
Functional Programming

Christian Sternagel Harald Zankl Evgeny Zuenko

Department of Computer Science
University of Innsbruck

WS 2017/2018

Lecture 4

http://cl-informatik.uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws17/fp/
http://cl-informatik.uibk.ac.at/~griff
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Topics

abstract data types, algebraic data types, binary search trees,
combinator parsing, efficiency, encoding data types as lambda-terms,
evaluation strategies, formal verification, first steps, guarded recursion,
Haskell introduction, higher-order functions, historical overview,
implementing a type checker, induction, infinite data structures, input
and output, lambda-calculus, lazy evaluation, list comprehensions, lists,
modules, pattern matching, polymorphism, property-based testing,
reasoning about functional programs, recursive functions, sets, strings,
tail recursion, trees, tupling, type checking, type inference, types, types
and type classes, unification, user-defined types

CS,HZ,EZ (DCS @ UIBK) lecture 4 2/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Overview

• Intermediate Wrap-Up

• User-Defined Types / Trees

• Input and Output

CS,HZ,EZ (DCS @ UIBK) lecture 4 3/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Intermediate Wrap-Up

Functions You Should Know

• infix operators and special syntax

(<=), (<), (==), (>=), (>), (||), (-), (,), (:), (/=),
(.), (*), (&&), (+), (++), [], [m..n]

• other Prelude functions
abs, compare, concat, const, div, drop, error, even,
filter, foldr, foldr1, fromInteger, fromIntegral,
fst, head, init, last, length, lines, map, max, min,
mod, negate, not, null, product, putStr, putStrLn,
read, replicate, reverse, show, showList, showsPrec,
signum, snd, splitAt, sum, tail, take, unlines,
unwords, words, zip, zipWith

• other Prelude constants
False, otherwise, True

• other functions
Data.Char.chr, Data.Char.isDigit, Data.Char.ord,
System.Environment.getArgs

CS,HZ,EZ (DCS @ UIBK) lecture 4 4/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Intermediate Wrap-Up
Syntax You Should Recognize

• anonymous functions / functions without names
(\x -> 2 * x) -- an anonymous function for doubling

• infix operators and sections

(+) = (\x y -> x + y) infix to prefix

x `f` y = f x y prefix to infix

(a >) = (\x -> a > x) argument smaller than a?

(> b) = (\x -> x > b) argument greater than b?

• patterns and guards
headIfPositive xs = case xs of

x:_ | x > 0 -> x

• list comprehensions
filter p xs == [x | x <- xs, p x]

map f xs == [f x | x <- xs]

concat (map f xs) == [y | x <- xs, y <- f x]

map (\x -> map ((,) x) ys) xs ==

[(x, y) | x <- xs, y <- ys]

CS,HZ,EZ (DCS @ UIBK) lecture 4 5/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Intermediate Wrap-Up
Types and Type Classes

• type signatures – annotate functions by types
range :: Int -> Int -> [Int]

range m n | m > n = []

| otherwise = m : range (m + 1) n

• type synonyms – mnemonic names for types
type Height = Int

type Width = Int

• type classes and class constraints – for every function f, specific to
class C, type inference adds a C-constraint to type

Example – Type Constraints

• without type signature, we get

ghci> :t range

range :: (Ord a, Num a) => a -> a -> [a]

• m > n, hence m and n of class Ord and m and n of same type

• m + 1, hence m of class Num

• m and n of same type, hence n of class Num

CS,HZ,EZ (DCS @ UIBK) lecture 4 6/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Intermediate Wrap-Up

Equational Reasoning

• a function definition in Haskell is a (set of conditional) equation(s)

• if conditions are met, we may “replace equals by equals”

• in this way we may evaluate function calls by applying equations
stepwise, until we reach final result

Kinds of Conditions

• “if b then t else e” is t, when b is true; and e, otherwise

• “case e of { p1 -> e1; . . . ;pn -> en }” is ei, if e first matches pi

Primitive Operations

• for primitive operations (like (+), (*), . . .), we assume predefined
equations

• e.g., 1 + 2 = 3, 0 * 10 = 0, . . .

