
Logic Programming

Georg Moser

Department of Computer Science @ UIBK

Winter 2016

http://cl-informatik.uibk.ac.at

Summary of Last Lecture

Definitions (CLP on finite domains)

• use module(library(clpfd)) loads the clpfd library

• Xs ins N .. M specifies that all values in Xs must be in the given
range

• all different(Xs) specifies that all values in Xs are different

• label(Xs) all variables in Xs are evaluated to become values

• #=, #\=, #>, . . . like the arithmetic comparison operators, but may
contain (constraint) variables

standard approach

• load the library

• specify all constraints

• call label to start efficient computation of solutions

GM (Department of Computer Science @ UIBK) Logic Programming 142/1

Outline

Outline of the Lecture

Monotone Logic Programs

introduction, basic constructs, logic foundations, unification, semantics,
database and recursive programming, termination, complexity

Incomplete Data Structures and Constraints

incomplete data structures, definite clause grammars, constraint logic pro-
gramming, answer set programming

Full Prolog

semantics (revisted), correctness proofs, meta-logical predicates, cuts non-
deterministic programming, efficient programs, complexity

GM (Department of Computer Science @ UIBK) Logic Programming 143/1

Outline

Outline of the Lecture

Monotone Logic Programs

introduction, basic constructs, logic foundations, unification, semantics,
database and recursive programming, termination, complexity

Incomplete Data Structures and Constraints

incomplete data structures, definite clause grammars, constraint logic pro-
gramming, answer set programming

Full Prolog

semantics (revisted), correctness proofs, meta-logical predicates, cuts non-
deterministic programming, efficient programs, complexity

GM (Department of Computer Science @ UIBK) Logic Programming 143/1

Outline

Performance

“Neng-Fa Zhou, the author of B-Prolog, has kindly integrated
our constraint solver in his benchmarks, available from
http: // www. probp. com/ performance. htm . The results
show that our solver is on average two orders of magnitude
slower on these benchmarks than the fastest system (B-Prolog
itself), and about 30 times slower than the constraint solver of
SICStus Prolog.”1

1Markus Triska: The Finite Domain Constraint Solver of SWI-Prolog. FLOPS
2012: 307-316

GM (Department of Computer Science @ UIBK) Logic Programming 144/1

http://www.probp.com/performance.htm

Outline

Example

a n× n square is magic if cells contain {1, . . . , n2} and the row sums, the
column sums and the sums of both diagonals are all equal

Example
m a g i cs q u a r e 3 (Xs) :−

m a g i c s q u a r e 3 (Xs , Ys) ,
l a b e l i n g ([] , Ys) .

m a g i c s q u a r e 3 ([[X1 , X2 , X3] , [X4 , X5 , X6] , [X7 , X8 , X9]] , Ys) :−
Ys = [X1 , X2 , X3 , X4 , X5 , X6 , X7 , X8 , X9] ,
Ys i n s 1 . . 9 ,
a l l d i f f e r e n t (Ys) ,
X1 + X2 + X3 #= N, X4 + X5 + X6 #= N,
X7 + X8 + X9 #= N,
X1 + X4 + X7 #= N, X2 + X5 + X8 #= N,
X3 + X6 + X9 #= N,
X1 + X5 + X9 #= N, X7 + X5 + X3 #= N.

GM (Department of Computer Science @ UIBK) Logic Programming 145/1

Outline

Example

a n× n square is magic if cells contain {1, . . . , n2} and the row sums, the
column sums and the sums of both diagonals are all equal

Example
m a g i cs q u a r e 3 (Xs) :−

m a g i c s q u a r e 3 (Xs , Ys) ,
l a b e l i n g ([] , Ys) .

m a g i c s q u a r e 3 ([[X1 , X2 , X3] , [X4 , X5 , X6] , [X7 , X8 , X9]] , Ys) :−
Ys = [X1 , X2 , X3 , X4 , X5 , X6 , X7 , X8 , X9] ,
Ys i n s 1 . . 9 ,
a l l d i f f e r e n t (Ys) ,
X1 + X2 + X3 #= N, X4 + X5 + X6 #= N,
X7 + X8 + X9 #= N,
X1 + X4 + X7 #= N, X2 + X5 + X8 #= N,
X3 + X6 + X9 #= N,
X1 + X5 + X9 #= N, X7 + X5 + X3 #= N.

