
Seminar Report

AC Compatible Simplification Orders

Alexander Lochmann

8 March 2018

Supervisor: Dr. Christian Sternagel

Abstract
Many applications feature associative and commutative (AC) operators. Thus it is a

point of interest to automatically proof termination of term rewrite systems with AC
symbols. This can be achieved by finding an AC-compatible simplification order. This
report recaps on existing AC-compatible simplification orders and it restates the analyzed
results concerning their power and complexity. Additionally we reason which order is
preferred to formalize in Isabelle/HOL.

mailto:

Contents
1 Introduction 1

2 Preliminaries 1
2.1 Simplification orders . 2
2.2 Rewriting modulo equations . 2
2.3 Weight functions . 2
2.4 The Knuth-Bendix Order KBO . 2

3 ACKBO orders 3
3.1 Steinbach’s order . 3
3.2 Korovin and Voronkov’s order . 4
3.3 AC-KBO . 5

4 Relation between ACKBO orders 6

5 Complexity 7
5.1 Membership . 7
5.2 Orientation . 9

6 Further work 9

ii

1 Introduction
Many applications feature associative and commutative (AC) operators. As an example
consider automated reasoning over algebraic structures such as groups and vector spaces.
Therefore automatically generating termination proofs of term rewrite systems with AC
symbols is a point of interest. This can be done by finding a suitable AC-compatible
simplification order. Yamada et al. [6] analyzes the existing AC-compatible simplification
orders. This report summarizes the complexity results. At the current state there is no
formalization of any AC-compatible simplification orders in IsaFoR.

This report assumes general knowledge of term rewriting and is organized in the
following way. First we introduce some preliminaries which are used in the report. Then
recap the definitions of various AC-compatible simplification orders. Then look how they
relate to each other. After that we discuss the complexity of the membership and the
orientation problem of the orders and at the end we reason why we chose to formalize
the >ACKBO order.

2 Preliminaries
In this section we recap basic definitions from term rewrite systems. Additionally we
introduce the notation and assumptions that are used in this report.

First we define basic notation and abbreviations. Then we extend the standard
definitions of lexicographic and multiset orders to a more general one. After that we
recap the definitions of simplification orders and then we introduce the concept of
rewriting modulo equations and as last part we recall KBO.

A signature is a finite set of function symbols with associated arities. The signature of
non AC symbols is denoted by F and the signature containing only binary AC symbols is
denoted by FAC . We denote the set of variables by V , the set of terms by T (F ∪FAC , V)
and variables by x, y and z. Given a term s and a variable x, we denote the number
of occurrences of x in s by |s|x. The congruence relation =AC over the set of terms
satisfies the following conditions f(x, y) =AC f(y, x) and f(x, f(y, z)) =AC f(f(x, y), z)
for arbitrary terms x, y, z and f ∈ FAC . A pair (%,�), where � is a strict order and % a
preorder, is an order pair if and only if % · � ·% ⊆ �.

Let � be a strict order and % a preorder on a set. We define the lexicographic
extensions �lex and %lex as follows

(x1, . . . , xm) %lex (y1, . . . , ym) ⇐⇒ ∀i. 1 ≤ i ≤ m =⇒ xi % yi

(x1, . . . , xm) �lex (y1, . . . , ym) ⇐⇒ ∃k. xk � yk ∧ ∀i. (i < k =⇒ xi % yi)

We define the multiset extensions �mul and %mul as follows

{x1, . . . , xm} %mul {y1, . . . , yn} ⇐⇒ m ≥ n ∧ ∀i. (1 ≤ i ≤ n =⇒ xi % yi)
{x1, . . . , xm} �mul {y1, . . . , yn} ⇐⇒ ∃k. (k < n ∧ ∀i. (1 ≤ i ≤ k =⇒ xi % yi)∧

∀j. (k < j ≤ n =⇒ ∃l. l > k ∧ xl � yj))

1

2 Preliminaries

A strict order on terms � is a rewrite relation if it is closed under contexts and
substitutions. Formally, given two terms s, t if s � t then C[s] � C[t] for all contexts C
and sσ � tσ for all substitutions σ.

A relation R on terms has the subterm property if C[s]Rs holds for all non-empty
contexts C and terms s.

2.1 Simplification orders

A rewrite relation R with the subterm property is called a simplification order.
Simplification orders are well founded by construction [2]. Hence if a TRS is compatible

with a simplification order then it terminates.

2.2 Rewriting modulo equations

Consider a TRS R. We say that R terminates module E, a set of equations, if there
exists no infinite rewrite sequence t1 →S t2 →S t3 →S . . ., where →S=→∗E · →R · →∗E ,
is infinite.

