
Functional Programming

Christian Sternagel Harald Zankl Evgeny Zuenko

Department of Computer Science
University of Innsbruck

WS 2017/2018

Lecture 1

Lecture

• LV-Number 703024

• VO 2

• http://cl-informatik.uibk.ac.at/teaching/ws17/fp/

• slides are also available online

• office hours: Friday 14:15 – 15:45 in 3M03

• online registration required before 23:59 on November 30

• grading: written exam (closed book)
• 1st exam on February 2, 2018
• registration starts 5 weeks before exam
• registration closes 2 weeks before exam

CS,HZ,EZ (DCS @ UIBK) lecture 1 2/24

Exercises

• LV-Number 703025

• PS 1

• group 1 Christian Sternagel Friday 10:15 – 11:00 HS 11
group 2 Harald Zankl Friday 11:15 – 12:00 HS 11
group 3 Harald Zankl Friday 12:15 – 13:00 HS 11
group 4 Evgeny Zuenko Friday 13:15 – 14:00 HS 11

• online registration required before 23:59 on September 21

• grading: 1 test (January 12, 2018) + weekly exercises

• exercises start on October 20

CS,HZ,EZ (DCS @ UIBK) lecture 1 3/24

Schedule

week 1 October 6 week 8 December 1
week 2 October 20 week 9 December 15
week 3 October 27 PS test January 12
week 4 November 3 week 11 January 19
week 5 November 10 week 12 January 26
week 6 November 17 1st exam February 2
week 7 November 24

CS,HZ,EZ (DCS @ UIBK) lecture 1 4/24

http://cl-informatik.uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws17/fp/
http://cl-informatik.uibk.ac.at/~griff
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
https://orawww.uibk.ac.at/public_prod/owa/lfuonline_lv.details?sem_id_in=17W&lvnr_id_in=703024
http://cl-informatik.uibk.ac.at/teaching/ws17/fp/
http://www.uibk.ac.at/lfuonline
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
https://orawww.uibk.ac.at/public_prod/owa/lfuonline_lv.details?sem_id_in=17W&lvnr_id_in=703025
http://www.uibk.ac.at/lfuonline
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Topics

abstract data types, algebraic data types, binary search trees,
combinator parsing, efficiency, encoding data types as lambda-terms,
evaluation strategies, formal verification, first steps, guarded recursion,
Haskell introduction, higher-order functions, historical overview,
implementing a type checker, induction, infinite data structures, input
and output, lambda-calculus, lazy evaluation, list comprehensions, lists,
modules, pattern matching, polymorphism, property-based testing,
reasoning about functional programs, recursive functions, sets, strings,
tail recursion, trees, tupling, type checking, type inference, types,
types and type classes, unification, user-defined types

CS,HZ,EZ (DCS @ UIBK) lecture 1 5/24

Overview

• History

• Notions

• A Taste of Haskell

• First Steps

CS,HZ,EZ (DCS @ UIBK) lecture 1 6/24

History

Alonzo Church:
λ-calculus

1936

Alan Turing:
turing machines1937

Moses
Schönfinkel:
combinatory
logic

1924

Haskell Curry:
combinatory logic1930

Z3: 1st pro-
grammable,
fully automatic
computing ma-
chine

1941

John McCarthy:
LISP1950

Peter Landin:
Iswim

1966

John Backus:
FP1977

Robin Milner:
LCF, Standard
ML1984

David Turner:
Miranda

1985

Paul Hudak
and Philip
Wadler:
Haskell

1988

Martin Odersky:
Scala2003

Haskell20102010

1917 2017

Notions
(Program) State

• variables point to storage locations in memory

• state is content of variables in scope at given execution point

Example – Assignment

after x := 10, the location x has content 10 (the state changed)

Side Effects

a function or expression has side effects if it modifies state

Example –
∑n

i=0 i

count := 0

total := 0

while count < n

count := count + 1

total := total + count

CS,HZ,EZ (DCS @ UIBK) lecture 1 8/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Notions

Example –
∑n

i=0 i

the Haskell way of summing up the numbers from 0 to n is
sum [0..n]

• [0..4] generates list [0,1,2,3,4]

