B universitat
Innsbruck

Seminar Report

ProTeM

Christina Kohl

christina.kohl@student.uibk.ac.at

23 February 2018

Supervisor: Prof. Dr. Aart Middeldorp

Abstract
Proof terms are a useful concept for reasoning about computations in term rewriting.
Human calculation with proof terms is tedious and error-prone. We present ProTeM, a
new tool that offers support for manipulating proof terms that represent multisteps in
left-linear rewrite systems.

mailto:christina.kohl@student.uibk.ac.at

Contents

1 Introduction 1
2 Proof Terms 1
2.1 Basic Operations e 3
2.2 Measuring Overlap L 5
3 Web Interface 6
3.1 Uploading a Term Rewrite System 6
3.2 Commands e 7
3.3 Export to INTEX 8
4 Implementation Details 8
4.1 Project Structure 9
4.2 UlLayout 10
4.3 Processing Commands L oo 10
5 Conclusion 11
Bibliography 13

ii

1 Introduction

Proof terms represent computations in term rewriting. They were introduced by van
Oostrom and de Vrijer for first-order left-linear rewrite systems to study equivalence of
reductions in [17] and [13, Chapter 8|. Extensions to higher-order rewriting and infinitary
rewriting are reported in [1] and [6], respectively. Hirokawa and Middeldorp used proof
terms for confluence analysis of left-linear rewrite systems [2, 3].

Our motivation for studying proof terms is to close an important gap between proofs
produced by automatic confluence checkers and certified proofs. Numerous confluence
criteria described in the literature have been formalized in IsaFor, a large Isabelle/HOL
library for term rewriting, see [9] for a recent overview. This includes the well-known
result of Huet [4] stating that a left-linear rewrite system is confluent if its critical pairs
are closed by a parallel step [10]. Its extension to multisteps (also called development
steps) by van Oostrom [16] thus far escaped all attempts to obtain a formalized proof.
The picture proof in [16] conveys the intuition but is very hard to formalize in a modern
proof assistant. We believe that proof terms together with residual theory [13, Section
8.7] will help to close the gap.

Calculations with proof terms are tedious and error-prone to do by hand, which is why
we developed ProTeM. Besides providing basic operations for manipulating proof terms
that represent multisteps in left-linear rewrite systems, like join and residual, ProTeM
supports new operations on proof terms that are required for a formalized proof of the
main result of [16]. The latter include an inductive definition for computing the amount
of overlap and a function that returns the critical overlaps between co-initial proof terms.

In the next section we recall proof terms and introduce new operations for measuring
overlap between two proof terms. The web interface of ProTeM is described in Section 3
and in Section 4 we present some implementation details. We conclude in Section 5 with
ideas for future extensions of ProTeM.

2 Proof Terms

Proof terms are built from function symbols, variables, and rule symbols. The latter
represent rewrite rules and have a fixed arity which is the number of different variables
in the represented rule. We use Greek letters as rule symbols.

Example 2.1. Consider the following TRS consisting of five rewrite rules which are
associated with rule symbols « to e:

f(g(x)) — g(h(z,i(a)))
g(h(h(i(x),1),f(2))) = h(h(y, 1), 1(2))
i(r) —

h(z, £()) = h(i(f(v)), f(v))
g(h(z, 1)) = h(x,v)

2 Proof Terms

Two possible proof terms in this system are A and B:

A= a(h(5(i(v(a)),i(a)), ()
B =f(A(i(a),f(7(a)),g(a)))

In this section we present the operations on proof terms that are implemented in
ProTeM. We will start by giving a few basic definitions that apply to rule symbols of a
given rewrite system.

Definition 2.2. If « is a rule symbol then lhs(«) (rhs(«)) denotes the left-hand (right-
hand) side of the rewrite rule represented by a. Furthermore var(«) denotes the list
(x1,...,2y) of variables appearing in « in some fixed order. The length of this list is the
arity of a.

For the following definitions we need a notation for substituting terms for the variables
occuring in a rewrite rule.

Definition 2.3. Given a rule symbol « with var(a)) = (z1,...,z,) and terms t1,. .., t,,
we write (t1,...,t,)q for the substitution {z; — t; | 1 <7 < n}.

We mentioned in the introduction that proof terms represent multisteps in a (left-linear)
rewrite system. To be precise a proof term A witnesses a multistep from its source to its
target.

