
Functional Programming

Christian Sternagel Harald Zankl Evgeny Zuenko

Department of Computer Science
University of Innsbruck

WS 2017/2018

Lecture 6

http://cl-informatik.uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws17/fp/
http://cl-informatik.uibk.ac.at/~griff
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Topics

abstract data types, algebraic data types, binary search trees, combinator
parsing, efficiency, encoding data types as lambda-terms, evaluation
strategies, formal verification, first steps, guarded recursion, Haskell
introduction, higher-order functions, historical overview, implementing a
type checker, induction, infinite data structures, input and output,
lambda-calculus, lazy evaluation, list comprehensions, lists, modules,
pattern matching, polymorphism, property-based testing, reasoning
about functional programs, recursive functions, sets, strings, tail
recursion, trees, tupling, type checking, type inference, types, types
and type classes, unification, user-defined types

CS,HZ,EZ (DCS @ UIBK) lecture 6 2/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Topics

abstract data types, algebraic data types, binary search trees, combinator
parsing, efficiency, encoding data types as lambda-terms, evaluation
strategies, formal verification, first steps, guarded recursion, Haskell
introduction, higher-order functions, historical overview, implementing a
type checker, induction, infinite data structures, input and output,
lambda-calculus, lazy evaluation, list comprehensions, lists, modules,
pattern matching, polymorphism, property-based testing, reasoning
about functional programs, recursive functions, sets, strings, tail
recursion, trees, tupling, type checking, type inference, types, types
and type classes, unification, user-defined types

CS,HZ,EZ (DCS @ UIBK) lecture 6 2/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Overview

• Evaluation Strategies

• Abstract Data Types

• Sets and Binary Search Trees

CS,HZ,EZ (DCS @ UIBK) lecture 6 3/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Evaluation Strategies

CS,HZ,EZ (DCS @ UIBK) lecture 6 4/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Recall λ-Terms

t ::= x | (t t) | (λx. t)

Examples

conventions verbose in words

x y (x y) “x applied to y”
λx. x (λx. x) “lambda x to x” (identity function)
λxy. x (λx. (λy. x)) “lambda x y to x”
λx. x x (λx. (x x)) “lambda x to x applied to x”

(λx. x) x ((λx. x) x) “lambda x to x, applied to x”

CS,HZ,EZ (DCS @ UIBK) lecture 6 5/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Recall λ-Terms

t ::= x | (t t) | (λx. t)

Examples

conventions verbose in words

x y (x y) “x applied to y”
λx. x (λx. x) “lambda x to x” (identity function)
λxy. x (λx. (λy. x)) “lambda x y to x”
λx. x x (λx. (x x)) “lambda x to x applied to x”

(λx. x) x ((λx. x) x) “lambda x to x, applied to x”

CS,HZ,EZ (DCS @ UIBK) lecture 6 5/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Recall β-Reduction

• term s (β-)reduces to term t in one step

• written: s→β t

• iff there is subterm (λx. u) v of s, s.t.,

• replacing (λx. u) v in s by u[x := v] results in t

Examples

K = λxy. x

I = λx. x

Ω = (λx. x x) (λx. x x)

CS,HZ,EZ (DCS @ UIBK) lecture 6 6/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Recall β-Reduction

• term s (β-)reduces to term t in one step

• written: s→β t

• iff there is subterm (λx. u) v of s, s.t.,

• replacing (λx. u) v in s by u[x := v] results in t

Examples

K = λxy. x

I = λx. x

Ω = (λx. x x) (λx. x x)

CS,HZ,EZ (DCS @ UIBK) lecture 6 6/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Order of Evaluation

• consider d x = x + x

• the term d (d 2) may be evaluated as follows

d (d 2)

d (2 + 2) d 2 + d 2

d 4 (2 + 2) + (2 + 2)

(2 + 2) + d 2 d 2 + (2 + 2)

4 + 4

4 + (2 + 2) (2 + 2) + 4

4 + d 2 d 2 + 4

8

CS,HZ,EZ (DCS @ UIBK) lecture 6 7/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Order of Evaluation

• consider d x = x + x

• the term d (d 2) may be evaluated as follows

d (d 2)

d (2 + 2)

d 2 + d 2

d 4 (2 + 2) + (2 + 2)

(2 + 2) + d 2 d 2 + (2 + 2)

4 + 4

4 + (2 + 2) (2 + 2) + 4

4 + d 2 d 2 + 4

8

CS,HZ,EZ (DCS @ UIBK) lecture 6 7/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Order of Evaluation

• consider d x = x + x

• the term d (d 2) may be evaluated as follows

d (d 2)

d (2 + 2) d 2 + d 2

d 4 (2 + 2) + (2 + 2)

(2 + 2) + d 2 d 2 + (2 + 2)

4 + 4

4 + (2 + 2) (2 + 2) + 4

4 + d 2 d 2 + 4

8

CS,HZ,EZ (DCS @ UIBK) lecture 6 7/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Order of Evaluation

• consider d x = x + x

• the term d (d 2) may be evaluated as follows

d (d 2)

d (2 + 2) d 2 + d 2

d 4

(2 + 2) + (2 + 2)

(2 + 2) + d 2 d 2 + (2 + 2)

4 + 4

4 + (2 + 2) (2 + 2) + 4

4 + d 2 d 2 + 4

8

CS,HZ,EZ (DCS @ UIBK) lecture 6 7/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Order of Evaluation

• consider d x = x + x

• the term d (d 2) may be evaluated as follows

d (d 2)

d (2 + 2) d 2 + d 2

d 4 (2 + 2) + (2 + 2)

