

Functional Programming

Christian Sternagel Harald Zankl Evgeny Zuenko

Department of Computer Science University of Innsbruck

WS 2017/2018

Lecture 6

Topics

abstract data types, algebraic data types, binary search trees, combinator parsing, efficiency, encoding data types as lambda-terms, evaluation strategies, formal verification, first steps, guarded recursion, Haskell introduction, higher-order functions, historical overview, implementing a type checker, induction, infinite data structures, input and output, lambda-calculus, lazy evaluation, list comprehensions, lists, modules, pattern matching, polymorphism, property-based testing, reasoning about functional programs, recursive functions, sets, strings, tail recursion, trees, tupling, type checking, type inference, types, types and type classes, unification, user-defined types

Topics

abstract data types, algebraic data types, binary search trees, combinator parsing, efficiency, encoding data types as lambda-terms, evaluation strategies, formal verification, first steps, guarded recursion, Haskell introduction, higher-order functions, historical overview, implementing a type checker, induction, infinite data structures, input and output, lambda-calculus, lazy evaluation, list comprehensions, lists, modules, pattern matching, polymorphism, property-based testing, reasoning about functional programs, recursive functions, sets, strings, tail recursion, trees, tupling, type checking, type inference, types, types and type classes, unification, user-defined types

Overview

• Evaluation Strategies

• Abstract Data Types

• Sets and Binary Search Trees

Evaluation Strategies

Recall λ -Terms

$$t ::= x \mid (t \ t) \mid (\lambda x. t)$$

Recall λ -Terms

$$t ::= x \mid (t \ t) \mid (\lambda x. t)$$

conventions	verbose	in words
x y	$(x \ y)$	" x applied to y "
$\lambda x. x$	$(\lambda x.x)$	"lambda x to x " (identity function)
$\lambda xy. x$	$(\lambda x. (\lambda y. x))$	"lambda $x \ y$ to x "
$\lambda x. x x$	$(\lambda x. (x x))$	"lambda x to x applied to x "
$(\lambda x. x) x$	$((\lambda x. x) x)$	"lambda x to x , applied to x "

Recall β -Reduction

- term s (β -)reduces to term t in one step
- written: $s \rightarrow_{\beta} t$
- iff there is subterm $(\lambda x. u) v$ of s, s.t.,
- replacing $(\lambda x. u) v$ in s by u[x := v] results in t

Recall β -Reduction

- term s (β -)reduces to term t in one step
- written: $s \rightarrow_{\beta} t$
- iff there is subterm $(\lambda x. u) v$ of s, s.t.,
- replacing $(\lambda x. u) v$ in s by u[x := v] results in t

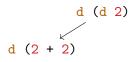
Examples

$$\begin{split} K &= \lambda x y. x \\ I &= \lambda x. x \\ \Omega &= (\lambda x. x \ x) \ (\lambda x. x \ x) \end{split}$$

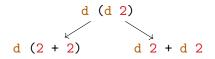
- consider d x = x + x
- the term d (d 2) may be evaluated as follows

d (d 2)

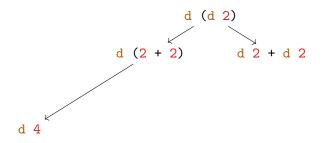
- consider d x = x + x
- the term d (d 2) may be evaluated as follows



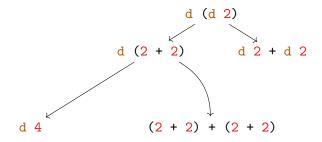
- consider d x = x + x
- the term d (d 2) may be evaluated as follows



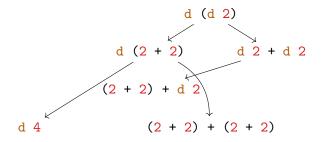
- consider d x = x + x
- the term d (d 2) may be evaluated as follows



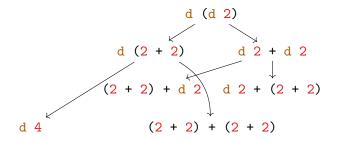
- consider d x = x + x
- the term d (d 2) may be evaluated as follows