GM (Department of Computer Science @ UIBK) Logic Programming 145/1

Outline

Example
/∗ magic s q u a r e + b i t math : N = n∗(nˆ2+1)/2 ∗/

m a g i c s q u a r e 3 2 (Xs) :−
m a g i c s q u a r e 3 (Xs , Ys) ,
l a b e l i n g ([] , Ys) .

m a g i c s q u a r e 3 2 ([[X1 , X2 , X3] , [X4 , X5 , X6] , [X7 , X8 , X9]] , Ys) :−
Ys = [X1 , X2 , X3 , X4 , X5 , X6 , X7 , X8 , X9] ,
Ys i n s 1 . . 9 ,
a l l d i f f e r e n t (Ys) ,

N #= 15 ,
X1 + X2 + X3 #= N, X4 + X5 + X6 #= N,
X7 + X8 + X9 #= N,
X1 + X4 + X7 #= N, X2 + X5 + X8 #= N,
X3 + X6 + X9 #= N,
X1 + X5 + X9 #= N, X7 + X5 + X3 #= N.

GM (Department of Computer Science @ UIBK) Logic Programming 146/1

Outline

Example

remove symmetric solutions, due to rotations and mirroring

Example
m a g i c s q u a r e 3 n r e d (Xs) :−

m a g i c s q u a r e 3 n r e d (Xs , Ys) ,
l a b e l i n g ([] , Ys) .

m a g i c s q u a r e 3 n r e d (Xs , Ys) :−
m a g i c s q u a r e 3 (Xs , Ys) ,
Ys = [X1 , X2 , X3 , X4 , X5 , X6 , X7 , X8 , X9] ,
X1 #> X3 ,
X6 #> X9 ,
X2 #> X4 ,
X6 #> X8 .

:− t ime (m a g i c s q u a r e 3 n r e d (Xs)) .
% 177 ,052 i n f e r e n c e s , 0 . 0 6 0 CPU i n 0 . 0 6 0 s e c o n d s
% p r o p e r t e s t i n g shows even speed up o v e r c l e v e r v a r i a n t

GM (Department of Computer Science @ UIBK) Logic Programming 147/1

Outline

Example

remove symmetric solutions, due to rotations and mirroring

Example
m a g i c s q u a r e 3 n r e d (Xs) :−

m a g i c s q u a r e 3 n r e d (Xs , Ys) ,
l a b e l i n g ([] , Ys) .

m a g i c s q u a r e 3 n r e d (Xs , Ys) :−
m a g i c s q u a r e 3 (Xs , Ys) ,
Ys = [X1 , X2 , X3 , X4 , X5 , X6 , X7 , X8 , X9] ,
X1 #> X3 ,
X6 #> X9 ,
X2 #> X4 ,
X6 #> X8 .

:− t ime (m a g i c s q u a r e 3 n r e d (Xs)) .
% 177 ,052 i n f e r e n c e s , 0 . 0 6 0 CPU i n 0 . 0 6 0 s e c o n d s
% p r o p e r t e s t i n g shows even speed up o v e r c l e v e r v a r i a n t

GM (Department of Computer Science @ UIBK) Logic Programming 147/1

Labeling

Efficient Constraint Logic Programmming

Strategies for Solutions

• take termination seriously
non-termination is a sign of inefficiency

• choose suitable labeling strategies

• use system predicates

:− Zs = [A, B, C] , Zs i n s 1 . . 2 ,
A #\= B, B #\= C , A #\= C .

:/− Zs = [A, B, C] , Zs i n s 1 . . 2 ,
a l l d i f f e r e n t (Zs) .