(2 + 2) + d 2 d 2 + (2 + 2)

4 + 4

4 + (2 + 2) (2 + 2) + 4

4 + d 2 d 2 + 4

8

CS,HZ,EZ (DCS @ UIBK) lecture 6 7/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Order of Evaluation

• consider d x = x + x

• the term d (d 2) may be evaluated as follows

d (d 2)

d (2 + 2) d 2 + d 2

d 4 (2 + 2) + (2 + 2)

(2 + 2) + d 2

d 2 + (2 + 2)

4 + 4

4 + (2 + 2) (2 + 2) + 4

4 + d 2 d 2 + 4

8

CS,HZ,EZ (DCS @ UIBK) lecture 6 7/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Order of Evaluation

• consider d x = x + x

• the term d (d 2) may be evaluated as follows

d (d 2)

d (2 + 2) d 2 + d 2

d 4 (2 + 2) + (2 + 2)

(2 + 2) + d 2 d 2 + (2 + 2)

4 + 4

4 + (2 + 2) (2 + 2) + 4

4 + d 2 d 2 + 4

8

CS,HZ,EZ (DCS @ UIBK) lecture 6 7/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Order of Evaluation

• consider d x = x + x

• the term d (d 2) may be evaluated as follows

d (d 2)

d (2 + 2) d 2 + d 2

d 4 (2 + 2) + (2 + 2)

(2 + 2) + d 2 d 2 + (2 + 2)

4 + 4

4 + (2 + 2) (2 + 2) + 4

4 + d 2 d 2 + 4

8

CS,HZ,EZ (DCS @ UIBK) lecture 6 7/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Order of Evaluation

• consider d x = x + x

• the term d (d 2) may be evaluated as follows

d (d 2)

d (2 + 2) d 2 + d 2

d 4 (2 + 2) + (2 + 2)

(2 + 2) + d 2 d 2 + (2 + 2)

4 + 4

4 + (2 + 2)

(2 + 2) + 4

4 + d 2 d 2 + 4

8

CS,HZ,EZ (DCS @ UIBK) lecture 6 7/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Order of Evaluation

• consider d x = x + x

• the term d (d 2) may be evaluated as follows

d (d 2)

d (2 + 2) d 2 + d 2

d 4 (2 + 2) + (2 + 2)

(2 + 2) + d 2 d 2 + (2 + 2)

4 + 4

4 + (2 + 2) (2 + 2) + 4

4 + d 2 d 2 + 4

8

CS,HZ,EZ (DCS @ UIBK) lecture 6 7/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Order of Evaluation

• consider d x = x + x

• the term d (d 2) may be evaluated as follows

d (d 2)

d (2 + 2) d 2 + d 2

d 4 (2 + 2) + (2 + 2)

(2 + 2) + d 2 d 2 + (2 + 2)

4 + 4

4 + (2 + 2) (2 + 2) + 4

4 + d 2

d 2 + 4

8

CS,HZ,EZ (DCS @ UIBK) lecture 6 7/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Order of Evaluation

• consider d x = x + x

• the term d (d 2) may be evaluated as follows

d (d 2)

d (2 + 2) d 2 + d 2

d 4 (2 + 2) + (2 + 2)

(2 + 2) + d 2 d 2 + (2 + 2)

4 + 4

4 + (2 + 2) (2 + 2) + 4

4 + d 2

d 2 + 4

8

CS,HZ,EZ (DCS @ UIBK) lecture 6 7/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Order of Evaluation

• consider d x = x + x

• the term d (d 2) may be evaluated as follows

d (d 2)

d (2 + 2) d 2 + d 2

d 4 (2 + 2) + (2 + 2)

(2 + 2) + d 2 d 2 + (2 + 2)

4 + 4

4 + (2 + 2) (2 + 2) + 4

4 + d 2

d 2 + 4

8

CS,HZ,EZ (DCS @ UIBK) lecture 6 7/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Order of Evaluation

• consider d x = x + x

• the term d (d 2) may be evaluated as follows

d (d 2)

d (2 + 2) d 2 + d 2

d 4 (2 + 2) + (2 + 2)

(2 + 2) + d 2 d 2 + (2 + 2)

4 + 4

4 + (2 + 2) (2 + 2) + 4

4 + d 2 d 2 + 4

8

CS,HZ,EZ (DCS @ UIBK) lecture 6 7/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Order of Evaluation

• consider d x = x + x

• the term d (d 2) may be evaluated as follows

d (d 2)

d (2 + 2) d 2 + d 2

d 4 (2 + 2) + (2 + 2)

(2 + 2) + d 2 d 2 + (2 + 2)

4 + 4

4 + (2 + 2) (2 + 2) + 4

4 + d 2 d 2 + 4

8
CS,HZ,EZ (DCS @ UIBK) lecture 6 7/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Order of Evaluation

• consider d x = x + x

• the term d (d 2) may be evaluated as follows

d (d 2)

d (2 + 2) d 2 + d 2

d 4 (2 + 2) + (2 + 2)

(2 + 2) + d 2 d 2 + (2 + 2)

4 + 4

4 + (2 + 2) (2 + 2) + 4

4 + d 2 d 2 + 4

8
CS,HZ,EZ (DCS @ UIBK) lecture 6 7/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Order of Evaluation

• consider d x = x + x

• the term d (d 2) may be evaluated as follows

d (d 2)

d (2 + 2) d 2 + d 2

d 4 (2 + 2) + (2 + 2)