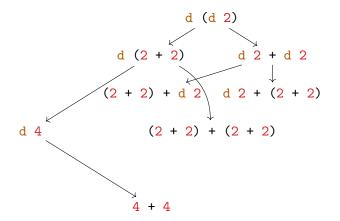
- consider d x = x + x
- the term d (d 2) may be evaluated as follows



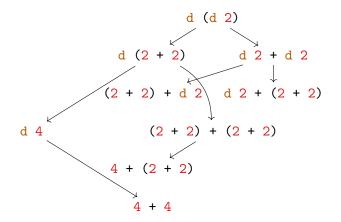
- consider d x = x + x
- the term d (d 2) may be evaluated as follows



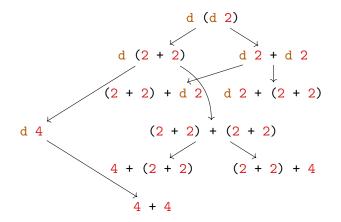
- consider d x = x + x
- the term d (d 2) may be evaluated as follows



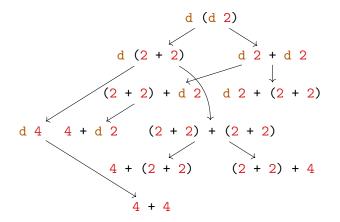
- consider d x = x + x
- the term d (d 2) may be evaluated as follows



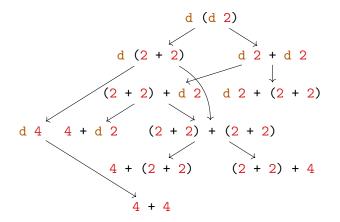
- consider d x = x + x
- the term d (d 2) may be evaluated as follows



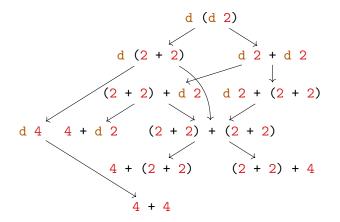
- consider d x = x + x
- the term d (d 2) may be evaluated as follows



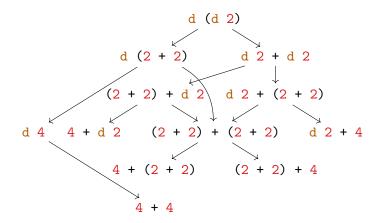
- consider d x = x + x
- the term d (d 2) may be evaluated as follows



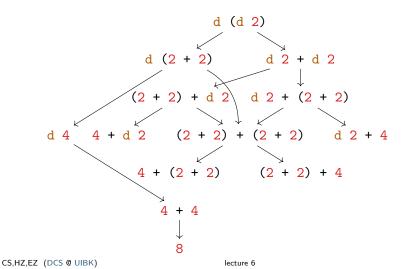
- consider d x = x + x
- the term d (d 2) may be evaluated as follows



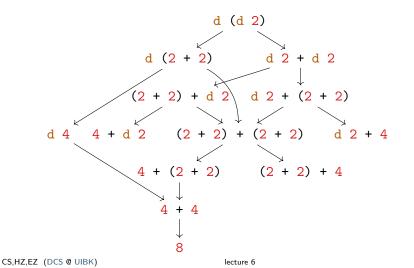
- consider d x = x + x
- the term d (d 2) may be evaluated as follows



- consider d x = x + x
- the term d (d 2) may be evaluated as follows



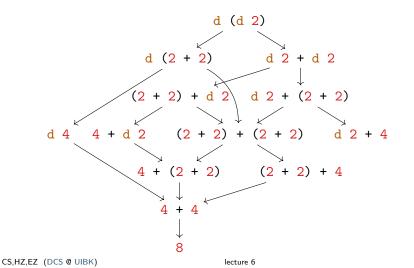
- consider d x = x + x
- the term d (d 2) may be evaluated as follows



