
Second Exam
Logic Programming, LVA 703113

April 9, 2018

Name: Student Number:

The exam consists of 6 exercises with a total of 100 points. Please fill out your name and
credentials before you start the exam.

1 2 3 4 5 6 Sum

0–49: 5 50–59: 4 60–74: 3 75–89: 2 90–102: 1

1

1. Consider the following type definition of (untyped) lists:

i s _ l i s t ([]) .
i s _ l i s t ([_| Xs]) :− i s _ l i s t (Xs) .

– Prove that this definition is complete with respect to the set

M := {[0|·]n([]) | n > 0} = {[], [0], [0, 0], [0, 0, 0], . . . } .

(10 pts)

– Disprove that this definition is correct with respect to the set M . (10 pts)

– Provide a definition of an intendend meaning M ′ of the type definition, such that
the type definition is correct and complete for M ′ (10 pts)

2. Consider the predicate subsequence(Sub,Seq), which is true if Sub is a subsequence of
Seq, that is, Sub is derived from Seq by deleting some elements without changing the
order.

a) Implement the predicate such that it works as intended on ground terms. (10 pts)

b) Construct the Prolog search tree of the ground query subsequence([a,c],[a,b,c,d]
(based on Prolog’s selection function). (5 pts)

c) Does the predicate work as intended (without side-effects) on arbitrary terms?
Explain your answer. (5 pts)

3. Implement a predicate duplicate/3 that duplicates the elements of a list a given number
of times. For example the query duplicate ([a,b,c],2, Xs) should deliver the answer
Xs = [a, a, b, b, c, c]. Use difference-lists in your implementation, where you can
assume that \ separates difference lists. (10 pts)

4. Consider the following Prolog program.

foo (X,Y) :−
f oo ([X| Xs] \Xs ,Y, [X]) .

f oo ([] \ [] , Y, V i s i t ed) :−
! , f a i l .

f oo ([A| Xs] \Ys ,A, V i s i t ed) .
foo ([A| Xs] \Ys ,B, V i s i t ed) :−

s e t o f 1 (N, edge (A,N) ,Ns) ,
foo2 (Ns , Vi s i t ed , Vis i ted1 , Xs\Ys , Xs1) ,
foo (Xs1 ,B, V i s i t ed1) .

foo2 ([N| Ns] , V i s i t ed , Vis i ted1 , Xs , Xs1) :−
member(N, V i s i t ed) ,
foo2 (Ns , Vi s i t ed , Vis i ted1 , Xs , Xs1) .

foo2 ([N| Ns] , V i s i t ed , Vis i ted1 , Xs \ [N| Ys] , Xs1) :−
\+ member(N, V i s i t ed) ,
foo2 (Ns , [N| V i s i t ed] , Vi s i ted1 , Xs\Ys , Xs1) .

2

foo2 ([] ,V,V,Xs , Xs) .

s e t o f 1 (Template , Goal , Set) :−
s e t o f (Template , Goal , Set) .

s e t o f 1 (Template , Goal , Set) :−
\+ s e t o f (Template , Goal , Set) , ! , Set = [] .

The meaning of the program changes if setof1/3 is replaced by the system predicate
setof /3. Give an example of a goal that succeeds in the original program, but fails in
the altered program. (10 pts)

5. Implement the nth factorial as constraint logic program:

:− f a c t o r i a l (N, 1) .
N = 0 ;
N = 1 ;
f a l s e

(10 pts)

3

6. Determine whether the following statements are true or false. Every correct answer is
worth 2 points, every wrong answer -1 points. (The worst that can happen is that you
get zero points for this exercise.) (20 pts)

statement yes no

In logic programming, terms are built from logical variables, constants and func-
tions.

A computation of a goal G from a program P is the verification of an inference
P ` G.

A type is an arbitrary, but finite set of terms.

We call a type complete, if it is closed under instantiation.

Difference lists are effective if independently different sections of a list are built,
which are then concatenated.

Consider the standard implementation of append/3. Then any call to append
terminates iff the second argument is a complete list.

A Prolog clause is called tail recursive iff it has one recursive call and zero or
more calls to system predicates that appear before the recursive call.

A cut fixes all choices between (and including) the moment of matching the
rule’s head with parent goal and the cut. If backtracking should reaches the cut,
then the cut succeeds and the execution is continued with the clause after the
clause containing the cut.

Like almost any other programming language, answer set programming is Turing
complete.

The predicate bagof (Template,Goal,Bag) unifies Bag with the first alternative
of Goal that meets Template.

4

