ogic

Logic Programming

Georg Moser

Department of Computer Science @ UIBK

Winter 2016

http://cl-informatik.uibk.ac.at

Summary of Last Lecture

Summary of Last Lecture

Example

ismap([region(a,A,[B,C,D]), region(b,B,[A,C,E]),
region(c,C, [A,B,D,E,F]), region(d,D,[A,C,F]),
region(e,E, [B,C,F]), region(f,F,[C,D,E])]).

coloured map([Region|Regions], Colours) :-—
coloured_region(Region,Colours),
coloured map(Regions,Colours).
coloured map([],Colours).

coloured_region(region(Name,Colour,Neighbours), Colours) :-
select(Colour,Colours,Coloursl),
sublist_of (Neighbours,Coloursl).

test_colour(Map) :-
is_map(Map),
is_colours(Colours),
coloured map (Map,Colours) .

GM (Department of Computer Science @ Ul Logic Programming

ROVEIVISHERS S
Outline of the Lecture

introduction, basic constructs, logic foundations, unification, semantics

Monotone Logic Programs
database and recursive programming, termination, complexity

incomplete data structures, definite clause grammars, constraint logic pro-

Incomplete Data Structures and Constraints
gramming, answer set programming J

Full Prolog

semantics (revisited), correctness proofs, meta-logical predicates, cuts non-
deterministic programming, efficient programs, complexity

GM (Department of Computer Science @ Ul Logic Programming

ROVEIVISHERS S
Outline of the Lecture

introduction, basic constructs, logic foundations, unification, semantics

Monotone Logic Programs
database and recursive programming, termination, complexity

incomplete data structures, definite clause grammars, constraint logic pro-

Incomplete Data Structures and Constraints
gramming, answer set programming J

Full Prolog

semantics (revisited), correctness proofs, meta-logical predicates, cuts non-
deterministic programming, efficient programs, complexity

GM (Department of Computer Science @ Ul Logic Programming

DCG Revisited

Example (parse tree)

is_expr(node(1,[])). % tree elem
is_expr(node(+,[ExprL,ExprR])) :— % operation
is_expr (ExprL),
is_expr (ExprR).

expr(node(1,[])) —>
nyn
expr(node(+,[Exprl, Expr2])) —>
" (H .
expr(Exprl),
"
expr(Expr2),
”)H .

:— phrase(Expr,” (1+1)").
:/— Xs=[_-,_,_,_], phrase(expr,Xs).
:/—& phrase(expr,Xs), false.

GM (Department of Computer Science @ Ul Logic Programming

DCG Revisited

Example

:— phrase(seq([1,2,3,4]),Xs), Xs = [1,2,3,4].
:— phrase(seq(‘abcd '), ‘abcd).

invse[c}([]) —> % aka reverse
invseq ([C|Cs]) —>

invseq (Cs),

[C].

:— phrase(invseq(‘abcd ‘), Xs), Xs = ‘dcba ‘.

GM (Department of Computer Science @ Ul Logic Programming

Example

palindrom —>
seq (Xs).,
invseq (Xs).
palindrom —>
seq(Xs),
[-1.
invseq (Xs).

:— phrase(palindrom , ‘abba').

palindrom2 —> [].

palindrom2 —> [_].

palindrom2 —>
(X7,
palindrom?2 ,
[X].

GM (Department of Computer Science @ Ul Logic Programming

DCG Revisited

Example (genome sequencing)

base —> "A". % Adenin
base —> "C". % Cytosin
base —> "G". % Guanin
base —> "T". % Tymin

"o

basen —>
basen —> base, basen.

tandemrepeat (Alpha) —>
seq (Alpha), seq(Alpha),
{dif(Alpha ,[])}.

subseq_tandemrepeat (Alpha) —>
seq(-Prefix),
tandemrepeat (Alpha),
seq(-Suffix).

:— genom(Gen), phrase(subseq_tandemrepeat(Alpha),Gen),
Alpha="TGA".

GM (Department of Computer Science @ Ul Logic Programming

Termination Revisited

Example

numberpair(pair(X,Y)) :—
is_.number (X),
is_.number(Y).

o

)))-
= s(s(0)), B=5s(s(s(0))).

:— numberpair(pair(s(s

(s(0)).s(
%:— numberpair(pair(A,B)), A

GM (Department of Computer Science @ Ul Logic Programming

Termination Revisited

Example

numberpair(pair(X,Y)) :—
is_.number (X),
is_.number(Y).