• sum is predefined function, summing up elements of a list

Example – Defining Functions

• [m..n] computes range of numbers from m to n
range m n =

if m > n then []

else m : range (m + 1) n

• sum xs computes sum of elements in xs
mySum [] = 0

mySum (x:xs) = x + mySum xs

CS,HZ,EZ (DCS @ UIBK) lecture 1 9/24

Notions

Pure Functions

a function is pure if it always returns same result on same input

Counterexample – Random Numbers

the C function rand (producing random numbers) is not pure

rand() = 0

rand() = 10

rand() = 42

CS,HZ,EZ (DCS @ UIBK) lecture 1 10/24

Notions

Immutable Data

data that does not change after initial creation

Example – Linked Lists

• consider two linked lists xs = [1,2] and ys = [3,4]

• after concatenation zs = xs ++ ys

append elements of ys to xs

xs

1

2

ys

3

4

zs

1

2

copiedcopied

CS,HZ,EZ (DCS @ UIBK) lecture 1 11/24

Notions

Recursion

a function is recursive if it is used in its own definition

Example – Factorial Numbers

factorial n =

if n < 2 then 1

else n * factorial (n - 1)

CS,HZ,EZ (DCS @ UIBK) lecture 1 12/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Notions
Evaluating Functions by Hand (aka Equational Reasoning)

• functions are defined by equations and pattern matching

• general idea: “replace equals by equals”

Example – mySum

given the two equations

mySum [] = 0 (1)

mySum (x:xs) = x + mySum xs (2)

pattern: empty list

pattern: list with “head” x and “tail” xs

we evaluate mySum [1,2,3] like

mySum [1,2,3] = 1 + mySum [2,3] using (2)
= 1 + (2 + mySum [3]) using (2)
= 1 + (2 + (3 + mySum [])) using (2)
= 1 + (2 + (3 + 0)) using (1)
= 6 by def. of +

CS,HZ,EZ (DCS @ UIBK) lecture 1 13/24

A Taste of Haskell

Haskell

• is a pure language (only allowing “explicit” side effects)

• functions are defined by equations and pattern matching

Example – Quicksort

• sort list of elements smaller than or equal to x

• sort list of elements larger than x

• insert x in between

qsort [] = []

qsort (x:xs) = qsort le ++ [x] ++ qsort gt

where

le = [a | a <- xs, a <= x] -- list comprehension

gt = [b | b <- xs, b > x]

CS,HZ,EZ (DCS @ UIBK) lecture 1 14/24

First Steps

Haskell on the Web

• main entry point www.haskell.org

• most widely used Haskell compiler: GHC

• with interpreter GHCi

Starting the Interpreter (GHCi)

$ ghci

GHCi, version 8.0.2: http://www.haskell.org/ghc/

:? for help

...

Prelude>

CS,HZ,EZ (DCS @ UIBK) lecture 1 15/24

First Steps

The Standard Prelude

on startup GHCi loads the “Prelude,” importing many standard functions

Examples

• arithmetic: +, -, *, /, ^, mod, div

• lists
drop n xs drop first n elements from list xs
head xs extract first element from list xs
length xs number of elements in list xs
product xs multiply elements of list xs
reverse xs as the name says: reverse list xs
sum xs sum up elements of list xs
tail xs obtain list xs without its first element
take n xs take first n elements from list xs

• note: in code examples Prelude functions are denoted in green and
others in blue; variables are denoted in dark orange

CS,HZ,EZ (DCS @ UIBK) lecture 1 16/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
www.haskell.org
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First Steps

Function Application

• in mathematics: function application is denoted by enclosing
arguments in parentheses, whereas multiplication of two arguments is
often implicit (by juxtaposition)

• in Haskell: reflecting its primary status, function application is
denoted silently (by juxtaposition), whereas multiplication is denoted
explicitly by *

Examples

Mathematics Haskell
f(x) f x

f(x, y) f x y

f(g(x)) f (g x)

f(x, g(y)) f x (g y)

f(x) g(y) f x * g y

f(a, b) + c d f a b + c * d

CS,HZ,EZ (DCS @ UIBK) lecture 1 17/24

First Steps

Haskell Scripts

• define new functions inside scripts

• text file containing definitions

• common suffix .hs

My First Script – test.hs

• set editor from inside GHCi :set editor vim

• start editor :edit test.hs and type
double x = x + x

quadruple x = double (double x)

• load script

Prelude> :load test.hs

[1 of 1] Compiling Main (test.hs, interpreted)

Ok, modules loaded: Main.