• make use of redundant constraints
recall the magic square example, where the sums equal
n · (n2 + 1)/2; using this redundant constraint, the search may be
quicker; however, such constraints are difficult to find

GM (Department of Computer Science @ UIBK) Logic Programming 148/1

Labeling

Labeling Strategies

Strategies for Solutions (cont’d)

• minimise the solution space
consider the exclusion of rotations and symmetries for magic square

• improve representation of solutions
inefficient/redundant representations increase the solution space
unnecessarily

Definition

labeling (+Options,+Vars) assign a value to each variable in Vars; three
categories of options exist

• variable selection strategy

• value order strategy

• branching strategy

GM (Department of Computer Science @ UIBK) Logic Programming 149/1

Labeling

Labeling Strategies

Strategies for Solutions (cont’d)

• minimise the solution space
consider the exclusion of rotations and symmetries for magic square

• improve representation of solutions
inefficient/redundant representations increase the solution space
unnecessarily

Definition

labeling (+Options,+Vars) assign a value to each variable in Vars; three
categories of options exist

• variable selection strategy

• value order strategy

• branching strategy

GM (Department of Computer Science @ UIBK) Logic Programming 149/1

Labeling

Definition (variable selection strategy)

• leftmost, select the variables in the order they occur in Vars (default)

• min, select the leftmost variable with lowest lower bound next

:− X i n 1 . . 2 , Y i n 3 . . 4 , l a b e l i n g ([min] , [X , Y]) .
X = 1 , Y = 3 ;
X = 1 , Y = 4 ;
X = 2 , Y = 3 ;
X = 2 , Y = 4

• max, select the leftmost variable with highest upper bound next

:− X i n 1 . . 2 , Y i n 3 . . 4 , l a b e l i n g ([min] , [X , Y]) .
X = 1 , Y = 3 ;
X = 2 , Y = 3 ;
X = 1 , Y = 4 ;
X = 2 , Y = 4

• ff, first fail, select the leftmost variable with smallest domain next,
in order to detect infeasibility early

GM (Department of Computer Science @ UIBK) Logic Programming 150/1

Labeling

Definition (variable selection strategy)

• leftmost, select the variables in the order they occur in Vars (default)

• min, select the leftmost variable with lowest lower bound next

:− X i n 1 . . 2 , Y i n 3 . . 4 , l a b e l i n g ([min] , [X , Y]) .
X = 1 , Y = 3 ;
X = 1 , Y = 4 ;
X = 2 , Y = 3 ;
X = 2 , Y = 4

• max, select the leftmost variable with highest upper bound next

:− X i n 1 . . 2 , Y i n 3 . . 4 , l a b e l i n g ([min] , [X , Y]) .
X = 1 , Y = 3 ;
X = 2 , Y = 3 ;
X = 1 , Y = 4 ;
X = 2 , Y = 4

• ff, first fail, select the leftmost variable with smallest domain next,
in order to detect infeasibility early

GM (Department of Computer Science @ UIBK) Logic Programming 150/1

Labeling

Definition (variable selection strategy)

• leftmost, select the variables in the order they occur in Vars (default)

• min, select the leftmost variable with lowest lower bound next

:− X i n 1 . . 2 , Y i n 3 . . 4 , l a b e l i n g ([min] , [X , Y]) .
X = 1 , Y = 3 ;
X = 1 , Y = 4 ;
X = 2 , Y = 3 ;
X = 2 , Y = 4

• max, select the leftmost variable with highest upper bound next

:− X i n 1 . . 2 , Y i n 3 . . 4 , l a b e l i n g ([min] , [X , Y]) .
X = 1 , Y = 3 ;
X = 2 , Y = 3 ;
X = 1 , Y = 4 ;
X = 2 , Y = 4

• ff, first fail, select the leftmost variable with smallest domain next,
in order to detect infeasibility early

GM (Department of Computer Science @ UIBK) Logic Programming 150/1

Labeling

Definition (variable selection strategy)

• leftmost, select the variables in the order they occur in Vars (default)

• min, select the leftmost variable with lowest lower bound next

:− X i n 1 . . 2 , Y i n 3 . . 4 , l a b e l i n g ([min] , [X , Y]) .
X = 1 , Y = 3 ;
X = 1 , Y = 4 ;
X = 2 , Y = 3 ;
X = 2 , Y = 4

