ogic

Logic Programming

Georg Moser

Department of Computer Science @ UIBK

Winter 2016

[Overview]
Outline of the Lecture

introduction, basic constructs, logic foundations, unification, semantics

Monotone Logic Programs
database and recursive programming, termination, complexity }

Incomplete Data Structures and Constraints

incomplete data structures, definite clause grammars, constraint logic pro-
gramming, answer set programming

semantics (revisted), correctness proofs, meta-logical predicates, cuts non-
deterministic programming, efficient programs, complexity

Full Prolog }

GM (Department of Computer Science @ Ul Logic Programming 89/1

Summary of Last Lecture

Summary of Last Lecture
Example (design as function)

delete ([X]|Xs],X,Ys) :—
delete (Xs,X,Ys).
delete ([X|Xs],Z,[X|Ys]) :—
dif (X,2),
delete(Xs,Z,Ys).
delete ([].,-X,[]).

Example (use as relation)

delete2 ([X]|Xs] ,X,Ys) :—
delete2 (Xs,X,Ys).
delete2 ([X]|Xs],Z,[X]Ys]) :—
delete2(Xs,Z,Ys).
delete2 ([],-X,[]).

GM (Department of Computer Science @ Ul Logic Programming 88/1

SWI-Prolog

[zid-gpl.uibk.ac.at] swipl

Welcome to SWI-Prolog (Multi-threaded, 64 bits, Version 7.2.3)
Copyright (c) 1990-2009 University of Amsterdam.

SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to redistribute it under certain conditions.
Please visit http://www.swi-prolog.org for details.

For help, use 7- help(Topic). or 7- apropos(Word) .

?-

GM (Department of Computer Science @ Ul Logic Programming 90/1

http://cl-informatik.uibk.ac.at

SWI-Prolog Emacs Mode Example (Xs is a subset of Ys)

members ([X|Xs],Ys) : — member(X,Ys), members(Xs,Ys).
members ([],Ys).

Bruda's Prolog Mode

goto http://bruda.ca/emacs/prolog_mode_for_emacs

download prolog.el, compile and put into sub-directory site-lisp Example (Xs is a subset of Ys)

put the following into .emacs: selects([X|Xs],Ys) : — select(X,Ys,Ysl), selects(Xs,Ysl).

selects([],Ys).
(autoload 'run—prolog "prolog”

"Start.a.Prolog.sub—process.” t)
(autoload ’'prolog—mode " prolog” .
"Major_mode_for_editing .Prolog_.programs.” t) Observations
setq prolog—system ’'swi . T
Esetq Auto_mode—alist) members/2 ignores the multiplicity of elements
(cons (cons "\\.pl" 'prolog—mode) auto—mode—alist))

members/2 terminates iff 1st argument is complete
the first restriction is lifted, the second altered with selects/2

selects/2 strongly normalises iff 2nd argument is complete; weakly
normalises iff at least one argument is complete

GM (Department of Computer Science @ Ul Logic Programming GM (Department of Computer Science @ Ul Logic Programming

Built-in Predicates for List Manipulation
Example « append/3
% no_doubles(Xs,Ys) <— e member/2
. . : . . .
% Ys is the list obta.|ned by removing duplicate o last/2
% elements from the list Xs
?- last([a,b,c,d],X). 7- last(X,a).
X=4d X = [a] ;
X = [G324,a] ;
X = [G324, G327,al
Example e reverse/2
non_member (X, [Y|Ys]) : — dif(X,Y), non member(X,Ys). ?- reverse([a,b,c,d],X).
non_member (X, [1) . X = [d,c,b,al
no_doubles([X|Xs],Ys) : — * select/3
member (X,Xs), no_doubles(Xs,Ys). ?7- select(b, [a,b,c,d],X). 7- select(b, [a,b,c,b,d],X).
no_doubles([X|Xs], [X|Ys]) : — X = [a,c,d] X = [a,c,b,d]
non _member (X,Xs), no_doubles(Xs,Ys). e length/2
no_doubles([], []). ?- length([a,b,c,d],X).
X =4

GM (Department of Computer Science @ Ul Logic Programming 93/1 GM (Department of Computer Science @ Ul Logic Programming 94/1

http://bruda.ca/emacs/prolog_mode_for_emacs

Incomplete Data Structures

Incomplete Data Structures

Observation
given a list [1,2,3] it can be represented as the difference of two lists

[1,2,3] = [1,2,3] \ (]
[1,2,3] = [1,2,3,4,5] \ [4,5]
[1,2,3] = [1,2,3,8] \ [8&]
(1,2,3] = [1,2,3]Xs] \ Xs
Definition

the difference of two lists is denotes as As \ Bs and called difference list

Example
append dl(Xs \ Ys, Ys \ Zs, Xs \ Zs).