CS,HZ,EZ (DCS @ UIBK) lecture 4 7/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Intermediate Wrap-Up

Examples – Equational Reasoning

• definition
zip (x:xs) (y:ys) = (x, y) : zip xs ys

zip _ _ = []

• evaluate zip [1,2,3] ['a','b']
• definition
factorial n | n <= 1 = 1

| otherwise = n * factorial (n - 1)

• evaluate factorial 3

• definition
head xs = case xs of x:_ -> x

• evaluate head "ab"

• definition
prod xs = if null xs then 1

else head xs * prod (tail xs)

• evaluate prod [5,6]

CS,HZ,EZ (DCS @ UIBK) lecture 4 8/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

User-Defined Types / Trees
Data Declarations / Algebraic Data Types

• new types are introduced by

data T α1 · · · αn = C1 τ11 · · · τ1m1

|
...

| Ck τk1 · · · τkmk

• where T is the name of the new type (starting with a capital letter)
taking n type parameters α1 to αn

• and Ci is the name of the i-th (data) constructor, taking mi

arguments of types τi1 to τimi (which may contain only type
variables among α1 to αn)

Examples

• data Bool = False | True

• data List a = Nil | Cons a (List a)

• data Pair a b = Pair a b

constructors and type names
live in different name spaces

CS,HZ,EZ (DCS @ UIBK) lecture 4 9/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

User-Defined Types / Trees

Automatically Deriving Type Class Instances

• for some type classes it is possible to automatically derive instances
for algebraic data types

• e.g.,
data List a = Nil | Cons a (List a)

deriving (Eq, Show, Read)

• now, we are able to use (==), show, and read for Lists

Examples

ghci> Nil == Cons 1 Nil

False

ghci> show (Cons 1 (Cons 2 Nil))

"Cons 1 (Cons 2 Nil)"

ghci> read it :: List Int

Cons 1 (Cons 2 Nil)

CS,HZ,EZ (DCS @ UIBK) lecture 4 10/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

User-Defined Types / Trees
Definition – Tree

• (rooted) tree T = (N,E)

• with set of nodes N

• and set of edges/vertices E ⊆ N ×N
• unique root of T (root(T) ∈ N) without predecessor

• all other nodes have exactly one predecessor

Example

• N = {A,B,C,D,E, F,G}
• E = {(A,B), (A,C), (A,E), (C,D), (E,F), (E,G)}
• root(T) = A

• T = A

B C

D

E

F G

CS,HZ,EZ (DCS @ UIBK) lecture 4 11/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

User-Defined Types / Trees

Trees in Haskell

• possible type for trees with arbitrary nodes
data Tree a = Empty | Node a [Tree a]

• a tree is either empty (0 nodes) or there is at least one node with
content of type a and an arbitrary number of successor trees

Examples

Empty

1

2

Node 1 [Node 2 []]

1

Node 1 []

1

2 3

Node 1 [Node 2 [],Node 3 []]

CS,HZ,EZ (DCS @ UIBK) lecture 4 12/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

User-Defined Types / Trees

Binary Trees

• restrict number of successors (maximum 2)

• type
data BTree a = Empty | Node a (BTree a) (BTree a)

deriving (Eq, Show, Read)

Functions on Binary Trees

• size – number of nodes
size :: BTree a -> Integer

size Empty = 0

size (Node _ l r) = size l + size r + 1

• height – length of longest path from root to some leaf
height :: BTree a -> Integer

height Empty = 0

height (Node _ l r) = max (height l) (height r) + 1

CS,HZ,EZ (DCS @ UIBK) lecture 4 13/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

User-Defined Types / Trees

Creating Trees from Lists

• the easy way
fromList [] = Empty

fromList (x:xs) = Node x Empty (fromList xs)

• the fair way
make [] = Empty

make xs = Node z (make ys) (make zs)

where

m = length xs `div` 2

(ys, z:zs) = splitAt m xs

• the orderly way
searchTree = foldr insert Empty

where

insert x Empty = Node x Empty Empty

insert x (Node y l r)

| x < y = Node y (insert x l) r

| otherwise = Node y l (insert x r)

CS,HZ,EZ (DCS @ UIBK) lecture 4 14/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

User-Defined Types / Trees

Transforming Trees into Lists

flatten Empty = []

flatten (Node x l r) = flatten l ++ [x] ++ flatten r

A Sorting Algorithm for Lists

sort = flatten . searchTree

CS,HZ,EZ (DCS @ UIBK) lecture 4 15/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Input and Output

An Initial Example

• write the file welcomeIO.hs
main = do

putStrLn "Greetings! What's your name?"

name <- getLine

putStrLn (

"Welcome to Haskell's IO, " ++ name ++ "!")

• compile it with GHC via

$ ghc --make welcomeIO.hs

• and run it
$./welcomeIO

Greetings! What's your name?