Definition 2.4. Given a proof term A, its source src(A) and target tgt(A) are computed
by the following clauses:

src(x) = tgt(z) = x
src(f(A1, ..., An)) = f(src(A1),...,src(Ay))
src(a(Aq, ..., Ayp)) = Ihs(a)(src(Ay), ..., src(An))a
tgt(f(Ar, ..., An)) = f(tgt(Ar), . .. tgt(4n)
tgt(a(Aq, ..., An)) = rhs(a)(tgt(41), ..., tgt(An))a

Proof terms A and B are co-initial if they have the same source.

Example 2.5. Consider again the two proof terms A and B from Example 2.1. By
computing their respective sources we can see that they are indeed co-initial:

src(A) = sre(B) = f(g(h(h(i(i(a)),(i(a))), f(g(a)))))

Their targets are

tgt(A) = g(h(h(h(i(a),i(a)), g(h(a,i(a)))),i(a)))
tgt(B) = f(h(h(f(a),f(a)), f(g(a))))-

To further illustrate the connection between proof terms and multisteps, Figure 1 shows
a tree representation of s = src(A) = src(B), where the redexes in A (B) have been
marked in red (green). It is easy to see that A and B are overlapping at three positions.
We will verify this in the next section when we formally define a function to determine
the amount of overlap between two proof terms.

2.1 Basic Operations

Figure 1: The term f(g(h(h(i(i(a)),f(i(a))),f(g(a))))) with overlapping redexes.

2.1 Basic Operations

Below we give definitions of four of the most basic operations on proof terms: determining
orthogonality, joining two proof terms, computing the residual of two proof terms, and
deleting steps of a proof term. When two proof terms have no overlap in their redexes
we call them orthogonal.

Definition 2.6. The orthogonality predicate A 1. B on two proof terms A and B is
defined by the following clauses:

zlz
f(Al,...,An)J_f(Bl,...,Bn) <~ AZJ_BZ foralll1<i<n
Oé(Al,...,An)J_th(Oé)<Bl,...,Bn>a <~ AZJ_Bl foralll1<i<n
lhs(a)(A1, ..., Ap)a L a(By,...,B,) <= A; L Biforalll1<i<n

1

7

In all other cases A L B is false.

Example 2.7. Consider the TRS consisting of the three rewrite rules
cf(a, v, y) = g, x,y) ta—b :h(x) = h(h(2))
together with the three co-initial proof terms
A=1(3,a,h(a)) B =f(a,/3,h(a)) C = a(a,v(a)).
Here we have A 1. Band B L Cbut A / C.

The next operation, join, combines two co-initial proof terms into one single proof term.

2 Proof Terms

Definition 2.8. The join operation A U B on two co-initial proof terms A and B is
defined by the following clauses:

rUzx =

f(A1, ..., A) U f(B1,...,Bn) = f(A1UBy,..., A, UBy)
a(Ay, ..., Ay) Ua(By,...,By) = a(A1 U By, ..., A, UBy)
alAq, ..., Ay)Ulhs(a)(By,...,Bp)a = a(A1 U By, ..., A, U By)
lhs(a)(A1, ..., Ap)a Ua(B1,...,By) = a(A1UBy,..., A, UBy,)

8

Example 2.9. Consider again the proof terms A, B, and C' of Example 2.7. We get
AUB=f1(4,3,h(a)) and BUC = «(/3,~(a)).

Next we define the residual of a proof term A after applying B.

Definition 2.10. The residual operation A / B on two co-initial proof terms A and B is
defined by the following clauses:

x/r =z
f(A1,...,A)) f(B1,...,By) = f(A1/Bs1,..., A,/ By)
a(Ar,...,Ay) /a(B,...,By) = rhs(a)(A1/ B1,...,An/ Bp)a

a(Ar, ..., Ap) /Ihs(a)(By,...,Bp)a = (A1 / B1,..., Ay / By)
lhs(a)(A1, ..., An)a /a(B, ..., By) = rhs(a)(A1 / B1,...,An/ Bp)a

Join and residual are partial operations. They are well-defined when A | B holds.

Example 2.11. Consider again the proof terms A and B, and C of Example 2.7. Since
A 1 B and B 1 C we can compute the residuals A/ B and B/ A, as well as B /C and
C/B:

A/ B =1f(3,b,h(a)) B/A=1(b,5,h(a))

B/C = g(b,b,h(h(a))) C /B =a(b,(a))

Finally we define the deletion A — B, which is used to remove the steps in B from A.