• max, select the leftmost variable with highest upper bound next

:− X i n 1 . . 2 , Y i n 3 . . 4 , l a b e l i n g ([min] , [X , Y]) .
X = 1 , Y = 3 ;
X = 2 , Y = 3 ;
X = 1 , Y = 4 ;
X = 2 , Y = 4

• ff, first fail, select the leftmost variable with smallest domain next,
in order to detect infeasibility early

GM (Department of Computer Science @ UIBK) Logic Programming 150/1

Labeling

Definition (variable selection strategy (cont’d))

• ffc, from the variables with smallest domain, select the one
occurring most often in constraints

Definition (value order strategy)

• up, try the elements of the domain in ascending order

• down, in descending order

Definition (branching strategy)

• step, for each variable X , the choice is between X = V and X #\=
V (V determined by value order)

• enum, enumerate the domain of X according to the value order

• bisect, choice is between X \#=< M and X \#> M (M the
midpoint of the domain)

GM (Department of Computer Science @ UIBK) Logic Programming 151/1

Labeling

Definition (variable selection strategy (cont’d))

• ffc, from the variables with smallest domain, select the one
occurring most often in constraints

Definition (value order strategy)

• up, try the elements of the domain in ascending order

• down, in descending order

Definition (branching strategy)

• step, for each variable X , the choice is between X = V and X #\=
V (V determined by value order)

• enum, enumerate the domain of X according to the value order

• bisect, choice is between X \#=< M and X \#> M (M the
midpoint of the domain)

GM (Department of Computer Science @ UIBK) Logic Programming 151/1

Labeling

Definition (variable selection strategy (cont’d))

• ffc, from the variables with smallest domain, select the one
occurring most often in constraints

Definition (value order strategy)

• up, try the elements of the domain in ascending order

• down, in descending order

Definition (branching strategy)

• step, for each variable X , the choice is between X = V and X #\=
V (V determined by value order)

• enum, enumerate the domain of X according to the value order

• bisect, choice is between X \#=< M and X \#> M (M the
midpoint of the domain)

GM (Department of Computer Science @ UIBK) Logic Programming 151/1

Answer Set Programming

The New Kid on the Block

Answer Set Programming

• novel approach to modelling and solving search and optimisation
problems

• ¬ programming, but a specification language

• ¬ Turing complete

• purely declarative

• restricted to finite models

Success Stories

• team building for cargo at Gioia Tauro Seaport

• expert system in space shuttle

• natural language processing

• . . .

GM (Department of Computer Science @ UIBK) Logic Programming 152/1

http://peace.eas.asu.edu/aaai12tutorial

Answer Set Programming

The New Kid on the Block

Answer Set Programming

• novel approach to modelling and solving search and optimisation
problems

• ¬ programming, but a specification language

• ¬ Turing complete

• purely declarative

• restricted to finite models

Success Stories
• team building for cargo at Gioia Tauro Seaport

• expert system in space shuttle

• natural language processing

• . . .

GM (Department of Computer Science @ UIBK) Logic Programming 152/1

http://peace.eas.asu.edu/aaai12tutorial

Answer Set Programming

The New Kid on the Block

Answer Set Programming

• novel approach to modelling and solving search and optimisation
problems

• ¬ programming, but a specification language

• ¬ Turing complete

• purely declarative

• restricted to finite models

Success Stories
• team building for cargo at Gioia Tauro Seaport

• expert system in space shuttle

• natural language processing

• . . .

GM (Department of Computer Science @ UIBK) Logic Programming 152/1

http://peace.eas.asu.edu/aaai12tutorial

Answer Set Programming

The New Kid on the Block

Answer Set Programming

• novel approach to modelling and solving search and optimisation
problems

• ¬ programming, but a specification language

• ¬ Turing complete

• purely declarative

• restricted to finite models

Success Stories
• team building for cargo at Gioia Tauro Seaport

• expert system in space shuttle

• natural language processing

• . . .