(2 + 2) + d 2 d 2 + (2 + 2)

4 + 4

4 + (2 + 2) (2 + 2) + 4

4 + d 2 d 2 + 4

8
CS,HZ,EZ (DCS @ UIBK) lecture 6 7/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Order of Evaluation

• consider d x = x + x

• the term d (d 2) may be evaluated as follows

d (d 2)

d (2 + 2) d 2 + d 2

d 4 (2 + 2) + (2 + 2)

(2 + 2) + d 2 d 2 + (2 + 2)

4 + 4

4 + (2 + 2) (2 + 2) + 4

4 + d 2 d 2 + 4

8
CS,HZ,EZ (DCS @ UIBK) lecture 6 7/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Order of Evaluation

• consider d x = x + x

• the term d (d 2) may be evaluated as follows

d (d 2)

d (2 + 2) d 2 + d 2

d 4 (2 + 2) + (2 + 2)

(2 + 2) + d 2 d 2 + (2 + 2)

4 + 4

4 + (2 + 2) (2 + 2) + 4

4 + d 2 d 2 + 4

8
CS,HZ,EZ (DCS @ UIBK) lecture 6 7/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

(Reduction) Strategies

• fix evaluation order

• call by value (idea: compute arguments before function calls)

• call by name (idea: compute arguments on demand only)

what is called evaluation strategy
in programming, is typically called
reduction strategy in λ-calculus

Example

• call by value

d (d 2)

= d (2 + 2)

= d 4

= 4 + 4

= 8

• call by name

d (d 2)

= d 2 + d 2

= (2 + 2) + d 2

= 4 + d 2

= 4 + (2 + 2)

= 4 + 4

= 8

CS,HZ,EZ (DCS @ UIBK) lecture 6 8/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

(Reduction) Strategies

• fix evaluation order

• call by value (idea: compute arguments before function calls)

• call by name (idea: compute arguments on demand only)

what is called evaluation strategy
in programming, is typically called
reduction strategy in λ-calculus

Example

• call by value

d (d 2)

= d (2 + 2)

= d 4

= 4 + 4

= 8

• call by name

d (d 2)

= d 2 + d 2

= (2 + 2) + d 2

= 4 + d 2

= 4 + (2 + 2)

= 4 + 4

= 8

CS,HZ,EZ (DCS @ UIBK) lecture 6 8/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

(Reduction) Strategies

• fix evaluation order

• call by value (idea: compute arguments before function calls)

• call by name (idea: compute arguments on demand only)

what is called evaluation strategy
in programming, is typically called
reduction strategy in λ-calculus

Example

• call by value

d (d 2)

= d (2 + 2)

= d 4

= 4 + 4

= 8

• call by name

d (d 2)

= d 2 + d 2

= (2 + 2) + d 2

= 4 + d 2

= 4 + (2 + 2)

= 4 + 4

= 8

CS,HZ,EZ (DCS @ UIBK) lecture 6 8/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

(Reduction) Strategies

• fix evaluation order

• call by value (idea: compute arguments before function calls)

• call by name (idea: compute arguments on demand only)

what is called evaluation strategy
in programming, is typically called
reduction strategy in λ-calculus

Example

• call by value

d (d 2) = d (2 + 2)

= d 4

= 4 + 4

= 8

• call by name

d (d 2)

= d 2 + d 2

= (2 + 2) + d 2

= 4 + d 2

= 4 + (2 + 2)

= 4 + 4

= 8

CS,HZ,EZ (DCS @ UIBK) lecture 6 8/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

(Reduction) Strategies

• fix evaluation order

• call by value (idea: compute arguments before function calls)

• call by name (idea: compute arguments on demand only)

what is called evaluation strategy
in programming, is typically called
reduction strategy in λ-calculus

Example

• call by value

d (d 2) = d (2 + 2)

= d 4

= 4 + 4

= 8

• call by name

d (d 2)

= d 2 + d 2

= (2 + 2) + d 2

= 4 + d 2

= 4 + (2 + 2)

= 4 + 4

= 8

CS,HZ,EZ (DCS @ UIBK) lecture 6 8/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

(Reduction) Strategies

• fix evaluation order

• call by value (idea: compute arguments before function calls)

• call by name (idea: compute arguments on demand only)

what is called evaluation strategy
in programming, is typically called
reduction strategy in λ-calculus

Example

• call by value

d (d 2) = d (2 + 2)

= d 4

= 4 + 4

= 8

• call by name

d (d 2)

= d 2 + d 2

= (2 + 2) + d 2

= 4 + d 2

= 4 + (2 + 2)

= 4 + 4

= 8

CS,HZ,EZ (DCS @ UIBK) lecture 6 8/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

(Reduction) Strategies

• fix evaluation order

• call by value (idea: compute arguments before function calls)

• call by name (idea: compute arguments on demand only)

what is called evaluation strategy
in programming, is typically called
reduction strategy in λ-calculus

Example

• call by value

d (d 2) = d (2 + 2)

= d 4

= 4 + 4

= 8

• call by name

d (d 2)

= d 2 + d 2

= (2 + 2) + d 2

= 4 + d 2

= 4 + (2 + 2)

= 4 + 4

= 8

CS,HZ,EZ (DCS @ UIBK) lecture 6 8/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

(Reduction) Strategies

• fix evaluation order

• call by value (idea: compute arguments before function calls)

• call by name (idea: compute arguments on demand only)

what is called evaluation strategy
in programming, is typically called
reduction strategy in λ-calculus

Example

• call by value

d (d 2) = d (2 + 2)