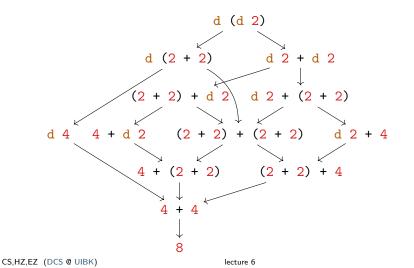
- consider d x = x + x
- the term d (d 2) may be evaluated as follows



- consider d x = x + x
- the term d (d 2) may be evaluated as follows



- consider d x = x + x
- the term d (d 2) may be evaluated as follows



- fix evaluation order
- call by value (idea: compute arguments before function calls)
- call by name (idea: compute arguments on demand only)

• fix evaluation order

what is called evaluation strategy in programming, is typically called reduction strategy in λ -calculus

- call by value (idea: compute arguments before function calls)
- call by name (idea: compute arguments on demand only)

- fix evaluation order
- call by value (idea: compute arguments before function calls)
- call by name (idea: compute arguments on demand only)

Example

- call by value
 - d (d 2)

- call by name
 - d (d 2)

- fix evaluation order
- call by value (idea: compute arguments before function calls)
- call by name (idea: compute arguments on demand only)

Example

• call by value

call by name

d (d 2) = d (2 + 2)

d (d 2)

- fix evaluation order
- call by value (idea: compute arguments before function calls)
- call by name (idea: compute arguments on demand only)

Example

• call by value d (d 2) = d (2 + 2)• call by name d (d 2)

$$d (d 2) = d (2 + 2) = d 4$$

- fix evaluation order
- call by value (idea: compute arguments before function calls)
- call by name (idea: compute arguments on demand only)

Example

call by value

• call by name

d (d 2)

- fix evaluation order
- call by value (idea: compute arguments before function calls)
- call by name (idea: compute arguments on demand only)

Example

• call by value

```
d (d 2) = d (2 + 2)
= d 4
= 4 + 4
= 8
```

call by name

- fix evaluation order
- call by value (idea: compute arguments before function calls)
- call by name (idea: compute arguments on demand only)

Example

• call by value

```
d (d 2) = d (2 + 2)
= d 4
= 4 + 4
= 8
```

call by name

d (d 2) = d 2 + d 2

- fix evaluation order
- call by value (idea: compute arguments before function calls)
- call by name (idea: compute arguments on demand only)

Example

• call by value

```
d (d 2) = d (2 + 2)
= d 4
= 4 + 4
= 8
```

call by name

d (d 2) = d 2 + d 2 = (2 + 2) + d 2

- fix evaluation order
- call by value (idea: compute arguments before function calls)
- call by name (idea: compute arguments on demand only)

Example

call by value
call by name
d (d 2) = d (2 + 2)
d (d 2) = d 2 + d 2
= d 4
= 4 + 4
= 8

- fix evaluation order
- call by value (idea: compute arguments before function calls)
- call by name (idea: compute arguments on demand only)

Example

call by value
call by name
d (d 2) = d (2 + 2)
d (d 2) = d 2 + d 2
= d 4
= 4 + 4
= 8
= 4 + (2 + 2)

- fix evaluation order
- call by value (idea: compute arguments before function calls)
- call by name (idea: compute arguments on demand only)

Example

• call by value • call by value • call by name d (d 2) = d (2 + 2) = d 4 = 4 + 4 = 8 • call by name d (d 2) = d 2 + d 2 = (2 + 2) + d 2 = 4 + d 2 = 4 + (2 + 2) = 4 + 4

- fix evaluation order
- call by value (idea: compute arguments before function calls)
- call by name (idea: compute arguments on demand only)

Example

• call by value • call by name d (d 2) = d (2 + 2) = d 4 = 4 + 4 = 8 • call by name d (d 2) = d 2 + d 2 = (2 + 2) + d 2 = 4 + d 2 = 4 + (2 + 2) = 4 + 4 = 8

Applicative Order Reduction

- reduce rightmost innermost redex
- redex is innermost if it does not contain redexes itself

Applicative Order Reduction

- reduce rightmost innermost redex
- redex is innermost if it does not contain redexes itself

Example

- consider $t = (\lambda x. (\lambda y. y) x) z$
- $(\lambda y. y) x$ is innermost redex
- *t* is redex, but not innermost