Logic Programming

GM (Department of Computer Science @ Ul

Incomplete Data Structures

Application of Difference Lists

Example

reverse(Xs,Ys) :- reversedl(Xs, Ys \ [1).
reverse d1([], Xs \ Xs).
reverse d1([X|Xs], Ys \ Zs) :-

reverse d1(Xs, Ys \ [X | zs]).

Example

quicksort(Xs,Ys) :- quicksortdl(Xs, Ys \ [1).
quicksort_dl1([X|Xs], Ys \ Zs) :-
partition(Xs,X,Littles, Bigs),
quicksort_dl(Littles,Ys \ [X|Ys1]),
quicksort_dl(Bigs,Ysl \ Zs).
quicksort_dl([],Xs \ Xs).

GM (Department of Computer Science @ Ul Logic Programming

Incomplete Data Structures

Observations
e difference lists are effective if independently different sections of a
list are built, which are then concatenated
e the separation operator \ simplifies reading, but can be eliminated:
“As \ Bs" — “As, Bs”
e the explicit constructor should be removed, if time or space
efficiency is an issue

More Observations

e the tail Bs of a difference list acts like a pointer to the end of the
first list As

e this works as As is an incomplete list

e thus we represent a concrete list as the difference of two incomplete
data structures

e generalises to other recursive data types

GM (Department of Computer Science @ Ul Logic Programming

97/1

Incomplete Data Structures

Difference-structures

Example
convert the sum (a+ b) + (¢ + d) into (a+ (b+ (¢ + (d +0))))

Definition
we make use of difference-sums: E1++E2, where E1, E2 are incomplete;
the empty sum is denoted by 0

Example

normalise(Exp,Norm) :- normalise_ds(Exp,Norm ++ 0).

normalise_ds(A+B, Norm ++ NormO) :-
normalise_ds(A, Norm ++ NormB),
normalise_ds(B, NormB ++ NormO).

normalise_ds(A, (A + Norm) ++ Norm) :-
constant (A) .

GM (Department of Computer Science @ Ul Logic Programming

98/1

Definite Clause Grammars

Context-Free Grammars
Definition
a grammar G is a tuple G = (V,X,R,S), where
V finite set of variables (or nonterminals)
> alphabet, the terminal symbols, VNYX =g
R finite set of rules
@A S €V the start symbol of G

a rule is a pair P — Q of words, such that P, Q € (V U X)* and there is
at least one variable in P

Definition

grammar G = (V,X,R,S) is context-free, if ¥ rules P — Q:
PeV
Qe (Vux)

Logic Programming

GM (Department of Computer Science @ Ul

Definite Clause Grammars

Example

sentence — noun_phrase, verb_phrase.

noun_phrase — determiner, noun_phrase?2.
noun_phrase — noun_phrase2.

noun_phrase2 — adjective, noun_phrase2.
noun_phrase2 — noun.

verb_phrase — verb, noun_phrase.
verb_phrase — verb.

determiner — [the].
determiner — [a].

noun — [pie-plate].
noun — [surprise].

adjective — [decorated].

verb — [contains].

sentence = ‘‘the decorated pie-plate contains a surprise’’

GM (Department of Computer Science @ Ul Logic Programming

Definite Clause Grammars

Example
sentence(S \ S0) :- noun phrase(S \ S1), verb_phrase(S1 \ S0).

noun phrase(S \ S0) :-

determiner (S \ S1), noun phrase2(S1 \ S0).
noun_phrase(S) :- noun_phrase2(S).
noun _phrase2(S \ S0) :-

adjective(S \ S1), noun phrase2(S1 \ SO).
noun_phrase2(S) :- noun(S).
verb_phrase(S \ S0) :- verb(S \ S1), noun phrase(S1 \ S0).
verb_phrase(S) :- verb(S).
determiner ([the|S] \ S).
determiner([alS] \ S).
noun([pie-platelS] \ S).
noun([surpriselS] \ S).
adjective([decorated|S] \ S).
verb([contains|S] \ S).

Logic Programming

GM (Department of Computer Science @ Ul

Definite Clause Grammars

Extension: Add Parsetree

Example

sentence (sentence(N,V), S \ S0) :-
noun _phrase(N, S \ S1),
verb_phrase(V, S1 \ S0).

Example (Definite Clause Grammars)

sentence (sentence(N,V)) — noun phrase(N), verb_phrase(V).
noun_phrase(np(D,N)) — determiner(D), noun_phrase2(N).
noun_phrase(np(N)) — noun_phrase2(N).
noun_phrase2(np2(A,N)) — adjective(A), noun_phrase2(N).
noun_phrase2(np2(N)) — noun(N).

verb_phrase(vp(V,N)) — verb(V), noun_phrase(N).
verb_phrase(vp(V)) — verb(V).

GM (Department of Computer Science @ Ul Logic Programming

102/1