= d 4

= 4 + 4

= 8

• call by name

d (d 2) = d 2 + d 2

= (2 + 2) + d 2

= 4 + d 2

= 4 + (2 + 2)

= 4 + 4

= 8

CS,HZ,EZ (DCS @ UIBK) lecture 6 8/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

(Reduction) Strategies

• fix evaluation order

• call by value (idea: compute arguments before function calls)

• call by name (idea: compute arguments on demand only)

what is called evaluation strategy
in programming, is typically called
reduction strategy in λ-calculus

Example

• call by value

d (d 2) = d (2 + 2)

= d 4

= 4 + 4

= 8

• call by name

d (d 2) = d 2 + d 2

= (2 + 2) + d 2

= 4 + d 2

= 4 + (2 + 2)

= 4 + 4

= 8

CS,HZ,EZ (DCS @ UIBK) lecture 6 8/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

(Reduction) Strategies

• fix evaluation order

• call by value (idea: compute arguments before function calls)

• call by name (idea: compute arguments on demand only)

what is called evaluation strategy
in programming, is typically called
reduction strategy in λ-calculus

Example

• call by value

d (d 2) = d (2 + 2)

= d 4

= 4 + 4

= 8

• call by name

d (d 2) = d 2 + d 2

= (2 + 2) + d 2

= 4 + d 2

= 4 + (2 + 2)

= 4 + 4

= 8

CS,HZ,EZ (DCS @ UIBK) lecture 6 8/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

(Reduction) Strategies

• fix evaluation order

• call by value (idea: compute arguments before function calls)

• call by name (idea: compute arguments on demand only)

what is called evaluation strategy
in programming, is typically called
reduction strategy in λ-calculus

Example

• call by value

d (d 2) = d (2 + 2)

= d 4

= 4 + 4

= 8

• call by name

d (d 2) = d 2 + d 2

= (2 + 2) + d 2

= 4 + d 2

= 4 + (2 + 2)

= 4 + 4

= 8

CS,HZ,EZ (DCS @ UIBK) lecture 6 8/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

(Reduction) Strategies

• fix evaluation order

• call by value (idea: compute arguments before function calls)

• call by name (idea: compute arguments on demand only)

what is called evaluation strategy
in programming, is typically called
reduction strategy in λ-calculus

Example

• call by value

d (d 2) = d (2 + 2)

= d 4

= 4 + 4

= 8

• call by name

d (d 2) = d 2 + d 2

= (2 + 2) + d 2

= 4 + d 2

= 4 + (2 + 2)

= 4 + 4

= 8

CS,HZ,EZ (DCS @ UIBK) lecture 6 8/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

(Reduction) Strategies

• fix evaluation order

• call by value (idea: compute arguments before function calls)

• call by name (idea: compute arguments on demand only)

what is called evaluation strategy
in programming, is typically called
reduction strategy in λ-calculus

Example

• call by value

d (d 2) = d (2 + 2)

= d 4

= 4 + 4

= 8

• call by name

d (d 2) = d 2 + d 2

= (2 + 2) + d 2

= 4 + d 2

= 4 + (2 + 2)

= 4 + 4

= 8

CS,HZ,EZ (DCS @ UIBK) lecture 6 8/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Applicative Order Reduction

• reduce rightmost innermost redex

• redex is innermost if it does not contain redexes itself

Example

• consider t = (λx. (λy. y) x) z

• (λy. y) x is innermost redex

• t is redex, but not innermost

CS,HZ,EZ (DCS @ UIBK) lecture 6 9/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Applicative Order Reduction

• reduce rightmost innermost redex

• redex is innermost if it does not contain redexes itself

Example

• consider t = (λx. (λy. y) x) z

• (λy. y) x is innermost redex

• t is redex, but not innermost

CS,HZ,EZ (DCS @ UIBK) lecture 6 9/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Normal Order Reduction

• reduce leftmost outermost redex

• redex is outermost if it is not contained in another redex

Example

• consider t = (λx. (λy. y) x) z

• t is outermost redex

• (λy. y) x is redex, but not outermost

CS,HZ,EZ (DCS @ UIBK) lecture 6 10/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Normal Order Reduction

• reduce leftmost outermost redex

• redex is outermost if it is not contained in another redex

Example

• consider t = (λx. (λy. y) x) z

• t is outermost redex

• (λy. y) x is redex, but not outermost

CS,HZ,EZ (DCS @ UIBK) lecture 6 10/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Exercises

• consider the λ-terms

• S = λxyz. x z (y z)

• K = λxy. x

• I = λx. x

• reduce S K I to NF using applicative order reduction

• reduce S K I to NF using normal order reduction

CS,HZ,EZ (DCS @ UIBK) lecture 6 11/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Further Classification of λ-Terms

• a term that is not an application is called value

• a term is called weak head normal form (WHNF) if it satisfies:
whnf(x) = true

whnf(λx. t) = true

whnf((λx. t) u) = false

whnf(t u) = whnf(t)

Examples

term t value WHNF

(λx. x) x

8 8

x y

8 4

x

4 4

λx. (λy. y) x

4 4

CS,HZ,EZ (DCS @ UIBK) lecture 6 12/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Further Classification of λ-Terms

• a term that is not an application is called value

• a term is called weak head normal form (WHNF) if it satisfies:
whnf(x) = true

whnf(λx. t) = true

whnf((λx. t) u) = false

whnf(t u) = whnf(t)