Normal Order Reduction

- reduce leftmost outermost redex
- redex is outermost if it is not contained in another redex

Normal Order Reduction

- reduce leftmost outermost redex
- redex is outermost if it is not contained in another redex

Example

- consider $t = (\lambda x. (\lambda y. y) x) z$
- *t* is outermost redex
- $(\lambda y. y) x$ is redex, but not outermost

Exercises

- consider the λ -terms
- $S = \lambda xyz. x \ z \ (y \ z)$
- $K = \lambda xy. x$
- $I = \lambda x. x$
- reduce $S \ K \ I$ to NF using applicative order reduction
- reduce $S \ K \ I$ to NF using normal order reduction

• a term that is not an application is called value

- a term that is not an application is called value
- a term is called weak head normal form (WHNF) if it satisfies: whnf(x) = true whnf $(\lambda x. t) =$ true whnf $((\lambda x. t) u) =$ false whnf(t u) = whnf(t)

- a term that is not an application is called value
- a term is called weak head normal form (WHNF) if it satisfies: whnf(x) = true

whnf
$$(\lambda x. t) = true$$

whnf $((\lambda x. t) u) = false$
whnf $(t u) = whnf(t$

term t	value	WHNF
$(\lambda x. x) x$		
$x \; y$		
x		
$\lambda x. (\lambda y. y) x$		

- a term that is not an application is called value
- a term is called weak head normal form (WHNF) if it satisfies: whnf(x) = true

whnf
$$(\lambda x. t) =$$
true
whnf $((\lambda x. t) u) =$ false
whnf $(t u) =$ whnf $(t$

term t	value	WHNF
$(\lambda x.x)\;x$	×	
$x \; y$		
x		
$\lambda x. (\lambda y. y) \ x$		

- a term that is not an application is called value
- a term is called weak head normal form (WHNF) if it satisfies: whnf(x) = true

whnf
$$(\lambda x. t) = true$$

whnf $((\lambda x. t) u) = false$
whnf $(t u) = whnf(t)$

term t	value	WHNF
$(\lambda x.x)\;x$	×	×
$x \; y$		
x		
$\lambda x. (\lambda y. y) x$		

- a term that is not an application is called value
- a term is called weak head normal form (WHNF) if it satisfies: whnf(x) = true

whnf
$$(\lambda x. t) = true$$

whnf $((\lambda x. t) u) = false$
whnf $(t u) = whnf(t)$

term t	value	WHNF
$(\lambda x.x)\ x$	×	×
$x \; y$	×	
x		
$\lambda x. (\lambda y. y) x$		

- a term that is not an application is called value
- a term is called weak head normal form (WHNF) if it satisfies: whnf(x) = true

whnf
$$(\lambda x. t) = true$$

whnf $((\lambda x. t) u) = false$
whnf $(t u) = whnf(t)$

term t	value	WHNF
$(\lambda x. x) x$	×	×
$x \; y$	×	~
x		
$\lambda x. (\lambda y. y) \; x$		

- a term that is not an application is called value
- a term is called weak head normal form (WHNF) if it satisfies: whnf(x) = true

whnf
$$(\lambda x. t) = true$$

whnf $((\lambda x. t) u) = false$
whnf $(t u) = whnf(t)$

term t	value	WHNF
$(\lambda x.x)\;x$	×	×
$x \; y$	×	V
x	~	
$\lambda x. (\lambda y. y) \; x$		

- a term that is not an application is called value
- a term is called weak head normal form (WHNF) if it satisfies: whnf(x) = true

whnf
$$(\lambda x. t) = true$$

whnf $((\lambda x. t) u) = false$
whnf $(t u) = whnf(t)$

term t	value	WHNF
$(\lambda x. x) x$	×	×
$x \; y$	×	~
x	~	~
$\lambda x. (\lambda y. y) x$		