:— numberpair(pair(s(s

(s(0)),s(0))).
%:— numberpair(pair(A,B)) =s

. A

Example

numberpairD (pair(X,Y)) :—
is_.number(Z),
plus(X,Y,Z).

:— numberpairD(pair(s(s(0)),s(0))).
:— numberpairD(pair(A,B)), A= s(s(0)), B=s(s(s(0))).

GM (Department of Computer Science @ Ul Logic Programming

Cryptarithmetic

Definition
e a cryptarithmetic problem is a puzzle in which each letter represents
a unique digit <9

e the object is to find the value of each letter

e first digit cannot be 0

GM (Department of Computer Science @ Ul Logic Programming

Cryptarithmetic

Definition
e a cryptarithmetic problem is a puzzle in which each letter represents
a unique digit <9

e the object is to find the value of each letter

e first digit cannot be 0

Example

SEND
MORE

MONEY

GM (Department of Computer Science @ Ul Logic Programming

Cryptarithmetic

Definition
e a cryptarithmetic problem is a puzzle in which each letter represents
a unique digit <9

e the object is to find the value of each letter

e first digit cannot be 0

Example

SEND
MORE

10NEY

GM (Department of Computer Science @ Ul Logic Programming

Cryptarithmetic

Definition
e a cryptarithmetic problem is a puzzle in which each letter represents
a unique digit <9

e the object is to find the value of each letter

e first digit cannot be 0

Example

SEND
10RE

10NEY

GM (Department of Computer Science @ Ul Logic Programming

Cryptarithmetic

Definition
e a cryptarithmetic problem is a puzzle in which each letter represents
a unique digit <9

e the object is to find the value of each letter

e first digit cannot be 0

Example

SEND
10RE

10NEY

GM (Department of Computer Science @ Ul Logic Programming

Cryptarithmetic

Definition
e a cryptarithmetic problem is a puzzle in which each letter represents
a unique digit <9

e the object is to find the value of each letter

e first digit cannot be 0

Example

9END
10RE

10NEY

GM (Department of Computer Science @ Ul Logic Programming

Cryptarithmetic

Definition
e a cryptarithmetic problem is a puzzle in which each letter represents
a unique digit <9

e the object is to find the value of each letter

e first digit cannot be 0

Example

9END
108 E

10NEY

GM (Department of Computer Science @ Ul Logic Programming

Cryptarithmetic

Definition
e a cryptarithmetic problem is a puzzle in which each letter represents
a unique digit <9

e the object is to find the value of each letter

e first digit cannot be 0

Example

95ND
1085

10NDBY

GM (Department of Computer Science @ Ul Logic Programming

Cryptarithmetic

Definition
e a cryptarithmetic problem is a puzzle in which each letter represents
a unique digit <9

e the object is to find the value of each letter

e first digit cannot be 0

Example

9567
1085

10652

GM (Department of Computer Science @ Ul Logic Programming

First Attempt

generate and test

solve ([[S,E,N,D] ,[M,0,R,E],[M,O,N,E,Y]]) :—
Digits = [D, E, M, N, O, R, S, Y],
Carries = [C1,C2,C3,C4],
selects(Digits, [0,1,2,3,4,5,6,7,8,9]),
members(Carries, [0,1]),

M == C4,
O+ 10 x C4 == S + M + C3,
N+ 10 = C3 == E + O + C2,
E+ 10 « C2 === N + R + C1,
Y + 10 « C1 == D + E,
M> 0, S> 0.

:— solve (X),

X=1[[9, 5 6,7, [1, 0 8 5], [L, 0, 6,5, 2]].

GM (Department of Computer Science @ Ul Logic Programming

An Abstract Problem

Discussion

very inefficient

7— time(solve(X)).

% 133,247,057 inferences,

% 7.635 CPU in 7.667 seconds (100% CPU, 17452690 Lips)
X=1[[9, 5 6, 7], [1, 0, 8, 5], [L, 0, 6, 5, 2]]

GM (Department of Computer Science @ Ul Logic Programming

An Abstract Problem

Discussion

very inefficient

7— time(solve(X)).

% 133,247,057 inferences ,

% 7.635 CPU in 7.667 seconds (100% CPU, 17452690 Lips)
X=1[[9, 5 6, 7], [L, 0,8, 5], [1, 0, 6,5, 2]]

explanation
e generate-and-test in it's purest form
e all guesses are performed before the constraints are checked

e arithmetic checks cannot deal with variables

GM (Department of Computer Science @ Ul Logic Programming

An Abstract Problem

Discussion

very inefficient

7— time(solve(X)).