Examples

term t value WHNF

(λx. x) x

8 8

x y

8 4

x

4 4

λx. (λy. y) x

4 4

CS,HZ,EZ (DCS @ UIBK) lecture 6 12/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Further Classification of λ-Terms

• a term that is not an application is called value

• a term is called weak head normal form (WHNF) if it satisfies:
whnf(x) = true

whnf(λx. t) = true

whnf((λx. t) u) = false

whnf(t u) = whnf(t)

Examples

term t value WHNF

(λx. x) x

8 8

x y

8 4

x

4 4

λx. (λy. y) x

4 4

CS,HZ,EZ (DCS @ UIBK) lecture 6 12/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Further Classification of λ-Terms

• a term that is not an application is called value

• a term is called weak head normal form (WHNF) if it satisfies:
whnf(x) = true

whnf(λx. t) = true

whnf((λx. t) u) = false

whnf(t u) = whnf(t)

Examples

term t value WHNF

(λx. x) x 8

8

x y

8 4

x

4 4

λx. (λy. y) x

4 4

CS,HZ,EZ (DCS @ UIBK) lecture 6 12/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Further Classification of λ-Terms

• a term that is not an application is called value

• a term is called weak head normal form (WHNF) if it satisfies:
whnf(x) = true

whnf(λx. t) = true

whnf((λx. t) u) = false

whnf(t u) = whnf(t)

Examples

term t value WHNF

(λx. x) x 8 8

x y

8 4

x

4 4

λx. (λy. y) x

4 4

CS,HZ,EZ (DCS @ UIBK) lecture 6 12/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Further Classification of λ-Terms

• a term that is not an application is called value

• a term is called weak head normal form (WHNF) if it satisfies:
whnf(x) = true

whnf(λx. t) = true

whnf((λx. t) u) = false

whnf(t u) = whnf(t)

Examples

term t value WHNF

(λx. x) x 8 8

x y 8

4

x

4 4

λx. (λy. y) x

4 4

CS,HZ,EZ (DCS @ UIBK) lecture 6 12/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Further Classification of λ-Terms

• a term that is not an application is called value

• a term is called weak head normal form (WHNF) if it satisfies:
whnf(x) = true

whnf(λx. t) = true

whnf((λx. t) u) = false

whnf(t u) = whnf(t)

Examples

term t value WHNF

(λx. x) x 8 8

x y 8 4

x

4 4

λx. (λy. y) x

4 4

CS,HZ,EZ (DCS @ UIBK) lecture 6 12/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Further Classification of λ-Terms

• a term that is not an application is called value

• a term is called weak head normal form (WHNF) if it satisfies:
whnf(x) = true

whnf(λx. t) = true

whnf((λx. t) u) = false

whnf(t u) = whnf(t)

Examples

term t value WHNF

(λx. x) x 8 8

x y 8 4

x 4

4

λx. (λy. y) x

4 4

CS,HZ,EZ (DCS @ UIBK) lecture 6 12/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Further Classification of λ-Terms

• a term that is not an application is called value

• a term is called weak head normal form (WHNF) if it satisfies:
whnf(x) = true

whnf(λx. t) = true

whnf((λx. t) u) = false

whnf(t u) = whnf(t)

Examples

term t value WHNF

(λx. x) x 8 8

x y 8 4

x 4 4

λx. (λy. y) x

4 4

CS,HZ,EZ (DCS @ UIBK) lecture 6 12/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Further Classification of λ-Terms

• a term that is not an application is called value

• a term is called weak head normal form (WHNF) if it satisfies:
whnf(x) = true

whnf(λx. t) = true

whnf((λx. t) u) = false

whnf(t u) = whnf(t)

Examples

term t value WHNF

(λx. x) x 8 8

x y 8 4

x 4 4

λx. (λy. y) x 4

4

CS,HZ,EZ (DCS @ UIBK) lecture 6 12/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Further Classification of λ-Terms

• a term that is not an application is called value

• a term is called weak head normal form (WHNF) if it satisfies:
whnf(x) = true

whnf(λx. t) = true

whnf((λx. t) u) = false

whnf(t u) = whnf(t)

Examples

term t value WHNF

(λx. x) x 8 8

x y 8 4

x 4 4

λx. (λy. y) x 4 4

CS,HZ,EZ (DCS @ UIBK) lecture 6 12/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Call by Value

• stop at values

• otherwise choose othermost redex whose right-hand side is value

• corresponds to strict (or eager) evaluation

• adopted by most programming languages

Call by Name

• stop at WHNFs

• otherwise same as normal order (that is, leftmost outermost redex)

• corresponds to lazy evaluation (without memoization)

• adopted for example by Haskell

CS,HZ,EZ (DCS @ UIBK) lecture 6 13/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Call by Value

• stop at values

• otherwise choose othermost redex whose right-hand side is value

• corresponds to strict (or eager) evaluation

• adopted by most programming languages

Call by Name

• stop at WHNFs

• otherwise same as normal order (that is, leftmost outermost redex)

• corresponds to lazy evaluation (without memoization)

• adopted for example by Haskell

CS,HZ,EZ (DCS @ UIBK) lecture 6 13/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Abstract Data Types

CS,HZ,EZ (DCS @ UIBK) lecture 6 14/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Idea

• hide implementation details

• just provide interface

• allows us to change implementation (e.g., make more efficient)
without breaking client code

Haskell

• consider module
module M (T, ...) where

type T = C1 | ... | CN

• only name T is exported, but none of C1 to CN

• thus we are not able to directly construct values of type T

• if we want to export C1 to CN, we can use T(..) in export list

CS,HZ,EZ (DCS @ UIBK) lecture 6 15/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Idea

