicit constructor should be removed, if time or space
efficiency is an issue

More Observations

• the tail Bs of a difference list acts like a pointer to the end of the
first list As

• this works as As is an incomplete list

• thus we represent a concrete list as the difference of two incomplete
data structures

• generalises to other recursive data types

GM (Department of Computer Science @ UIBK) Logic Programming 97/1

Incomplete Data Structures

Observations
• difference lists are effective if independently different sections of a

list are built, which are then concatenated

• the separation operator \ simplifies reading, but can be eliminated:
“As \ Bs” → “As , Bs”

• the explicit constructor should be removed, if time or space
efficiency is an issue

More Observations

• the tail Bs of a difference list acts like a pointer to the end of the
first list As

• this works as As is an incomplete list

• thus we represent a concrete list as the difference of two incomplete
data structures

• generalises to other recursive data types

GM (Department of Computer Science @ UIBK) Logic Programming 97/1

Incomplete Data Structures

Observations
• difference lists are effective if independently different sections of a

list are built, which are then concatenated

• the separation operator \ simplifies reading, but can be eliminated:
“As \ Bs” → “As , Bs”

• the explicit constructor should be removed, if time or space
efficiency is an issue

More Observations

• the tail Bs of a difference list acts like a pointer to the end of the
first list As

• this works as As is an incomplete list

• thus we represent a concrete list as the difference of two incomplete
data structures

• generalises to other recursive data types

GM (Department of Computer Science @ UIBK) Logic Programming 97/1

Incomplete Data Structures

Observations
• difference lists are effective if independently different sections of a

list are built, which are then concatenated

• the separation operator \ simplifies reading, but can be eliminated:
“As \ Bs” → “As , Bs”

• the explicit constructor should be removed, if time or space
efficiency is an issue

More Observations
• the tail Bs of a difference list acts like a pointer to the end of the

first list As

• this works as As is an incomplete list

• thus we represent a concrete list as the difference of two incomplete
data structures

• generalises to other recursive data types

GM (Department of Computer Science @ UIBK) Logic Programming 97/1

Incomplete Data Structures

Observations
• difference lists are effective if independently different sections of a

list are built, which are then concatenated

• the separation operator \ simplifies reading, but can be eliminated:
“As \ Bs” → “As , Bs”

• the explicit constructor should be removed, if time or space
efficiency is an issue

More Observations
• the tail Bs of a difference list acts like a pointer to the end of the

first list As

• this works as As is an incomplete list

• thus we represent a concrete list as the difference of two incomplete
data structures

• generalises to other recursive data types

GM (Department of Computer Science @ UIBK) Logic Programming 97/1

Incomplete Data Structures

Observations
• difference lists are effective if independently different sections of a

list are built, which are then concatenated

• the separation operator \ simplifies reading, but can be eliminated:
“As \ Bs” → “As , Bs”

• the explicit constructor should be removed, if time or space
efficiency is an issue

More Observations
• the tail Bs of a difference list acts like a pointer to the end of the

first list As

• this works as As is an incomplete list

• thus we represent a concrete list as the difference of two incomplete
data structures

• generalises to other recursive data types

GM (Department of Computer Science @ UIBK) Logic Programming 97/1

Incomplete Data Structures

Observations
• difference lists are effective if independently different sections of a

list are built, which are then concatenated

• the separation operator \ simplifies reading, but can be eliminated:
“As \ Bs” → “As , Bs”

• the explicit constructor should be removed, if time or space
efficiency is an issue

More Observations
• the tail Bs of a difference list acts like a pointer to the end of the

first list As

• this works as As is an incomplete list

• thus we represent a concrete list as the difference of two incomplete
data structures

• generalises to other recursive data types

GM (Department of Computer Science @ UIBK) Logic Programming 97/1

Incomplete Data Structures

Difference-structures

Example

convert the sum (a + b) + (c + d) into (a + (b + (c + (d + 0))))

Definition

we make use of difference-sums: E1++E2, where E1, E2 are incomplete;
the empty sum is denoted by 0

Example

normalise(Exp,Norm) :- normalise ds(Exp,Norm ++ 0).

normalise ds(A+B, Norm ++ Norm0) :-

normalise ds(A, Norm ++ NormB),

normalise ds(B, NormB ++ Norm0).

normalise ds(A,(A + Norm) ++ Norm) :-

constant(A).

GM (Department of Computer Science @ UIBK) Logic Programming 98/1

Incomplete Data Structures

Difference-structures

Example

convert the sum (a + b) + (c + d) into (a + (b + (c + (d + 0))))

Definition

we make use of difference-sums: E1++E2, where E1, E2 are incomplete;
the empty sum is denoted by 0

Example

normalise(Exp,Norm) :- normalise ds(Exp,Norm ++ 0).

normalise ds(A+B, Norm ++ Norm0) :-

normalise ds(A, Norm ++ NormB),

normalise ds(B, NormB ++ Norm0).

normalise ds(A,(A + Norm) ++ Norm) :-

constant(A).

GM (Department of Computer Science @ UIBK) Logic Programming 98/1

Incomplete Data Structures

Difference-structures

Example

convert the sum (a + b) + (c + d) into (a + (b + (c + (d + 0))))

Definition

we make use of difference-sums: E1++E2, where E1, E2 are incomplete;
the empty sum is denoted by 0

Example

normalise(Exp,Norm) :- normalise ds(Exp,Norm ++ 0).

normalise ds(A+B, Norm ++ Norm0) :-

normalise ds(A, Norm ++ NormB),

normalise ds(B, NormB ++ Norm0).

normalise ds(A,(A + Norm) ++ Norm) :-

constant(A).