% 133,247,057 inferences ,

% 7.635 CPU in 7.667 seconds (100% CPU, 17452690 Lips)
X=1[[9, 5 6, 7], [L, 0,8, 5], [1, 0, 6,5, 2]]

explanation
e generate-and-test in it's purest form
e all guesses are performed before the constraints are checked

e arithmetic checks cannot deal with variables

improvement
e move testing into generating

e destroys clean structure of program

GM (Department of Computer Science @ Ul Logic Programming

An Abstract Problem

Discussion

very inefficient

7— time(solve(X)).

% 133,247,057 inferences ,

% 7.635 CPU in 7.667 seconds (100% CPU, 17452690 Lips)
X=1[[9, 5 6, 7], [L, 0,8, 5], [1, 0, 6,5, 2]]

explanation
e generate-and-test in it's purest form
e all guesses are performed before the constraints are checked

e arithmetic checks cannot deal with variables

improvement
e move testing into generating

e destroys clean structure of program

e any other ideas?

GM (Department of Computer Science @ Ul Logic Programming

Constraint Logic Programming

Constraint Logic Programming

Definitions (CLP on finite domains)
e use module(library(clpfd)) loads the clpfd library

e Xs ins N .. M specifies that all values in Xs must be in the given
range

e all different(Xs) specifies that all values in Xs are different
e label(Xs) all variables in Xs are evaluated to become values

o #= #\= #> ... like the arithmetic comparison operators, but may
contain (constraint) variables

GM (Department of Computer Science @ Ul Logic Programming

Constraint Logic Programming

Constraint Logic Programming

Definitions (CLP on finite domains)
e use module(library(clpfd)) loads the clpfd library

e Xs ins N .. M specifies that all values in Xs must be in the given
range

e all different(Xs) specifies that all values in Xs are different
e label(Xs) all variables in Xs are evaluated to become values

o #= #\= #> ... like the arithmetic comparison operators, but may
contain (constraint) variables

standard approach
e load the library
e specify all constraints

e call 1label to start efficient computation of solutions

GM (Department of Computer Science @ Ul Logic Programming

Second Attempt

constraint logic program

solve ([[S,E,N,D] ,[M,0,R,E],[M,O,N,E,Y]]) :—
Digits = [D, E, M, N, O, R, S, VY],
Carries = [C1,C2,C3,C4],
Digits ins 0 .. 9, all_different(Digits),

Carries ins 0 .. 1,

M H#= C4,
O+ 10 =« C4#4&=S + M + C3,
N+ 10 = C3#&=E + O + C2,
E+ 10 « C2#&= N + R + C1,
Y + 10 = C1 =D + E,
M#> 0, S # 0,

GM (Department of Computer Science @ Ul Logic Programming

Constraint Logic Programming

Eight Queens

8 queens
queens(Xs) :— template(Xs),solution(Xs).

template ([1/.Y1,2/.Y2,3/.Y3,4/_Y4,
5/.Y5,6/.Y6,7/_.Y7,8/_Y8]).

solution ([]).

solution ([X/Y]|Others]) :—
solution (Others),
member (Y, [1,2,3,4,5,6,7,8]),
noattack (X/Y, Others).

noattack(-,[])-

noattack (X/Y,[X1/Y1|Others]) :—
Y =\= Y1,
Y1 - Y =\= X1 — X,
Y1 - Y =\=X - X1,
noattack (X/Y, Others).

GM (Department of Computer Science @ Ul Logic Programming

Constraint Logic Programming

Eight Queens

n-queens (using clp)

nqueens(N,Qs) :—
length (Qs,N),

Qs ins 1 .. N, all_different(Qs),

constraint_queens(Qs),

label (Qs).

constraint_queens ([]).

constraint_queens ([Q|Qs]) :—
noattack(Q,Qs,1),
constraint_queens(Qs).

noattack(_,[],-).
noattack (X,[Q|Qs],N) :—

X #\= QN,
X #\= QN,
M is N+1,

noattack (X, Qs,M).