GM (Department of Computer Science @ UIBK) Logic Programming 152/1

http://peace.eas.asu.edu/aaai12tutorial

Answer Set Programming

Propositional Setting

Definitions
• atoms, facts, rules are defined as before

• only constants (= propositions) are allowed as atoms

• negation is negation as failure

• disjunctions may appear in the head

• an answer set is a set of atoms corresponding to the minimal model
of the program

Example (Negation as Failure)

l i g h t o n :− power on , not broken .
power on .

answer set: {power on, light on}

GM (Department of Computer Science @ UIBK) Logic Programming 153/1

Answer Set Programming

Propositional Setting

Definitions
• atoms, facts, rules are defined as before

• only constants (= propositions) are allowed as atoms

• negation is negation as failure

• disjunctions may appear in the head

• an answer set is a set of atoms corresponding to the minimal model
of the program

Example (Negation as Failure)

l i g h t o n :− power on , not broken .
power on .

answer set: {power on, light on}

GM (Department of Computer Science @ UIBK) Logic Programming 153/1

Answer Set Programming

Propositional Setting

Definitions
• atoms, facts, rules are defined as before

• only constants (= propositions) are allowed as atoms

• negation is negation as failure

• disjunctions may appear in the head

• an answer set is a set of atoms corresponding to the minimal model
of the program

Example (Negation as Failure)

l i g h t o n :− power on , not broken .
power on .

answer set: {power on, light on}

GM (Department of Computer Science @ UIBK) Logic Programming 153/1

Answer Set Programming

Propositional Setting

Definitions
• atoms, facts, rules are defined as before

• only constants (= propositions) are allowed as atoms

• negation is negation as failure

• disjunctions may appear in the head

• an answer set is a set of atoms corresponding to the minimal model
of the program

Example (Negation as Failure)

l i g h t o n :− power on , not broken .
power on .

answer set: {power on, light on}

GM (Department of Computer Science @ UIBK) Logic Programming 153/1

Answer Set Programming

Propositional Setting

Definitions
• atoms, facts, rules are defined as before

• only constants (= propositions) are allowed as atoms

• negation is negation as failure

• disjunctions may appear in the head

• an answer set is a set of atoms corresponding to the minimal model
of the program

Example (Negation as Failure)

l i g h t o n :− power on , not broken .
power on .

answer set: {power on, light on}

GM (Department of Computer Science @ UIBK) Logic Programming 153/1

Answer Set Programming

Propositional Setting

Definitions
• atoms, facts, rules are defined as before

• only constants (= propositions) are allowed as atoms

• negation is negation as failure

• disjunctions may appear in the head

• an answer set is a set of atoms corresponding to the minimal model
of the program

Example (Negation as Failure)

l i g h t o n :− power on , not broken .
power on .

answer set: {power on, light on}

GM (Department of Computer Science @ UIBK) Logic Programming 153/1

Answer Set Programming

Example (Disjunctive Heads)

open | c l o s e d :− door .

answer sets: {open}, {closed}

Example

a | b .
a | c .

answer sets: {a} and {b, c}
a | b .
a :− b .

answer set: {a}, but not {b} nor {a, b}

GM (Department of Computer Science @ UIBK) Logic Programming 154/1

Answer Set Programming

Example (Disjunctive Heads)

open | c l o s e d :− door .

answer sets: {open}, {closed}

Example

a | b .
a | c .

answer sets: {a} and {b, c}

a | b .
a :− b .

answer set: {a}, but not {b} nor {a, b}

GM (Department of Computer Science @ UIBK) Logic Programming 154/1

Answer Set Programming

Example (Disjunctive Heads)

open | c l o s e d :− door .

answer sets: {open}, {closed}

Example

a | b .
a | c .

answer sets: {a} and {b, c}
a | b .
a :− b .

answer set: {a}, but not {b} nor {a, b}

GM (Department of Computer Science @ UIBK) Logic Programming 154/1

Answer Set Programming

Definition

constraints are negative assertions, representing fact that must not occur
in any model of the program

Example

a :− not a , b .

any answer set must not contain b and constraint simplifies to

:− b .

same notation, but different use than an assertion

Additional Features

• finite choice functions: {fact1, fact2, fact3}.
• choice and counting: 1{fact1, fact2, fact3}2.

