

Logic Programming

Georg Moser

Department of Computer Science @ UIBK

Winter 2016

Outline of the Lecture

Monotone Logic Programs

introduction, basic constructs, logic foundations, unification, semantics, database and recursive programming, termination, complexity

Incomplete Data Structures and Constraints

incomplete data structures, definite clause grammars, constraint logic programming, answer set programming

Full Prolog

semantics (revisted), correctness proofs, meta-logical predicates, cuts nondeterministic programming, efficient programs, complexity

Summary of Last Lecture

Definitions (CLP on finite domains)

- use_module(library(clpfd)) loads the clpfd library
- Xs ins N ... M specifies that all values in Xs must be in the given range
- all_different(Xs) specifies that all values in Xs are different
- label(Xs) all variables in Xs are evaluated to become values
- #=, #\=, #>, ... like the arithmetic comparison operators, but may contain (constraint) variables

Logic Programming

standard approach

- load the library
- specify all constraints
- call label to start efficient computation of solutions

GM (Department of Computer Science @ UI

Performance

"Neng-Fa Zhou, the author of B-Prolog, has kindly integrated our constraint solver in his benchmarks, available from http://www.probp.com/performance.htm. The results show that our solver is on average two orders of magnitude slower on these benchmarks than the fastest system (B-Prolog itself), and about 30 times slower than the constraint solver of SICStus Prolog."1

¹Markus Triska: The Finite Domain Constraint Solver of SWI-Prolog. FLOPS 2012: 307-316

Example

a $n \times n$ square is magic if cells contain $\{1, \ldots, n^2\}$ and the row sums, the column sums and the sums of both diagonals are all equal

Example
magicsquare3(Xs) : magicsquare3_(Xs,Ys),
 labeling([],Ys).
magicsquare3_([[X1,X2,X3],[X4,X5,X6],[X7,X8,X9]],Ys) : Ys = [X1,X2,X3,X4,X5,X6,X7,X8,X9],
 Ys ins 1..9,
 all_different(Ys),
 X1 + X2 + X3 # N, X4 + X5 + X6 # N,
 X7 + X8 + X9 # N,
 X1 + X4 + X7 # N, X2 + X5 + X8 # N,
 X3 + X6 + X9 # N,
 X1 + X5 + X9 # N.

Logic Programming

GM (Department of Computer Science @ UI

Outline

Example

remove symmetric solutions, due to rotations and mirroring

Example

```
magicsquare3nred(Xs) :-
    magicsquare3nred_(Xs,Ys),
    labeling([],Ys).

magicsquare3nred_(Xs,Ys) :-
    magicsquare3_(Xs,Ys),
    Ys = [X1,X2,X3,X4,_X5,X6,_X7,X8,X9],
    X1 #> X3,
    X6 #> X9,
    X2 #> X4,
    X6 #> X8.
```

:- time(magicsquare3nred(_Xs)).
 % 177,052 inferences, 0.060 CPU in 0.060 seconds
 % proper testing shows even speed up over clever variant

Example

/* magic square + bit math: N = n*(n^2+1)/2 */
magicsquare3_2(Xs) : magicsquare3_(Xs,Ys),
 labeling([],Ys).
magicsquare3_2_([[X1,X2,X3],[X4,X5,X6],[X7,X8,X9]],Ys) : Ys = [X1,X2,X3,X4,X5,X6,X7,X8,X9],
 Ys ins 1..9,
 all_different(Ys),
 N #= 15,
 X1 + X2 + X3 #= N, X4 + X5 + X6 #= N,
 X7 + X8 + X9 #= N,
 X1 + X4 + X7 #= N, X2 + X5 + X8 #= N,
 X3 + X6 + X9 #= N,
 X1 + X5 + X5 + X5 + X5 #= N

GM (Department of Computer Science @ UI Logic Programming

146/1

Labeling

Efficient Constraint Logic Programming

Strategies for Solutions

- take termination seriously
 - non-termination is a sign of inefficiency
- choose suitable labeling strategies
- use system predicates
- make use of redundant constraints recall the magic square example, where the sums equal

 $n \cdot (n^2 + 1)/2$; using this redundant constraint, the search may be quicker; however, such constraints are difficult to find

Labeling Strategies

Strategies for Solutions (cont'd)

- minimise the solution space consider the exclusion of rotations and symmetries for magic square
- improve representation of solutions inefficient/redundant representations increase the solution space unnecessarily

Definition

labeling (+Options,+Vars) assign a value to each variable in $\it Vars$; three categories of options exist

Logic Programming

- variable selection strategy
- value order strategy
- branching strategy

```
GM (Department of Computer Science @ UI
```

Labeling

Definition (variable selection strategy (cont'd))

• ffc, from the variables with smallest domain, select the one occurring most often in constraints

Definition (value order strategy)

- up, try the elements of the domain in ascending order
- down, in descending order

Definition (branching strategy)

- step, for each variable X, the choice is between X = V and X #\=
 V (V determined by value order)
- enum, enumerate the domain of X according to the value order
- bisect, choice is between X \#=< M and X \#> M (M the midpoint of the domain)