An AC-compatible simplification order � is a simplification order where (=AC ,�) is
an order pair.

2.3 Weight functions

In this subsection we recall the definition of a weight function over T (F ∪ FAC , V).
Given a signature F , a constant w0 > 0 and a function w : F → N where for each

constant c ∈ F it follows that w(c) ≥ w0.
We extend the pair (w,w0) to a weight function over T (F ∪ FAC , V) as follows

w(t) :=
{
w0, if t ∈ V
w(f) +

∑n
i=1w(ti) if t = f(t1, . . . , tn)

}
Notice that we overload the symbol w. The functions can be distinguished by the

provided argument.
Given a precedence > over F . We call a weight function admissible if the following

condition holds

∀f.f ∈ F ∧ f is unary ∧ w(f) = 0 =⇒ ∀g. (f 6= g =⇒ f > g)

2.4 The Knuth-Bendix Order KBO

In this subsection we recall the definition of the Knuth-Benedix order.
Let > be a precedence and (w,w0) a weight function. The order >KBO is inductively

defined as follows: s >KBO t if |s|x ≥ |t|x for all x ∈ V and either w(s) > w(t) or
w(s) = w(t) and one of the following holds

1. s = fk(t), t ∈ V for some k > 0

2

2. s = f(s1, . . . , sm), t = g(t1, . . . , tn), f > g

3. s = f(s1, . . . , sm), t = f(t1, . . . , tm), (s1, . . . , sm) >lex
KBO (t1, . . . , tm)

3 ACKBO orders
In this section we first introduce some definitions which are used to define the AC-KBO
orders. Then we will look at orders analyzed by Yamada et al[6]. The first order was
published by Steinbach [5], the second one was published by Korovin and Voronkov[1]
and at last we look at the definition of ACKBO by Yamada et al[6].

The top-flattening [3] of a term t with respect to an AC symbol f is the following
multiset

∇f (t) :=
{
{t}, if root(t) 6= f
∇f (t1)]∇f (t2), if t = f(t1, t2)

}

Example 3.1.
∇+(a+ b+ a) = {a, a, b}

Given a multiset of terms T , we define the submultiset T �v of T by

T �v:= {x ∈ T | x ∈ V }

and given a function symbol f and a binary relation R on a signature we have

T �Rf := {t ∈ T \ V | root(t)Rf}

Example 3.2. Consider the multiset T = {f(b), g(a), g(x), x, y} and the precedence
f > + > g, then we have T �v= {x, y} and T �≮+:= {f(b)}.

3.1 Steinbach’s order
Seinbach published the AC-compatible KBO >s. It is defined as follows

Definition 3.3. Let > precedence and (w,w0) be an admissible weight function. The
order >s is inductively defined as follows: s >KBO t if |s|x ≥ |t|x for all x ∈ V and either
w(s) > w(t) or w(s) = w(t) and one of the following holds

1. s = fk(t), t ∈ V for some k > 0

2. s = f(s1, . . . , sm), t = g(t1, . . . , tn), f > g

3. s = f(s1, . . . , sm), t = f(t1, . . . , tm), f /∈ FAC , (s1, . . . , sm) >lex
s (t1, . . . , tm)

4. s = f(s1, s2), t = f(t1, t2), f ∈ FAC , S = ∇f (s), T = ∇f (t), S >mul
s T

Here =AC is used as preorder in >lex
s and >mul

s .

3

3 ACKBO orders

The only difference to KBO is the restriction to non AC function symbols in the second
case and the additional case 4 for AC symbols.

Example 3.4. Example TRS R over signature F = {f, a}, FAC = {+} and consisting
of the rules

f(a+ a)→ f(a) + f(a) a+ f(f(a))→ f(a) + f(a)

We choose the precedence f > a > + and the weights w(+) = w(a) = 1 and w(f) = 0.
Then the first rule is oriented by case 2. For the second rule we apply the top-flattening
and we get the multisets

S = {a, f(f(a))} T = {f(a), f(a)}.

The order >s has the subterm property hence f(f(a)) >s f(a).

Following theorem was proven by Steinbach [5].

Theorem 3.5. If every symbol in FAC is minimal with respect to > then >s is an
AC-compatible simplification order.

3.2 Korovin and Voronkov’s order
Korovon and Voronkov introduce several orders [1]. The most general one is not closed
under context as shown by Yamada et al[6, Example 4.8]. Therefor we will only recall an
extended version which is closed under contexts.