“1” or “2” may be missing

GM (Department of Computer Science @ UIBK) Logic Programming 155/1

Answer Set Programming

Definition

constraints are negative assertions, representing fact that must not occur
in any model of the program

Example

a :− not a , b .

any answer set must not contain b and constraint simplifies to

:− b .

same notation, but different use than an assertion

Additional Features

• finite choice functions: {fact1, fact2, fact3}.
• choice and counting: 1{fact1, fact2, fact3}2.

“1” or “2” may be missing

GM (Department of Computer Science @ UIBK) Logic Programming 155/1

Answer Set Programming

Definition

constraints are negative assertions, representing fact that must not occur
in any model of the program

Example

a :− not a , b .

any answer set must not contain b and constraint simplifies to

:− b .

same notation, but different use than an assertion

Additional Features

• finite choice functions: {fact1, fact2, fact3}.
• choice and counting: 1{fact1, fact2, fact3}2.

“1” or “2” may be missing

GM (Department of Computer Science @ UIBK) Logic Programming 155/1

Answer Set Programming

First-Order Setting

Definition
• extension of first-order language

• no function symbols

Example (3-colouring)

r e d (X) | g r e e n (X) | b l u e (X) .
:− r e d (X) , r e d (Y) , edge (X, Y) .
:− g r e e n (X) , g r e e n (Y) , edge (X, Y) .
:− b l u e (X) , b l u e (Y) , edge (X, Y) .

Example ((part of) 8-queens problem)

:− row (X) , not (1 = count (Y : queen (X, Y)))

expresses that exactly one queen appears in every row and column

GM (Department of Computer Science @ UIBK) Logic Programming 156/1

Answer Set Programming

First-Order Setting

Definition
• extension of first-order language

• no function symbols

Example (3-colouring)

r e d (X) | g r e e n (X) | b l u e (X) .
:− r e d (X) , r e d (Y) , edge (X, Y) .
:− g r e e n (X) , g r e e n (Y) , edge (X, Y) .
:− b l u e (X) , b l u e (Y) , edge (X, Y) .

Example ((part of) 8-queens problem)

:− row (X) , not (1 = count (Y : queen (X, Y)))

expresses that exactly one queen appears in every row and column

GM (Department of Computer Science @ UIBK) Logic Programming 156/1

Answer Set Programming

First-Order Setting

Definition
• extension of first-order language

• no function symbols

Example (3-colouring)

r e d (X) | g r e e n (X) | b l u e (X) .
:− r e d (X) , r e d (Y) , edge (X, Y) .
:− g r e e n (X) , g r e e n (Y) , edge (X, Y) .
:− b l u e (X) , b l u e (Y) , edge (X, Y) .

Example ((part of) 8-queens problem)

:− row (X) , not (1 = count (Y : queen (X, Y)))

expresses that exactly one queen appears in every row and column

GM (Department of Computer Science @ UIBK) Logic Programming 156/1

Answer Set Programming

Grounders and Solvers

Grounder Solver
ASP grounded answer set

Grounders

• DLV (DLV Systems, Calabria)

• Gringo (University of Potsdam)

• lparse (University of Helsinki)

Solvers

• clasp (University of Potsdam)

• cmodels (University of Austin)

• smodels (University of Helsinki)

GM (Department of Computer Science @ UIBK) Logic Programming 157/1

http://www.dlvsystem.com
http://potassco.sourceforge.net/
http://www.tcs.hut.fi/Software/smodels/
http://potassco.sourceforge.net/
https://www.cs.utexas.edu/users/tag/cmodels/
http://www.tcs.hut.fi/Software/smodels/

Answer Set Programming

Grounders and Solvers

Grounder Solver
ASP grounded answer set

Grounders

• DLV (DLV Systems, Calabria)

• Gringo (University of Potsdam)

• lparse (University of Helsinki)

Solvers

• clasp (University of Potsdam)

• cmodels (University of Austin)