Definition (variable selection strategy)

- leftmost, select the variables in the order they occur in Vars (default)
- $\bullet\,$ min, select the leftmost variable with lowest lower bound next

:- X in 1..2, Y in 3..4, labeling([min],[X,Y]). X = 1, Y = 3; X = 1, Y = 4; X = 2, Y = 3; X = 2, Y = 4

 $\bullet\,$ max, select the leftmost variable with highest upper bound next

:- X in 1..2, Y in 3..4, labeling([min],[X,Y]). X = 1, Y = 3; X = 2, Y = 3; X = 1, Y = 4; X = 2, Y = 4

• ff, first fail, select the leftmost variable with smallest domain next, in order to detect infeasibility early

Logic Programmi

GM (Department of Computer Science @ UI

150/1

Answer Set Programming

The New Kid on the Block

Answer Set Programming

novel approach to modelling and solving search and optimisation problems

Logic Programm

- \neg programming, but a specification language
- ¬ Turing complete
- purely declarative
- restricted to finite models

Success Stories

- team building for cargo at Gioia Tauro Seaport
- expert system in space shuttle
- natural language processing
- . . .

Propositional Setting

Definitions

- atoms, facts, rules are defined as before
- only constants (= propositions) are allowed as atoms
- negation is negation as failure
- disjunctions may appear in the head
- an answer set is a set of atoms corresponding to the minimal model of the program

Example (Negation as Failure)

light_on :- power_on, not broken. power_on.

answer set: {power_on, light_on}

GM (Department of Computer Science @ UI Logic Programming

153/

155/1

Answer Set Programming

Definition

 $\operatorname{constraints}$ are negative assertions, representing fact that must not occur in any model of the program

Example

a :- not a, b.

any answer set must not contain b and constraint simplifies to

:- b.

same notation, but different use than an assertion

Additional Features

- finite choice functions: {*fact*₁, *fact*₂, *fact*₃}.
- choice and counting: 1{fact₁, fact₂, fact₃}2.
 "1" or "2" may be missing

Example (Disjunctive Heads)

answer sets: {*open*}, {*closed*}

Example $\begin{array}{c|c} a & b \\ a & c \\ a & c \\ a & b \\ a & - b \\ a & - b \\ \end{array}$ answer set: {a}, but not {b} nor {a, b}

Logic Programming

GM (Department of Computer Science @ UI

154/1

Answer Set Programming

First-Order Setting

Definition

- extension of first-order language
- no function symbols

Example (3-colouring)

red (X) | green (X) | blue (X). :- red (X), red (Y), edge (X,Y). :- green (X), green (Y), edge (X,Y). :- blue (X), blue (Y), edge (X,Y).

Example ((part of) 8-queens problem)

:- row(X), not (1 = count(Y : queen(X,Y)))

expresses that exactly one queen appears in every row and column

GM (Department of Computer Science @ UI Logic Programming

Grounders and Solvers

Grounders

- DLV (DLV Systems, Calabria)
- Gringo (University of Potsdam)
- Iparse (University of Helsinki)

Solvers

- clasp (University of Potsdam)
- cmodels (University of Austin)
- smodels (University of Helsinki)

GM (Department of Computer Science @ UI

157

Answer Set Programming

Example

```
disk (1..n).
                                  peg(a;b;c).
transition (0... pathlength -1).
                                  situation (0.. pathlength).
location(Peg) :- peg(Peg).
                                  location (Disk) :- disk (Disk).
#domain disk(X;Y).
                        #domain peg(P;P1;P2).
#domain transition(T). #domain situation(I).
#domain location(L;L1).
on(X,L,T+1) := on(X,L,T), not otherloc(X,L,T+1).
otherloc(X,L,I) :- on(X,L1,I), L1!=L.
:- on(X,L,I), on(X,L1,I), L!=L1.
inpeg(X,P,I) := on(X,L,I), inpeg(L,P,I). inpeg(P,P,I).
top(P,L,I) := inpeg(L,P,I), not covered(L,I).
covered(L,I) := on(X,L,I).
:- on (X, Y, I), X>Y.
on (X, L, T+1) :- move (P1, P2, T), top (P1, X, T), top (P2, L, T).
:- move(P1,P2,T), top(P1,P1,T). movement(P1,P2) :- P1 != P2.
1 \{move(A,B,T) : movement(A,B) \} 1.
on(n,a,0).
                                  on (X, X+1, 0) := X < n.
onewrong :- not inpeg(X,c,pathlength).
:- onewrong.
```

Logic Programming

Prolog and Answer Set Programming

- proof search
- Turing complete
- control
- efficiency

- model search
- finite domain
- specification language
- generality

Example hanoi(0,_,_,_,[]). hanoi(N,X,Y,Z,Ls) :-N > 0, M is N - 1, hanoi(M,X,Z,Y,Ls0),

```
append (Ls0, [move(N,X,Z)], Ls1),
hanoi (M,Y,X,Z, Ls2),
```

```
append (Ls1, Ls2, Ls).
```

```
GM (Department of Computer Science @ UI
```

```
Logic Programming
```

```
158/1
```