• hide implementation details

• just provide interface

• allows us to change implementation (e.g., make more efficient)
without breaking client code

Haskell

• consider module
module M (T, ...) where

type T = C1 | ... | CN

• only name T is exported, but none of C1 to CN

• thus we are not able to directly construct values of type T

• if we want to export C1 to CN, we can use T(..) in export list

CS,HZ,EZ (DCS @ UIBK) lecture 6 15/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Characteristics of Sets

• order of elements not important

• no duplicates

Examples

{1, 2, 3, 5} = {5, 1, 3, 2}
{1, 1, 2, 2} = {1, 2}

Operations on Sets

description notation Haskell

empty set ∅ empty :: Set a

insertion {x} ∪ S insert :: a -> Set a -> Set a

membership e ∈ S mem :: a -> Set a -> Bool

union S ∪ T union :: Set a -> Set a -> Set a

difference S \ T diff :: Set a -> Set a -> Set a

CS,HZ,EZ (DCS @ UIBK) lecture 6 16/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Characteristics of Sets

• order of elements not important

• no duplicates

Examples

{1, 2, 3, 5} = {5, 1, 3, 2}
{1, 1, 2, 2} = {1, 2}

Operations on Sets

description notation Haskell

empty set ∅ empty :: Set a

insertion {x} ∪ S insert :: a -> Set a -> Set a

membership e ∈ S mem :: a -> Set a -> Bool

union S ∪ T union :: Set a -> Set a -> Set a

difference S \ T diff :: Set a -> Set a -> Set a

CS,HZ,EZ (DCS @ UIBK) lecture 6 16/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Characteristics of Sets

• order of elements not important

• no duplicates

Examples

{1, 2, 3, 5} = {5, 1, 3, 2}
{1, 1, 2, 2} = {1, 2}

Operations on Sets

description notation Haskell

empty set ∅ empty :: Set a

insertion {x} ∪ S insert :: a -> Set a -> Set a

membership e ∈ S mem :: a -> Set a -> Bool

union S ∪ T union :: Set a -> Set a -> Set a

difference S \ T diff :: Set a -> Set a -> Set a

CS,HZ,EZ (DCS @ UIBK) lecture 6 16/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example – Sets as Lists

module Set (Set, empty, insert, mem, union, diff) where

import qualified Data.List as List

data Set a = Set [a]

empty :: Set a

empty = Set []

insert :: Eq a => a -> Set a -> Set a

insert x (Set xs) = Set $ List.nub $ x : xs

mem :: Eq a => a -> Set a -> Bool

x `mem` Set xs = x `elem` xs

union, diff :: Eq a => Set a -> Set a -> Set a

union (Set xs) (Set ys) = Set $ List.nub $ xs ++ ys

diff (Set xs) (Set ys) = Set $ xs List.\\ ys

CS,HZ,EZ (DCS @ UIBK) lecture 6 17/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Note – Imports

• import M imports all functions and types exported by module M

• we may restrict to f1, . . . , fN, writing import M (f1, ..., fN)

• by import M hiding (f1, ..., fN) we import everything except
the functions f1 to fN

• import qualified M allows us to access all functions exported by M

using prefix M.

• import qualified M as N, same as import qualified M but
additionally rename M to N

CS,HZ,EZ (DCS @ UIBK) lecture 6 18/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Note – Imports

• import M imports all functions and types exported by module M

• we may restrict to f1, . . . , fN, writing import M (f1, ..., fN)

• by import M hiding (f1, ..., fN) we import everything except
the functions f1 to fN

• import qualified M allows us to access all functions exported by M

using prefix M.

• import qualified M as N, same as import qualified M but
additionally rename M to N

CS,HZ,EZ (DCS @ UIBK) lecture 6 18/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Note – Imports

• import M imports all functions and types exported by module M

• we may restrict to f1, . . . , fN, writing import M (f1, ..., fN)

• by import M hiding (f1, ..., fN) we import everything except
the functions f1 to fN

• import qualified M allows us to access all functions exported by M

using prefix M.

• import qualified M as N, same as import qualified M but
additionally rename M to N

CS,HZ,EZ (DCS @ UIBK) lecture 6 18/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Note – Imports

• import M imports all functions and types exported by module M

• we may restrict to f1, . . . , fN, writing import M (f1, ..., fN)

• by import M hiding (f1, ..., fN) we import everything except
the functions f1 to fN

• import qualified M allows us to access all functions exported by M

using prefix M.

• import qualified M as N, same as import qualified M but
additionally rename M to N

CS,HZ,EZ (DCS @ UIBK) lecture 6 18/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Note – Imports

• import M imports all functions and types exported by module M

• we may restrict to f1, . . . , fN, writing import M (f1, ..., fN)

• by import M hiding (f1, ..., fN) we import everything except
the functions f1 to fN

• import qualified M allows us to access all functions exported by M

using prefix M.