GM (Department of Computer Science @ Ul Logic Programming

Constraint Logic Programming Sudoku

Definition
e Sudoku is a well-known logic puzzle; usually played on a 9 x 9 grid
V cells: cells € {1,...,9}

Y rows: all entries are different

V colums: all entries are different

V blocks: all entries are different

GM (Department of Computer Science @ Ul Logic Programming

Constraint Logic Programming Sudoku

Definition
e Sudoku is a well-known logic puzzle; usually played on a 9 x 9 grid
o V cells: cells € {1,...,9}
e Y rows: all entries are different
e YV colums: all entries are different

e VYV blocks: all entries are different

Main Loop (using clp)

sudoku (Puzzle) :—
show (Puzzle),
flatten (Puzzle, Cells),
Cells ins 1 .. 9,
rows(Puzzle),
cols(Puzzle),
blocks (Puzzle),
label (Cells),
show (Puzzle).

GM (Department of Computer Science @ Ul Logic Programming

Constraint Logic Programming Sudoku

auxiliary predicates
o flatten/2 flattens a list

e show/1 prints the current puzzle

GM (Department of Computer Science @ Ul Logic Programming

Constraint Logic Programming Sudoku

auxiliary predicates
o flatten/2 flattens a list

e show/1 prints the current puzzle

row/1

rows ([]) -
rows([R| s])
I dlfferent(R), rows(Rs).

GM (Department of Computer Science @ Ul Logic Programming

Constraint Logic Programming Sudoku

auxiliary predicates
o flatten/2 flattens a list

e show/1 prints the current puzzle

row/1

rows ([]) -
rows([R| s])
I dlfferent(R), rows(Rs).

row/1 (alternative)

rows(Rs) :— maplist(all_distinct ,Rs).

GM (Department of Computer Science @ Ul Logic Programming

Constraint Logic Programming Sudoku

cols/1
cols ([[]-1)-

cols ([

[X1|R1],

[X2|R2],

[X3|R3],

[X4|R4],

[X5|R5],

[X6|R6],

[X7|R7],

[X8|R8],

[X9[R9]T) :—
all_different ([X1,X2,X3,X4,X5,X6,X7,X8,X9]),
cols ([R1,R2,R3,R4,R5,R6,R7,R8,R9]).

GM (Department of Computer Science @ Ul Logic Programming

Constraint Logic Programming Sudoku

cols/1
cols ([[]-1)-

cols ([

[X1|R1],

[X2|R2],

[X3|R3],

[X4|R4],

[X5|R5],

[X6|R6],

[X7|R7],

[X8|R8],

[X9[R9]T) :—
all_different ([X1,X2,X3,X4,X5,X6,X7,X8,X9]),
cols ([R1,R2,R3,R4,R5,R6,R7,R8,R9]).

cols/1 (alternative)

use maplist/2

GM (Department of Computer Science @ Ul Logic Programming

Constraint Logic Programming Sudoku

blocks/1

blocks (
blocks ([1.11IRs]) :— blocks(Rs).
blocks ([[X1,X2,X3|R1],
[X4,X5,X6|R2],
[X7,X8,X9|R3] |Rs]) :—
all_different ([X1,X2,X3,X4,X5,X6,X7,X8,X9]),
blocks ([R1,R2,R3|Rs]).

[1)-
[[]

GM (Department of Computer Science @ Ul Logic Programming

Constraint Logic Programming Sudoku

blocks/1

blocks ([])-

blocks ([[] .,[] .[]| Rs]) :— blocks(Rs).
blocks ([[X1,X2,X3|R1],

[X4,X5,X6|R2],

[X7,X8,X9|R3] |Rs]) :—

all_different ([X1,X2,X3,X4,X5,X6,X7,X8,X9]),
blocks ([R1,R2,R3|Rs]).

Example
:— sudoku ([[1,_,-, -, -, -, -, - 1.

GM (Department of Computer Science @ Ul

Logic Programming

Wrong Solutions

Example

/* A farmer has chicken and cows with in total 24 legs and 9 heads.
How many chicken and cows does the farmer own? */

GM (Department of Computer Science @ Ul Logic Programming

Wrong Solutions

Example

/* A farmer has chicken and cows with in total 24 legs and 9 heads.
How many chicken and cows does the farmer own? */

Example

solve_riddle (Hens, Cows) :—
4 % Cows + 2 x Hens #= 24,
Cows + Hens #= 9,
Cows #= 0,
Hens #= 0.
:— solve_riddle (Hens,Cows), Hens=6, Cows=3.

solve_riddle2 (Hens, Cows) :—
4 x Cows + 2 x Hens #= 24,
Cows + Hens #= 9.
:— solve_riddle2 (Hens, Cows), Hens=6, Cows=3.

GM (Department of Computer Science @ Ul Logic Programming