- a term that is not an application is called value
- a term is called weak head normal form (WHNF) if it satisfies: whnf(x) = true

whnf
$$(\lambda x. t) = true$$

whnf $((\lambda x. t) u) = false$
whnf $(t u) = whnf(t)$

term t	value	WHNF
$(\lambda x. x) x$	×	×
$x \; y$	×	V
x	v	V
$\lambda x. (\lambda y. y) \; x$	~	

- a term that is not an application is called value
- a term is called weak head normal form (WHNF) if it satisfies: whnf(x) = true

whnf
$$(\lambda x. t) = true$$

whnf $((\lambda x. t) u) = false$
whnf $(t u) = whnf(t)$

term t	value	WHNF
$(\lambda x. x) x$	×	×
$x \; y$	×	~
x	~	~
$\lambda x. (\lambda y. y) x$	V	~

Call by Value

- stop at values
- otherwise choose othermost redex whose right-hand side is value
- corresponds to strict (or eager) evaluation
- adopted by most programming languages

Call by Value

- stop at values
- otherwise choose othermost redex whose right-hand side is value
- corresponds to strict (or eager) evaluation
- adopted by most programming languages

Call by Name

- stop at WHNFs
- otherwise same as normal order (that is, leftmost outermost redex)
- corresponds to lazy evaluation (without memoization)
- adopted for example by Haskell

Abstract Data Types

Idea

- hide implementation details
- just provide interface
- allows us to change implementation (e.g., make more efficient) without breaking client code

Idea

- hide implementation details
- just provide interface
- allows us to change implementation (e.g., make more efficient) without breaking client code

Haskell

```
• consider module
module M (T, ...) where
type T = C1 | ... | CN
```

- only name T is exported, but none of C1 to CN
- thus we are not able to directly construct values of type T
- if we want to export C1 to CN, we can use T(..) in export list

Characteristics of Sets

- order of elements not important
- no duplicates

Characteristics of Sets

- order of elements not important
- no duplicates

Examples

$$\{1, 2, 3, 5\} = \{5, 1, 3, 2\}$$

$$\{1, 1, 2, 2\} = \{1, 2\}$$

Characteristics of Sets

- order of elements not important
- no duplicates

Examples

$$\{1, 2, 3, 5\} = \{5, 1, 3, 2\}$$

$$\{1, 1, 2, 2\} = \{1, 2\}$$

Operations on Sets

description	notation	Haskell
insertion	$ \begin{array}{l} \varnothing \\ \{x\} \cup S \\ e \in S \\ S \cup T \\ S \setminus T \end{array} $	<pre>empty :: Set a insert :: a -> Set a -> Set a mem :: a -> Set a -> Bool union :: Set a -> Set a -> Set a diff :: Set a -> Set a -> Set a</pre>

Example – Sets as Lists

```
module Set (Set, empty, insert, mem, union, diff) where
import qualified Data.List as List
data Set a = Set [a]
```

```
empty :: Set a
empty = Set []
```

```
insert :: Eq a => a -> Set a -> Set a
insert x (Set xs) = Set $ List.nub $ x : xs
```

```
mem :: Eq a => a -> Set a -> Bool
x `mem` Set xs = x `elem` xs
```

```
union, diff :: Eq a => Set a -> Set a -> Set a
union (Set xs) (Set ys) = Set $ List.nub $ xs ++ ys
diff (Set xs) (Set ys) = Set $ xs List.\\ ys
```

• import M imports all functions and types exported by module M

- import M imports all functions and types exported by module M
- we may restrict to f1, ..., fN, writing import M (f1, ..., fN)

- import M imports all functions and types exported by module M
- we may restrict to f1, ..., fN, writing import M (f1, ..., fN)
- by import M hiding (f1, ..., fN) we import everything except the functions f1 to fN

- import M imports all functions and types exported by module M
- we may restrict to f1, ..., fN, writing import M (f1, ..., fN)
- by import M hiding (f1, ..., fN) we import everything except the functions f1 to fN
- import qualified M allows us to access all functions exported by M using prefix M.