We first define two auxiliary relation ≥kvau′ and >kvau′ on terms.

Definition 3.6. s ≥kvau′ t if |s|x ≥ |t|x for all x ∈ V and either w(s) > w(t) or
w(s) = w(t) and either root(s) ≥ root(t) or t ∈ V
s >kvau′ t if |s|x ≥ |t|x for all x ∈ V and either w(s) > w(t) or w(s) = w(t) and

root(s) > root(t)

Example 3.7. Let c be a constant and f an unary symbol. If w(f) = 0 then admissibility
imposes f > c. So f(c) >kvau′ c but f(x) >kvau′ x does not hold.

Definition 3.8. Let > precedence and (w,w0) be an admissible weight function. The
order >KV ′ is inductively defined as follows: s >KV ′ t if |s|x ≥ |t|x for all x ∈ V and
either w(s) > w(t) or w(s) = w(t) and one of the following holds

1. s = fk(t), t ∈ V for some k > 0

2. s = f(s1, . . . , sm), t = g(t1, . . . , tn), f > g

3. s = f(s1, . . . , sm), t = f(t1, . . . , tm), f /∈ FAC , (s1, . . . , sm) >lex
KV ′ (t1, . . . , tm)

4. s = f(s1, s2), t = f(t1, t2), f ∈ FAC , S = ∇f (s), T = ∇f (t),
a) S �≮f>mul

kvau′ T �≮f]T �v −S �v or

4

3.3 AC-KBO

b) S �≮f≥mul
kvau′ T �≮f]T �v −S �v, |S| > |T | or

c) S �≮f≥mul
kvau′ T �≮f]T �v −S �v, |S| = |T | and S >mul

KV ′ T

Here ≥kvau′ is used as pre order in case 4a and =AC is used as pre order in S >mul
KV ′ T .

The recursive call only occurs in the case 3 and 4c.

Example 3.9. Example TRS R over signature F = {f, c}, FAC = {+} and consisting
of the rules

f(x)→ x f(x) + y → x+ y

We choose the precedence f > + > c and the weights w(+) = w(c) = 1 and w(f) = 0.
From case 1 we have that f(x) >KV ′ x. For the second rule we need to apply the
top-flattening and we get the multisets

S = {f(x), y}T = {x, y}.

We have S �≮+= {f(x)} and T �≮+]T �v −S �v= {x}. From f(x) ≥kvau′ y case 4c
applies because f(x) ≥mul

kvau′ y, |S| = |T | = 2 and S = {f(x), y} ≥KV ′ {x, y} = T .

Following theorem was proven by Yamada et al [6].

Theorem 3.10. The order >KV ′ is an AC-compatible simplification order.

From the inclusion >KV ⊆ >KV ′ shown by [6], it follows that >KV is a sound method
for proving termination of TRS, with AC symbols. Here >KV denotes the original version
of Korovin and Voronkov’s order as defined by [6].

3.3 AC-KBO

Here we recall the order introduced by Yamada et al [6].

Definition 3.11. Let > precedence and (w,w0) be an admissible weight function. The
order >ACKBO is inductively defined as follows: s >ACKBO t if |s|x ≥ |t|x for all x ∈ V
and either w(s) > w(t) or w(s) = w(t) and one of the following holds

1. s = fk(t), t ∈ V for some k > 0

2. s = f(s1, . . . , sm), t = g(t1, . . . , tn), f > g

3. s = f(s1, . . . , sm), t = f(t1, . . . , tm), f /∈ FAC , (s1, . . . , sm) >lex
ACKBO (t1, . . . , tm)

4. s = f(s1, s2), t = f(t1, t2), f ∈ FAC , S = ∇f (s), T = ∇f (t),
a) S �≮f>mul

ACKBO T �≮f]T �v −S �v or
b) S �≮f =mul

AC T �≮f]T �v −S �v, |S| > |T | or
c) S �≮f =mul

AC T �≮f]T �v −S �v, |S| = |T |, S �<f>mul
ACKBO T �<f

5

4 Relation between ACKBO orders

•R
′

•R

>KV ′

>s

>ACKBO

Here =AC is used as preorder in >lex
ACKBO and >mul

ACKBO.

Following theorems were proven by Yamada et al [6].

Theorem 3.12. The order >ACKBO is an AC-compatible simplification order.

Theorem 3.13. If every AC symbol has minimal precedence then >s = >ACKBO.

4 Relation between ACKBO orders
In this section we look at the relation between the orders and we will show with an
example that the orders >KV ′ and >ACKBO are distinct.