GM (Department of Computer Science @ UIBK) Logic Programming 98/1

Definite Clause Grammars

Context-Free Grammars

Definition

a grammar G is a tuple G = (V ,Σ,R, S), where

1 V finite set of variables (or nonterminals)

2 Σ alphabet, the terminal symbols, V ∩ Σ = ∅
3 R finite set of rules

4 S ∈ V the start symbol of G

a rule is a pair P → Q of words, such that P,Q ∈ (V ∪ Σ)∗ and there is
at least one variable in P

Definition

grammar G = (V ,Σ,R,S) is context-free, if ∀ rules P → Q:

1 P ∈ V

2 Q ∈ (V ∪ Σ)∗

GM (Department of Computer Science @ UIBK) Logic Programming 99/1

Definite Clause Grammars

Context-Free Grammars

Definition

a grammar G is a tuple G = (V ,Σ,R, S), where

1 V finite set of variables (or nonterminals)

2 Σ alphabet, the terminal symbols, V ∩ Σ = ∅
3 R finite set of rules

4 S ∈ V the start symbol of G

a rule is a pair P → Q of words, such that P,Q ∈ (V ∪ Σ)∗ and there is
at least one variable in P

Definition

grammar G = (V ,Σ,R,S) is context-free, if ∀ rules P → Q:

1 P ∈ V

2 Q ∈ (V ∪ Σ)∗

GM (Department of Computer Science @ UIBK) Logic Programming 99/1

Definite Clause Grammars

Context-Free Grammars

Definition

a grammar G is a tuple G = (V ,Σ,R, S), where

1 V finite set of variables (or nonterminals)

2 Σ alphabet, the terminal symbols, V ∩ Σ = ∅
3 R finite set of rules

4 S ∈ V the start symbol of G

a rule is a pair P → Q of words, such that P,Q ∈ (V ∪ Σ)∗ and there is
at least one variable in P

Definition

grammar G = (V ,Σ,R,S) is context-free, if ∀ rules P → Q:

1 P ∈ V

2 Q ∈ (V ∪ Σ)∗

GM (Department of Computer Science @ UIBK) Logic Programming 99/1

Definite Clause Grammars

Example

sentence → noun phrase, verb phrase.

noun phrase → determiner, noun phrase2.

noun phrase → noun phrase2.

noun phrase2 → adjective, noun phrase2.

noun phrase2 → noun.

verb phrase → verb, noun phrase.

verb phrase → verb.

determiner → [the].

determiner → [a].

noun → [pie-plate].

noun → [surprise].

adjective → [decorated].

verb → [contains].

sentence
∗⇒ ‘‘the decorated pie-plate contains a surprise’’

GM (Department of Computer Science @ UIBK) Logic Programming 100/1

Definite Clause Grammars

Example

sentence(S \ S0) :- noun phrase(S \ S1), verb phrase(S1 \ S0).

noun phrase(S \ S0) :-

determiner(S \ S1), noun phrase2(S1 \ S0).

noun phrase(S) :- noun phrase2(S).

noun phrase2(S \ S0) :-

adjective(S \ S1), noun phrase2(S1 \ S0).

noun phrase2(S) :- noun(S).

verb phrase(S \ S0) :- verb(S \ S1), noun phrase(S1 \ S0).

verb phrase(S) :- verb(S).

determiner([the|S] \ S).

determiner([a|S] \ S).

noun([pie-plate|S] \ S).

noun([surprise|S] \ S).

adjective([decorated|S] \ S).

verb([contains|S] \ S).

GM (Department of Computer Science @ UIBK) Logic Programming 101/1

Definite Clause Grammars

Extension: Add Parsetree

Example

sentence(sentence(N,V), S \ S0) :-

noun phrase(N, S \ S1),

verb phrase(V, S1 \ S0).

Example (Definite Clause Grammars)

sentence(sentence(N,V)) → noun phrase(N), verb phrase(V).

noun phrase(np(D,N)) → determiner(D), noun phrase2(N).

noun phrase(np(N)) → noun phrase2(N).

noun phrase2(np2(A,N)) → adjective(A), noun phrase2(N).

noun phrase2(np2(N)) → noun(N).

verb phrase(vp(V,N)) → verb(V), noun phrase(N).

verb phrase(vp(V)) → verb(V).

GM (Department of Computer Science @ UIBK) Logic Programming 102/1

Definite Clause Grammars

Extension: Add Parsetree

Example

sentence(sentence(N,V), S \ S0) :-

noun phrase(N, S \ S1),

verb phrase(V, S1 \ S0).

Example (Definite Clause Grammars)

sentence(sentence(N,V)) → noun phrase(N), verb phrase(V).

noun phrase(np(D,N)) → determiner(D), noun phrase2(N).

noun phrase(np(N)) → noun phrase2(N).

noun phrase2(np2(A,N)) → adjective(A), noun phrase2(N).

noun phrase2(np2(N)) → noun(N).

verb phrase(vp(V,N)) → verb(V), noun phrase(N).

verb phrase(vp(V)) → verb(V).

GM (Department of Computer Science @ UIBK) Logic Programming 102/1