- import M imports all functions and types exported by module M
- we may restrict to f1, ..., fN, writing import M (f1, ..., fN)
- by import M hiding (f1, ..., fN) we import everything except the functions f1 to fN
- import qualified M allows us to access all functions exported by M using prefix M.
- import qualified M as N, same as import qualified M but additionally rename M to N

New Types

- data with single constructor Set was used to hide implementation
- in this common special case use **newtype** Set a = Set a instead
- only difference: newtype has better performance than data

New Types

- data with single constructor Set was used to hide implementation
- in this common special case use **newtype** Set a = Set a instead
- only difference: newtype has better performance than data

Record Syntax

- for data type / new type T, instead of C t1 ... tN, we may use
- C {n1 :: t1, ..., nN :: tN} as constructor
- provides selector functions n1 :: T \rightarrow t1, ..., nN :: T \rightarrow tN

New Types

- data with single constructor Set was used to hide implementation
- in this common special case use **newtype** Set a = Set a instead
- only difference: newtype has better performance than data

Record Syntax

- for data type / new type T, instead of C t1 ... tN, we may use
- C {n1 :: t1, ..., nN :: tN} as constructor
- provides selector functions n1 :: T \rightarrow t1, ..., nN :: T \rightarrow tN

New Types

- data with single constructor Set was used to hide implementation
- in this common special case use **newtype** Set a = Set a instead
- only difference: newtype has better performance than data

Record Syntax

- for data type / new type T, instead of C t1 ... tN, we may use
- C {n1 :: t1, ..., nN :: tN} as constructor
- provides selector functions n1 :: T -> t1, ..., nN :: T -> tN

Example

```
• data Equation a = E { lhs :: a, rhs :: a }
ghci> let e1 = E "10" "5+5"
ghci> let e2 = E { rhs = "5+5", lhs = "10" }
ghci> lhs e1
"10"
ghci> rhs e2
"5+5"
```

Sets and Binary Search Trees

The Type

- use type BTree without prefix: import BTree (BTree(..))
- import remaining functions from BTree with prefix import qualified BTree
- internal representation of set is binary tree (with selector rep)
 newtype Set a = Set { rep :: BTree a }

The Type

- use type BTree without prefix: import BTree (BTree(..))
- import remaining functions from BTree with prefix import qualified BTree
- internal representation of set is binary tree (with selector rep)
 newtype Set a = Set { rep :: BTree a }

Note

- newtype Set a = Set { rep :: BTree a } is almost the same
 as writing type Set a = BTree a
- additionally type system prevents us from "accidentally" (that is, without constructor Set) using BTrees as Sets
- no runtime penalty (in contrast to
 data Set a = Set { rep :: BTree })
- reason: **newtype** restricted to single constructor (usually of same name as newly introduced type)
- data may have arbitrarily many constructors (e.g., Empty and Node)

Empty Set

empty :: Set a
empty = Set Empty

Empty Set

empty :: Set a empty = Set Empty

Membership

```
mem :: Ord a => a -> Set a -> Bool
x `mem` s = x `memTree` rep s
where
memTree x Empty = False
memTree x (Node y l r) =
    case compare x y of
    EQ -> True
    LT -> x `memTree` l
    GT -> x `memTree` r
```

Insertion

```
insert :: Ord a => a -> Set a -> Set a
insert x s = Set $ insertTree x $ rep s
insertTree :: Ord a => a -> BTree a -> BTree a
insertTree x Empty = Node x Empty Empty
insertTree x (Node y l r) =
```

```
case compare x y of
EQ -> Node y l r
LT -> Node y (insertTree x l) r
GT -> Node y l (insertTree x r)
```

Union

```
union :: Ord a => Set a -> Set a -> Set a
union s t = Set $ rep s `unionTree` rep t
unionTree :: Ord a => BTree a -> BTree a -> BTree a
unionTree Empty s = s
unionTree (Node x l r) s =
insertTree x $ l `unionTree` r `unionTree` s
```

Removing the Maximal Element

```
splitMaxTree :: BTree a -> Maybe (a, BTree a)
splitMaxTree Empty = Nothing
splitMaxTree (Node x 1 Empty) = Just (x, 1)
splitMaxTree (Node x 1 r) =
let Just (m, r') = splitMaxTree r
in Just (m, Node x 1 r')
```