In Figure 4 we see the relation between the orders where the example TRS R consists
of the rules

f(a+ a)→ f(a) + f(a) a+ f(f(a))→ f(a) + f(a)

and we obtain the TRS R′ by inverting the second rule. We show that R can be
oriented with >ACKBO but not with >KV ′ , here + ∈ FAC .

To orient the first rule it is necessary that w(f) = 0, because the symbol f occurs
twice on the right-hand side and the occurrences of the other symbols don’t change.
Admissibility requires that f > a and f > + in the precedence. Therefore rule 1 is
oriented by both orders. For the second rule we have the top-flattening of the terms
S = {a, f(f(a))} and T = {f(a), f(a)}. Now we have two possible cases for the precedence

case 1: a > + then

S �≮+= {a, f(f(a))}T �≮+= {f(a), f(a)}

For >ACKBO we have that f(f(a)) >ACKBO f(a), hence the rule can be oriented by
case 4a. For >KV ′ we have that f(f(a)) �kvau′ f(a), so case 4a does not apply and
a �kvau′ f(a) hence case 4b and 4c does also not apply.

case 2: + > a then

S �≮+= {f(f(a))}T �≮+= {f(a), f(a)}

We see that the argumentation of the previous case still holds for both orders.

6

method membership orientability
Steinbach P ?
ACKBO P NP-complete
KV P NP-complete
KV’ NP-complete NP-complete

Figure 1: Complexities of the orders taken from [6].

Now lets consider inverting the second rule then we have in case 1 the following
multisets

S �≮+= {f(a), f(a)}T �≮+= {a, f(f(a))}

For >KV ′ we have that f(a) ≥kvau′ f(f(a)) and f(a) >kvau′ a, hence the rule can be
oriented by case 4a. For >ACKBO we have that f(a) 6=AC f(f(a)) and f(a) �ACKBO

f(f(a)), hence no rule applies. Analog for the 2 case.
case 2: + > a then

S �≮+= {f(a), f(a)}T �≮+= {f(f(a))}

We see that the argumentation of the previous case still holds for both orders.

5 Complexity
In this section we recall the membership and the orientability problem. An overview of
the complexities of the different algorithms is shown in 1. Here the symbol P denotes that
the problem can be solved in polynomial time and NP for nondeterministic polynomial
time. We will only look at the membership proof for >ACKBO and present a proof sketch
for the orientability problem.

For the membership problem we have a given precedence and admissible weight function
and we check if s >ACKBO t holds.

For the orientability problem we need to check if there exists a precedence and a weight
function such that for a given TRS R it holds that R ⊆ >ACKBO.

Yamada et al [6] state the conjecture that the orientability of Steinbach’s order can be
checked in polynomial time.

5.1 Membership
In this subsection we prove that >ACKBO membership can be checked in polynomial
time. For this we split the proof in three parts. First we prove two lemmas which show
that under certain assumptions multiset extension preserves polynomial complexity.

Lemma 5.1. Let (%,�) be an order pair and ∼ := % \ � be symmetric. If s ∼ t then
M �mul N and M] {s} �mul N] {t} are equivalent.

7

5 Complexity

We prove the inclusion from right to left, bacause that is the part of the lemma used
in the membership proof.

Proof. There exist indices i, j such that si = s and tj = t. Let k be the number of
elements in the preorder case.

1. Case i, j ≤ k

Then sj % tj = t ∼ s = si % ti. From transitivity it follows that sj % ti. Remove
sj and tj from multisets then replace si with sj .

2. Case i ≤ k < j

Then sl � tj = t ∼ s = si % ti and l > k. From the definition of order pair it
follows that sl � ti. Remove si and ti then replace tj with ti.

3. Case j ≤ k < i

Then sj % tj = t ∼ s = si � tl for some l > k. From the definition of order pair it
follows that sj � tl for all l which satisfy si � tl. Swap sj with si then remove si

and tj .

4. Case k < j, i

Then sj � tj = t ∼ s = si � ti. From the definition of order pair it follows that
sj � tl for all l which satisfy si � tl. Remove si and tj .

Lemma 5.2. Let (%,�) be an order pair and ∼ := % \ � be symmetric. If the decision
problem for % and � are in P then the decision problem for �mul is in P.

Proof. Consider the multisets S and T . To check if S >mul T we perform the following
steps

For each (s, t) ∈ S × T check if s ∼ t. If thats the case then remove the elements
s, t from the corresponding multiset. From the previous lemma it follows that this
transformation preserves the result.