• import qualified M as N, same as import qualified M but
additionally rename M to N

CS,HZ,EZ (DCS @ UIBK) lecture 6 18/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

New Types

• data with single constructor Set was used to hide implementation

• in this common special case use newtype Set a = Set a instead

• only difference: newtype has better performance than data

Record Syntax

• for data type / new type T, instead of C t1 . . . tN, we may use

• C {n1 :: t1, . . . , nN :: tN} as constructor

• provides selector functions n1 :: T -> t1, . . . , nN :: T -> tN

Example

• data Equation a = E { lhs :: a, rhs :: a }

ghci> let e1 = E "10" "5+5"

ghci> let e2 = E { rhs = "5+5", lhs = "10" }

ghci> lhs e1

"10"

ghci> rhs e2

"5+5"

CS,HZ,EZ (DCS @ UIBK) lecture 6 19/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

New Types

• data with single constructor Set was used to hide implementation

• in this common special case use newtype Set a = Set a instead

• only difference: newtype has better performance than data

Record Syntax

• for data type / new type T, instead of C t1 . . . tN, we may use

• C {n1 :: t1, . . . , nN :: tN} as constructor

• provides selector functions n1 :: T -> t1, . . . , nN :: T -> tN

Example

• data Equation a = E { lhs :: a, rhs :: a }

ghci> let e1 = E "10" "5+5"

ghci> let e2 = E { rhs = "5+5", lhs = "10" }

ghci> lhs e1

"10"

ghci> rhs e2

"5+5"

CS,HZ,EZ (DCS @ UIBK) lecture 6 19/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

New Types

• data with single constructor Set was used to hide implementation

• in this common special case use newtype Set a = Set a instead

• only difference: newtype has better performance than data

Record Syntax

• for data type / new type T, instead of C t1 . . . tN, we may use

• C {n1 :: t1, . . . , nN :: tN} as constructor

• provides selector functions n1 :: T -> t1, . . . , nN :: T -> tN

Example

• data Equation a = E { lhs :: a, rhs :: a }

ghci> let e1 = E "10" "5+5"

ghci> let e2 = E { rhs = "5+5", lhs = "10" }

ghci> lhs e1

"10"

ghci> rhs e2

"5+5"

CS,HZ,EZ (DCS @ UIBK) lecture 6 19/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

New Types

• data with single constructor Set was used to hide implementation

• in this common special case use newtype Set a = Set a instead

• only difference: newtype has better performance than data

Record Syntax

• for data type / new type T, instead of C t1 . . . tN, we may use

• C {n1 :: t1, . . . , nN :: tN} as constructor

• provides selector functions n1 :: T -> t1, . . . , nN :: T -> tN

Example

• data Equation a = E { lhs :: a, rhs :: a }

ghci> let e1 = E "10" "5+5"

ghci> let e2 = E { rhs = "5+5", lhs = "10" }

ghci> lhs e1

"10"

ghci> rhs e2

"5+5"
CS,HZ,EZ (DCS @ UIBK) lecture 6 19/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Sets and Binary Search Trees

CS,HZ,EZ (DCS @ UIBK) lecture 6 20/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

The Type

• use type BTree without prefix: import BTree (BTree(..))

• import remaining functions from BTree with prefix
import qualified BTree

• internal representation of set is binary tree (with selector rep)
newtype Set a = Set { rep :: BTree a }

Note

• newtype Set a = Set { rep :: BTree a } is almost the same
as writing type Set a = BTree a

• additionally type system prevents us from “accidentally” (that is,
without constructor Set) using BTrees as Sets

• no runtime penalty (in contrast to
data Set a = Set { rep :: BTree })

• reason: newtype restricted to single constructor (usually of same
name as newly introduced type)

• data may have arbitrarily many constructors (e.g., Empty and Node)

CS,HZ,EZ (DCS @ UIBK) lecture 6 21/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

The Type

• use type BTree without prefix: import BTree (BTree(..))

• import remaining functions from BTree with prefix
import qualified BTree

• internal representation of set is binary tree (with selector rep)
newtype Set a = Set { rep :: BTree a }

Note

• newtype Set a = Set { rep :: BTree a } is almost the same
as writing type Set a = BTree a

• additionally type system prevents us from “accidentally” (that is,
without constructor Set) using BTrees as Sets

• no runtime penalty (in contrast to
data Set a = Set { rep :: BTree })

• reason: newtype restricted to single constructor (usually of same
name as newly introduced type)

• data may have arbitrarily many constructors (e.g., Empty and Node)

CS,HZ,EZ (DCS @ UIBK) lecture 6 21/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Empty Set

empty :: Set a

empty = Set Empty

Membership

mem :: Ord a => a -> Set a -> Bool

x `mem` s = x `memTree` rep s

where

memTree x Empty = False

memTree x (Node y l r) =

case compare x y of

EQ -> True

LT -> x `memTree` l

GT -> x `memTree` r

CS,HZ,EZ (DCS @ UIBK) lecture 6 22/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Empty Set

empty :: Set a

empty = Set Empty

Membership

mem :: Ord a => a -> Set a -> Bool

x `mem` s = x `memTree` rep s

where

memTree x Empty = False

memTree x (Node y l r) =

case compare x y of

EQ -> True

LT -> x `memTree` l

GT -> x `memTree` r

CS,HZ,EZ (DCS @ UIBK) lecture 6 22/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Insertion

insert :: Ord a => a -> Set a -> Set a

insert x s = Set $ insertTree x $ rep s

insertTree :: Ord a => a -> BTree a -> BTree a

insertTree x Empty = Node x Empty Empty

insertTree x (Node y l r) =

case compare x y of

EQ -> Node y l r

LT -> Node y (insertTree x l) r

GT -> Node y l (insertTree x r)