*Main>

CS,HZ,EZ (DCS @ UIBK) lecture 1 18/24

First Steps

Interpreter Commands

Command Meaning
:load 〈name〉 load script 〈name〉
:reload reload current script
:edit 〈name〉 edit script 〈name〉
:edit edit current script
:type 〈expr〉 show type of 〈expr〉
:set 〈prop〉 change various settings
:show 〈info〉 show various information
:! 〈cmd〉 execute 〈cmd〉 in shell
:? show help text
:quit bye-bye!

CS,HZ,EZ (DCS @ UIBK) lecture 1 19/24

First Steps

Example Session

> :load test.hs

> quadruple 10

40

> take (double 2) [1,2,3,4,5,6]

[1,2,3,4]

> :edit test.hs

factorial n = product [1..n]

average ns = sum ns `div` length ns

> :reload

> factorial 10

3628800

> average [1,2,3,4,5]

3

enclosing function in `. . . ` turns it infix

CS,HZ,EZ (DCS @ UIBK) lecture 1 20/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First Steps
Naming Requirements

names of functions and their arguments have to conform to following
syntax

〈lower〉 def
= a | . . . | z

〈upper〉 def
= A | . . . | Z

〈digit〉 def
= 0 | . . . | 9

〈name〉 def
= (〈lower〉 | _)(〈lower〉 | 〈upper〉 | 〈digit〉 | ’ | _)∗

choice

zero ore more times

Reserved Names

case class data default deriving do else foreign if import in

infix infixl infixr instance let module newtype of then type

where _

Examples

myFun fun1 arg_2 x'

CS,HZ,EZ (DCS @ UIBK) lecture 1 21/24

First Steps
The Layout Rule

• items that start in same column are grouped together

• by increasing indentation, items may span multiple lines

• groups end at EOF or when indentation decreases

• script content is group, start nested group by where, let, do, or of

• ignore layout: enclose groups in ‘{’ and ‘}’ and separate items by ‘;’

Examples

main =

let x = 1

y = 1

in

putStrLn (take

(x+y) (zs++us))

where

zs = []

us = "abc"

without layout:
main =

let { x = 1; y = 1 } in

putStrLn (take (x+y) (zs++us))

where { zs = []; us = "abc" }

CS,HZ,EZ (DCS @ UIBK) lecture 1 22/24

First Steps

Comments

there are two kinds of comments

• single-line comments: starting with -- and extending to EOL

• multi-line comments: enclosed in {- and -}

Examples

-- Factorial of a positive number:

factorial n = product [1..n]

-- Average of a list of numbers:

average ns = sum ns `div` length ns

{- currently not used

double x = x + x

quadruple x = double (double x)

-}

CS,HZ,EZ (DCS @ UIBK) lecture 1 23/24

Exercises (for October 20th)

1. Read
http://haskell.org/haskellwiki/Functional_programming and
http://haskell.org/haskellwiki/Haskell_in_5_steps.

2. Work through lessons 1 to 3 on http://tryhaskell.org/.

3. Explain and correct the 3 syntactic errors in the script:
N = a 'div' length xs

where

a = 10

xs = [1,2,3,4,5]

4. Show how the library function last (selecting the last element of a
non-empty list) could be defined in terms of the Prelude functions
used in this lecture. Can you think of another possible definition?

5. Show two possible definitions of the library function init (removing
the last element from a list) in terms of the functions introduced so
far.

6. Use recursion to define a function gcd, computing the greatest
common divisor of two given numbers.

CS,HZ,EZ (DCS @ UIBK) lecture 1 24/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://haskell.org/haskellwiki/Functional_programming
http://haskell.org/haskellwiki/Haskell_in_5_steps
http://tryhaskell.org/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	History
	Notions
	A Taste of Haskell
	First Steps