Definition 2.12. The deletion operation A — B on two co-initial proof terms A and B
is defined by the following clauses:

r—xr==x
f(A1, ..., Ap) — f(B1,...,Bn) = f(A1 — By,..., A, — By)
Oé(Al, . ,An) — Oé(Bl, ceey Bn) = |hS(Oé)<A1 — Bl, . ,An — Bn)a
a(Ay, ..., Ay) —lhs(a)(By,...,Bp)a = @(A1 — By, ..., Ay — By)
Example 2.13. For the three proof terms A, B,C of Example 2.7 only the deletion

C — B is defined:
C-B= (37 (a))

2.2 Measuring Overlap

2.2 Measuring Overlap

An important concept in the correctness proof of the confluence theorem in [16] is the
amount of overlap between two multisteps. Below we present an inductive definition for
measuring the overlap between co-initial proof terms. It is based on a special labeling of
the source of a proof term.

Definition 2.14. We write Ihsﬁ(a) for the result of labeling every function symbol in
lhs(a) with « as well as the distance to the root of a:

‘ t ifteV
@(t,a,z): . . .
fai(@(tl,Oé,’L—F1),_,.,(,0(15”,&,24-1)) lft:f(tlvatn)

Definition 2.15. The mapping src! computes the labeled source of a proof term:
srcf(z) =z
srch(f(Ar, ..., Ap)) = f(srcf(Ay), ..., srcf(Ay))
srcf(a(Aq, ..., Ap)) = Ihsf(a)(src? (A1), ..., src?(An))a
Example 2.16. For the proof terms A and B of Example 2.1 we have:

srch(A) = fo(gat (h(hao(i(i0(2)), F51(i(2))), Fro (8.1 (a))))
srch(B) = f(g o (hsu (hs2 (i3 (i(a)), f(i,0(2))), F 2 (g(2)))))

Given two co-initial proof terms A and B, the following function computes a single
labeled term in which all function symbols corresponding to redex patterns in A and B
are marked.

Definition 2.17. For two co-initial proof terms A and B we define the merge operation:
merge(A, B) = merge'(src?(A), src*(B))

with merge’(s,t) = s for s,t € V and merge'(s,t) = fap(merge’(s1,t1), ..., merge (sp,tn))
if s = fo(s1,...,8,) and t = fp(t1,...,t,). Here we identify an unlabeled function symbol
f with f_.

Example 2.18. For the two co-initial proof terms A and B of Example 2.1 we have:
merge(A, B) =f 0_(g. 150(h_z1(hsos2(i_s3(i0_(a)),fs1_(i_0(a))),fo2(g.1_(a)))))

Here a abbreviates a__.

Definition 2.19. The function A uses merge to measure the amount of overlap between
two co-initial proof terms A and B:
A (A, B) = measure(merge(A, B)) with measure(u) = 0 if u € V and

1+ Z measure(u;) if a¥ # — and b # —
measure(forp (UL, .-, Up)) =< » L

> measure(u;) otherwise
i=1

3 Web Interface

Example 2.20. Continuing Example 2.18 we compute the amount of overlap between
A and B of Example 2.1:
A(A,B)=3

Definition 2.21. The overlaps function collects all pairs of overlapping redexes in two
co-initial proof terms A and B:

overlaps(A, B) = {(p,a,q,ﬂ) ’ p,q € Posr(u), £1(u(p)) = a®, £a(u(q)) = BY, and either }

p < g and 41(u(q)) = al?\Pl or ¢ < p and lo(u(p)) = Blp\dl
Here 41(fap) = a, l2(fap) = b, and u = merge(A, B).

The condition ¢1(u(q)) = al?\Pl in the first case of the definition of overlaps(A, B) ensures
that ¢\p is a position in lhs(«).

Example 2.22. we compute the list of overlaps between proof terms A and B of
Example 2.1:

overlaps(A, B) = {(¢, o, 1, 7),(111,0,1, 3), (112, v, 1, 3)}

As predicted by A(A, B) = 3 the length of this list is three.

3 Web Interface

In this section we will first give a brief overview of the main parts of ProTeM’s user
interface, followed by a more detailed description of each of its features. The web interface
of ProTeM can be accessed at

http://informatik-protem.uibk.ac.at:8080/protem/

The layout of our application is displayed in Figure 2. At the center of the screen we
have a large area for displaying the history of commands a user has entered (on the left),
together with result output corresponding to these commands (on the right). Below that
there is a smaller panel where all rules of the currently loaded term rewrite system are
displayed. At the bottom of the screen we have a command line with several buttons
above it, that help users enter unusual symbols such as Greek letters for rule symbols or
the L symbol for the orthogonality predicate on proof terms. To the left of the screen we
have a sidebar that gives an overview of the syntax that is used for commands.