CS,HZ,EZ (DCS @ UIBK) lecture 6 23/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Union

union :: Ord a => Set a -> Set a -> Set a

union s t = Set $ rep s `unionTree` rep t

unionTree :: Ord a => BTree a -> BTree a -> BTree a

unionTree Empty s = s

unionTree (Node x l r) s =

insertTree x $ l `unionTree` r `unionTree` s

CS,HZ,EZ (DCS @ UIBK) lecture 6 24/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Removing the Maximal Element

splitMaxTree :: BTree a -> Maybe (a, BTree a)

splitMaxTree Empty = Nothing

splitMaxTree (Node x l Empty) = Just (x, l)

splitMaxTree (Node x l r) =

let Just (m, r') = splitMaxTree r

in Just (m, Node x l r')

The Maybe Type

• Prelude: data Maybe a = Just a | Nothing

• used for type-based error handling

• if an error occurs, we return Nothing

• otherwise Just the result

Example – Safe Head

safeHead (x:_) = Just x

safeHead _ = Nothing

CS,HZ,EZ (DCS @ UIBK) lecture 6 25/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Removing the Maximal Element

splitMaxTree :: BTree a -> Maybe (a, BTree a)

splitMaxTree Empty = Nothing

splitMaxTree (Node x l Empty) = Just (x, l)

splitMaxTree (Node x l r) =

let Just (m, r') = splitMaxTree r

in Just (m, Node x l r')

The Maybe Type

• Prelude: data Maybe a = Just a | Nothing

• used for type-based error handling

• if an error occurs, we return Nothing

• otherwise Just the result

Example – Safe Head

safeHead (x:_) = Just x

safeHead _ = Nothing

CS,HZ,EZ (DCS @ UIBK) lecture 6 25/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Removing the Maximal Element

splitMaxTree :: BTree a -> Maybe (a, BTree a)

splitMaxTree Empty = Nothing

splitMaxTree (Node x l Empty) = Just (x, l)

splitMaxTree (Node x l r) =

let Just (m, r') = splitMaxTree r

in Just (m, Node x l r')

The Maybe Type

• Prelude: data Maybe a = Just a | Nothing

• used for type-based error handling

• if an error occurs, we return Nothing

• otherwise Just the result

Example – Safe Head

safeHead (x:_) = Just x

safeHead _ = Nothing

CS,HZ,EZ (DCS @ UIBK) lecture 6 25/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Remove Given Element
removeTree :: Ord a => a -> BTree a -> BTree a

removeTree x Empty = Empty

removeTree x (Node y l r) = case compare x y of

LT -> Node y (removeTree x l) r

GT -> Node y l (removeTree x r)

EQ -> case splitMaxTree l of

Nothing -> r

Just (m, l') -> Node m l' r

For Binary Search Tree (BST)
• x smaller y: x can only occur in l

• x greater y: x can only occur in r

• x equals y: remove current node and

• combine l and r into new BST

• therefore, take maximum of l as new root

• guarantees that all other elements in l are smaller and

• that all elements in r are greater

CS,HZ,EZ (DCS @ UIBK) lecture 6 26/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Remove Given Element
removeTree :: Ord a => a -> BTree a -> BTree a

removeTree x Empty = Empty

removeTree x (Node y l r) = case compare x y of

LT -> Node y (removeTree x l) r

GT -> Node y l (removeTree x r)

EQ -> case splitMaxTree l of

Nothing -> r

Just (m, l') -> Node m l' r

For Binary Search Tree (BST)
• x smaller y: x can only occur in l

• x greater y: x can only occur in r

• x equals y: remove current node and

• combine l and r into new BST

• therefore, take maximum of l as new root

• guarantees that all other elements in l are smaller and

• that all elements in r are greater
CS,HZ,EZ (DCS @ UIBK) lecture 6 26/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Difference

diff :: Ord a => Set a -> Set a -> Set a

diff s t = Set $ rep s `diffTree` rep t

diffTree :: Ord a => BTree a -> BTree a -> BTree a

diffTree t Empty = t

diffTree t (Node x l r) =

removeTree x t `diffTree` l `diffTree` r

CS,HZ,EZ (DCS @ UIBK) lecture 6 27/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Exercises (for November 24th)

1. Read Chapter 4 of Real World Haskell and Section 5 of the lecture
notes on the lambda calculus.

2. Reduce ‘add 2 3’ to NF using applicative and normal order reduction.

3. Let type Strat = Term -> [Term] be the type of reduction
strategies. Implement the strategy root :: Strat which applies a
single β-step at the root (if possible).

4. Implement a strategy combinator nested :: Strat -> Strat

that, given a strategy s, results in a new strategy which tries to apply
s at all non-root positions.

5. Building on the previous functions, implement single-step call by
name reduction cbn :: Strat.

6. Implement the function
equals :: Ord a => Set a -> Set a -> Bool, checking
whether two sets are equal.

CS,HZ,EZ (DCS @ UIBK) lecture 6 28/29

http://book.realworldhaskell.org/read/
http://cl-informatik.uibk.ac.at/teaching/ws17/fp/pdfs/lambda.pdf#page=10
http://cl-informatik.uibk.ac.at/teaching/ws17/fp/pdfs/lambda.pdf#page=10
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Examples

• root x = [] – no beta-step possible

• root ((λx. x) u) = [u] – root reduction

• root (x (λx. t) u) = [] – no redex at root position

• single beta-steps strictly below root position

nested root (((λx. x) y) ((λz. z) w)) =
[y ((λz. z) w),(λx. x) y w]

• single-step call by name reduction

cbn (((λx. x) ((λy. y) z)) ((λw.w) v)) =
[((λy. y) z) ((λw.w) v)]

CS,HZ,EZ (DCS @ UIBK) lecture 6 29/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	Evaluation Strategies
	Abstract Data Types
	Sets and Binary Search Trees