• smodels (University of Helsinki)

GM (Department of Computer Science @ UIBK) Logic Programming 157/1

http://www.dlvsystem.com
http://potassco.sourceforge.net/
http://www.tcs.hut.fi/Software/smodels/
http://potassco.sourceforge.net/
https://www.cs.utexas.edu/users/tag/cmodels/
http://www.tcs.hut.fi/Software/smodels/

Answer Set Programming

Grounders and Solvers

Grounder Solver
ASP grounded answer set

Grounders

• DLV (DLV Systems, Calabria)

• Gringo (University of Potsdam)

• lparse (University of Helsinki)

Solvers

• clasp (University of Potsdam)

• cmodels (University of Austin)

• smodels (University of Helsinki)

GM (Department of Computer Science @ UIBK) Logic Programming 157/1

http://www.dlvsystem.com
http://potassco.sourceforge.net/
http://www.tcs.hut.fi/Software/smodels/
http://potassco.sourceforge.net/
https://www.cs.utexas.edu/users/tag/cmodels/
http://www.tcs.hut.fi/Software/smodels/

Answer Set Programming

Prolog and Answer Set Programming

• proof search

• Turing complete

• control

• efficiency

• model search

• finite domain

• specification language

• generality

Example
h a n o i (0 , , , , []) .
h a n o i (N, X, Y, Z , Ls) :−

N > 0 , M i s N − 1 ,
h a n o i (M, X, Z , Y, Ls0) ,
append (Ls0 , [move (N, X, Z)] , Ls1) ,
h a n o i (M, Y, X, Z , Ls2) ,
append (Ls1 , Ls2 , Ls) .

GM (Department of Computer Science @ UIBK) Logic Programming 158/1

Answer Set Programming

Prolog and Answer Set Programming

• proof search

• Turing complete

• control

• efficiency

• model search

• finite domain

• specification language

• generality

Example
h a n o i (0 , , , , []) .
h a n o i (N, X, Y, Z , Ls) :−

N > 0 , M i s N − 1 ,
h a n o i (M, X, Z , Y, Ls0) ,
append (Ls0 , [move (N, X, Z)] , Ls1) ,
h a n o i (M, Y, X, Z , Ls2) ,
append (Ls1 , Ls2 , Ls) .

GM (Department of Computer Science @ UIBK) Logic Programming 158/1

Answer Set Programming

Example

d i s k (1 . . n) . peg (a ; b ; c) .
t r a n s i t i o n (0 . . pa th l eng th −1). s i t u a t i o n (0 . . p a t h l e ng t h) .
l o c a t i o n (Peg) :− peg (Peg) . l o c a t i o n (Disk) :− d i s k (Disk) .
#domain d i s k (X ;Y) . #domain peg (P ; P1 ; P2) .
#domain t r a n s i t i o n (T) . #domain s i t u a t i o n (I) .
#domain l o c a t i o n (L ; L1) .

on (X, L ,T+1) :− on (X, L ,T) , not o t h e r l o c (X, L ,T+1).
o t h e r l o c (X, L , I) :− on (X, L1 , I) , L1!=L .
:− on (X, L , I) , on (X, L1 , I) , L!=L1 .
i npeg (X,P , I) :− on (X, L , I) , i npeg (L ,P , I) . i npeg (P ,P , I) .
top (P , L , I) :− i npeg (L ,P , I) , not cove r ed (L , I) .
cove r ed (L , I) :− on (X, L , I) .
:− on (X,Y, I) , X>Y.
on (X, L ,T+1) :− move (P1 , P2 ,T) , top (P1 ,X,T) , top (P2 , L ,T) .
:− move (P1 , P2 ,T) , top (P1 , P1 ,T) . movement (P1 , P2) :− P1 != P2 .
1 {move (A,B,T) : movement (A,B) } 1 .
on (n , a , 0) . on (X,X+1 ,0) :− X<n .
onewrong :− not i npeg (X, c , p a t h l e ng t h) .
:− onewrong .

GM (Department of Computer Science @ UIBK) Logic Programming 159/1