Notes

• putStrLn prints a string + newline

• getLine reads a line from standard input

• new syntax: do and <-

CS,HZ,EZ (DCS @ UIBK) lecture 4 16/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Input and Output
IO and the Type System

• consider
ghci> :load welcomeIO.hs

ghci> :t putStrLn

putStrLn :: String -> IO ()

ghci> :t getLine

getLine :: IO String

ghci> :t main

main :: IO ()

• IO a is type of IO actions delivering results of type a (in addition to
their IO operations)

Examples

• String -> IO () – after supplying a string, we obtain an IO action
(in the case of putStrLn, “printing”)

• IO () – just IO (in the case of main, run our program)

• IO String – do some IO and deliver a string (in the case of
getLine, the user-input)

CS,HZ,EZ (DCS @ UIBK) lecture 4 17/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Input and Output
Further Notes

• IO actions (everything of type IO a) are just descriptions of what
should be done; nothing is actually done at time of specification

• only main may start execution of IO actions

• inside IO actions, order is important; IO actions are executed in order
of appearance (once execution starts); the result of a sequence of IO
actions is the result of the last action

• inside IO actions, x <- action (where action :: IO a) may be
used to bind the result value of action (which has type a) to the
name x (but seriously, this is actually only done, once execution
starts)

• x <- a is not available outside IO actions

Implications
• once we are inside an IO action, we cannot escape

• strict separation between purely functional code and IO

• when IO a does not appear inside type signature, we can be
absolutely sure that no IO (“side-effect”) is performed

CS,HZ,EZ (DCS @ UIBK) lecture 4 18/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Input and Output

Using Pure Code Inside IO Actions

• consider the program reply.hs

reply :: String -> String

reply name =

"Pleased to meet you, " ++ name ++ ".\n" ++

"Your name contains " ++ n ++ " characters."

where

n = show $ length name

main :: IO ()

main = do

putStrLn "Greetings again. What's your name?"

name <- getLine

let niceReply = reply name

putStrLn niceReply

• that is, we may use let x = f (there is no in here!) to bind the
result of the pure function f to the name x

CS,HZ,EZ (DCS @ UIBK) lecture 4 19/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Input and Output

Some Simple IO Functions

• return :: a -> IO a – turn anything into an IO action

• System.Environment.getArgs :: IO [String] – get command
line arguments

• putChar :: Char -> IO () – print character

• putStr :: String -> IO () – print string

• putStrLn :: String -> IO () – print string + newline

• getChar :: IO Char – read single character from stdin

• getLine :: IO String – read line (excluding newline)

• interact :: (String -> String) -> IO () – use function that
gets input as string and produces output as string

• type FilePath = String

• readFile :: FilePath -> IO String – read file content

• writeFile :: FilePath -> String -> IO ()

• appendFile :: FilePath -> String -> IO ()

CS,HZ,EZ (DCS @ UIBK) lecture 4 20/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Input and Output

Examples – Imitating Some GNU Commands

• cat.hs – print file contents
main = do

[file] <- getArgs

s <- readFile file

putStr s

• wc.hs – count newlines/words/characters in input
count s = ns ++ " " ++ ws ++ " " ++ bs ++ "\n"

where ns = show $ length $ lines s

ws = show $ length $ words s

bs = show $ length s

main = interact count

• uniq.hs – omit repeated lines of input
main = interact (unlines . nub . lines)

• sort.hs – sort input
main = interact (unlines . sort . lines)

CS,HZ,EZ (DCS @ UIBK) lecture 4 21/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Input and Output
Notes

• getArgs :: IO [String] is in System.Environment

• nub :: Eq a => [a] -> [a] is in Data.List; eliminates
duplicates

• sort :: Ord a => [a] -> [a] is in Data.List; sorts a list

Do Some IO Action for Each Argument

•
foreach :: [a] -> (a -> IO ()) -> IO ()

foreach [] io = return ()

foreach (a:as) io = do { io a; foreach as io }

• better cat.hs
main = do

files <- getArgs

foreach files readAndPrint

where readAndPrint file = do

s <- readFile file

putStr s

CS,HZ,EZ (DCS @ UIBK) lecture 4 22/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Exercises (for November 10th)

1. Read Chapter 7 of Real World Haskell.

2. Evaluate the two function calls foldr (-) 0 [1,2,3] and
foldl (-) 0 [1,2,3] by equational reasoning using the definitions:

foldr f b [] = b

foldr f b (x:xs) = x `f` foldr f b xs

foldl f b [] = b

foldl f b (x:xs) = foldl f (b `f` x) xs

3. Implement the predicate
isSorted :: Ord a => BTree a -> Bool, checking whether the
given tree is a search tree.

4. Write a program Grep.hs that, given a string, echos every line of its
standard input, containing this string.

5. Modify Grep.hs to also print line numbers of matching lines.

6. Implement a function
showBTree :: Show a => BTree a -> String that gives an
ASCII representation of a binary tree.

CS,HZ,EZ (DCS @ UIBK) lecture 4 23/23

http://book.realworldhaskell.org/read/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	Intermediate Wrap-Up
	User-Defined Types / Trees
	Input and Output