Removing the Maximal Element

```
splitMaxTree :: BTree a -> Maybe (a, BTree a)
splitMaxTree Empty = Nothing
splitMaxTree (Node x 1 Empty) = Just (x, 1)
splitMaxTree (Node x 1 r) =
let Just (m, r') = splitMaxTree r
in Just (m, Node x 1 r')
```

The Maybe Type

- Prelude: data Maybe a = Just a | Nothing
- used for type-based error handling
- if an error occurs, we return Nothing
- otherwise Just the result

Removing the Maximal Element

```
splitMaxTree :: BTree a -> Maybe (a, BTree a)
splitMaxTree Empty = Nothing
splitMaxTree (Node x 1 Empty) = Just (x, 1)
splitMaxTree (Node x 1 r) =
let Just (m, r') = splitMaxTree r
in Just (m, Node x 1 r')
```

The Maybe Type

- Prelude: data Maybe a = Just a | Nothing
- used for type-based error handling
- if an error occurs, we return Nothing
- otherwise Just the result

Example – Safe Head

```
safeHead (x:_) = Just x
safeHead _ = Nothing
```

```
Remove Given Element
removeTree :: Ord a => a -> BTree a -> BTree a
removeTree x Empty = Empty
removeTree x (Node y l r) = case compare x y of
LT -> Node y (removeTree x l) r
GT -> Node y l (removeTree x r)
EQ -> case splitMaxTree l of
Nothing -> r
Just (m, l') -> Node m l' r
```

```
Remove Given Element
removeTree :: Ord a => a -> BTree a -> BTree a
removeTree x Empty = Empty
removeTree x (Node y l r) = case compare x y of
LT -> Node y (removeTree x l) r
GT -> Node y l (removeTree x r)
EQ -> case splitMaxTree l of
Nothing -> r
Just (m, l') -> Node m l' r
```

For Binary Search Tree (BST)

- x smaller y: x can only occur in 1
- x greater y: x can only occur in r
- x equals y: remove current node and
- combine 1 and r into new BST
- therefore, take maximum of 1 as new root
- guarantees that all other elements in 1 are smaller and
- that all elements in r are greater

Difference

```
diff :: Ord a => Set a -> Set a -> Set a
diff s t = Set $ rep s `diffTree` rep t
diffTree :: Ord a => BTree a -> BTree a -> BTree a
diffTree t Empty = t
diffTree t (Node x l r) =
  removeTree x t `diffTree` l `diffTree` r
```

Exercises (for November 24th)

- 1. Read Chapter 4 of Real World Haskell and Section 5 of the lecture notes on the lambda calculus.
- $2. \ \mbox{Reduce 'add } 2 \ \mbox{3'}$ to NF using applicative and normal order reduction.
- Let type Strat = Term -> [Term] be the type of reduction strategies. Implement the strategy root :: Strat which applies a single β-step at the root (if possible).
- Implement a strategy combinator nested :: Strat -> Strat that, given a strategy s, results in a new strategy which tries to apply s at all non-root positions.
- 5. Building on the previous functions, implement single-step call by name reduction cbn :: Strat.
- 6. Implement the function

equals :: Ord a => Set a -> Set a -> Bool, checking whether two sets are equal.

Examples

- root x = [] no beta-step possible
- root $((\lambda x. x) u) = [u]$ root reduction
- root $(x \ (\lambda x. t) \ u) = []$ no redex at root position
- single beta-steps strictly below root position

nested root
$$(((\lambda x. x) y) ((\lambda z. z) w)) = [y ((\lambda z. z) w), (\lambda x. x) y w]$$

• single-step call by name reduction

$$\begin{array}{l} \operatorname{cbn}\left(\left(\left(\lambda x.\,x\right)\,\left(\left(\lambda y.\,y\right)\,z\right)\right)\,\left(\left(\lambda w.\,w\right)\,v\right)\right)=\\ \left[\left(\left(\lambda y.\,y\right)\,z\right)\,\left(\left(\lambda w.\,w\right)\,v\right)\right] \end{array}$$