Then check if for each t ∈ T there is on s ∈ S such that s � t.

KBO membership can be checked in polynomial time and the base cases of > ACKBO,
rules 1 - 3, are equal to KBO. From both lemmas and the induction hypothesis membership
in polynomial time follows.

8

5.2 Orientation

5.2 Orientation
The problem of the orientation proof is that we need to consider infinitely many weight
functions. Therefore we won’t guess the weight of the symbols but rather the relation
between the weights of the symbols. For example if we have two function symbols f, g
then there are three possibilities f > g, f < g or f ≥ g ∧ g ≥ f .

Constructing all possible inequalities between the function symbols reduces the search
space of the weight function to a finite one.

Now consider a TRS R, then we collect all the terms that occur in the rules Rt := {t |
∃u(tRu∨ uRt)}. We replace each variable in term t ∈ Rt with a fresh constant w0. Then
we will take all subterms of these terms S := {t | s ∈ Rt ∧ s D t}. The set S contains
all terms relevant to orient R. If S has at least two elements then the set of all possible
inequalities has the size of 3|S|−1, note that s = t can be represented as inequality (s ≥ t
and t ≥ s).

For each set of inequalities we check if there exists a precedence so that R can be
oriented and the set of inequalities has a solution. The set of possible precedences is
finite, because signatures are finite.

From the previous section we know that the membership problem is in P. Finding a
solution of a set of inequalities in R is in P [4]. Note that finding a solution in Z is in
NP, but we only need to ensure that a set has a solution and for each solution in R there
exists a solution in Z.

Hence orientability is NP, because the search space grows exponentially.

6 Further work
The aim is to formalize an AC-compatible simplification order in IsaFoR. Additionally
program a certifier in Isabelle and show that the program is compatible to the formalized
order. The certifier should verify that for a given TRS R, weight function and precedence
it holds that R is a subset of the formalized AC-compatible simplification order. At
the present state there is no formalization of an AC-compatible simplification order in
IsaFoR. Therefore we recap the results of this report and reason which order is suited to
formalize.

As we saw in figure 1 the membership problem in >KV ′ is NP-complete. The certifier
must check if each rule is oriented from left to right. Therefore the membership problem
of the checked order should be in P. Thus the other orders are preferable over >KV ′ .

From Theorem 3.13 we know that >s ⊆ >ACKBO and >KV is not AC-compatible
simplification order. Therefore it is reasonable to choose >ACKBO to be formalized in
IsaFoR.

9

References

References
[1] Konstantin Korovin and Andrei Voronkov. “Orienting rewrite rules with the Knuth-

Bendix order”. In: Information and Computation 183.2 (2003). 12th International
Conference on Rewriting Techniques and Applications (RTA 2001), pp. 165 –186.
issn: 0890-5401. doi: https://doi.org/10.1016/S0890-5401(03)00021-X.

[2] Aart Middeldorp and Hans Zantema. “Simple Termination of Rewrite Systems”. In:
175 (Mar. 1997), pp. 127–158.

[3] Albert Rubio. “A Fully Syntactic AC-RPO”. In: Information and Computation 178.2
(2002), pp. 515 –533. issn: 0890-5401. doi: https://doi.org/10.1006/inco.2002.
3158.

[4] Alexander Schrijver. Theory of Linear and Integer Programming. John Wiley and
Sons, Chichester, 1986.

[5] Joachim Steinbach. “AC-Termination of rewrite systems: A modified Knuth-Bendix
ordering”. In: Algebraic and Logic Programming. Ed. by Hélène Kirchner and Wolf-
gang Wechler. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990, pp. 372–386.
isbn: 978-3-540-46738-0.

[6] Akihisa Yamada, Sarah Winkler, Nao Hirokawa, and Aart Middeldorp. “AC-KBO
revisited”. In: Theory and Practice of Logic Programming 16.2 (2016), pp. 163–188.
doi: 10.1017/S1471068415000083.

10

http://dx.doi.org/https://doi.org/10.1016/S0890-5401(03)00021-X
http://dx.doi.org/https://doi.org/10.1006/inco.2002.3158
http://dx.doi.org/https://doi.org/10.1006/inco.2002.3158
http://dx.doi.org/10.1017/S1471068415000083

	Introduction
	Preliminaries
	Simplification orders
	Rewriting modulo equations
	Weight functions
	The Knuth-Bendix Order KBO

	ACKBO orders
	Steinbach's order
	Korovin and Voronkov's order
	AC-KBO

	Relation between ACKBO orders
	Complexity
	Membership
	Orientation

	Further work