3.1 Uploading a Term Rewrite System

When first opening the website, a simple example rewrite system is loaded per default.
Users can upload their own rewrite systems from .trs files. The files need to correspond
to a simplified form of the standard TRS-format as described in [7], where only the VAR
and RULES sections are taken into account. Additionally the rule symbols ProTeM should
use can be specified in the file by prepending each rule with its corresponding symbol

http://informatik-protem.uibk.ac.at:8080/protem/

3.2 Commands

BUSs ProTeM - Proof Term Manipulator upload TRS file
lhs(a), rhs(a), vars(a) -y ey =
overlaps(A, B) (e, @, 1, B), (111, &, 1, B), (112, @, 1, B)
sre(A).TOE(A) o)~ fig(n(aicia)), ita), Hat)) assignment
co-initial(A, B) 02 = f(R(i(a), f(i(a)), g(a))) assignment
A L B..othogonaity | A1 Aol a(h(h(if(ia))). flita))). afa))
e B1=B- 02 flath(n(ilica). f(y(a))). fla(@)))
- join
B2 = Bllol flg(h(h(i(i(y(a)). f(y(a))). fla(a))))
A8 Al D = fe(hiy(iG@)). flia)). @) assignment
A - B..deleton | Src(D) flg(h(hi(fi(a))). f(i(2))). fla(a))))
Src#(A) ... labsled souce | 910D fla(h(hiictia)), fi(a))). fla(a)))
—_— | f(h(n(ica). fita)). lgla)
igi(02) f(h(h(f(i(a)), f(i(2)). f(g(2)))
e et (DB =DuB2 fe(h(v(E(y(a))). f(v(a)). fg@)))
overlaps(A, B) A (A1, DB) 1
1(g()) » g(h(x, i@)
LRTSmACIOS g g(h(h((x). y). 1(2) > hih(y.), ()
Yol > x
8:hix, 1)) = h(if)), 1)

£ g(h(x, y)) 2 hix, y)

T TTTIT

Figure 2: Screenshot of a ProTeM session.

ﬁﬁ.ﬁ.ﬁ-ﬁ.

Figure 3: The adapted symbol buttons after uploading a TRS with 28 rules.

co-initial

'

followed by a colon. If one or more rules have no specified rule symbols, ProTeM chooses
a new Greek letter for each rule, starting from «. If a rewrite system contains more than
24 rules (24 is the number of letters in the Greek alphabet) ProTeM will assign al to
the 25th rule, 51 to the 26th rule, and so on. When uploading a new rewrite system, the
buttons above the command line will automatically change according to the new rule
symbols. Figure 3 shows the list of buttons after uploading a rewrite system with 28
rules.

3.2 Commands

There are two types of commands available, one are assignments, the other computations
on proof terms. Assignments have syntax id = proofterm where id can be any string
and proofterm any valid proof term. Notably it is possible to use results of computations
in assignments (e.g. C'= B —f(3(i(a),f(i(a)),g(a))), see also Figure 2). Commands for
rule symbols are 1hs(«), rhs(a) and vars(a) where a can be any rule symbol used in

4 Implementation Details

:flgC<) > g(h(x, i@))

2g(h(h(iC4), v), i) = hih(y,), f(z))
i(x) =

thx, f(y)) = h(()), f))

:g(h(x v)) 2 hix,)

ElSDDEEBEnEnooomEsE
| C=at@u fiy(@) |

Figure 4: An invalid assignment; the join operation of these two proof terms is not
defined.

the current TRS. Commands for proof terms include all operations described in Section 2.
Their syntax is listed in the sidebar of our application.

Commands have to be entered into the text field at the bottom of the screen. The
blue buttons above it can be used to enter special symbols that are used for some of the
commands (like L for orthogonality, or A for measuring the amount of overlap between
two proof terms). In addition there is one orange button for each currently used rule
symbol. When pressing one of the buttons, the corresponding symbol appears in the
command line, with the focus returning immediately to the text field itself so that the
user can carry on typing. A command can be submitted either by pressing enter or by
using the “Submit” button. If the command line contains a valid command, it will be
sent to the server and executed. The result will then be displayed in the output area
above. If the command was not valid (e.g. trying to assign the result of an undefined
operation), an error will be displayed (Figure 4). In Section 4.3 we will explain how
commands are processed internally.

3.3 Export to BTEX

A proof term or labeled proof term can be exported as a INXTEX string. To correctly insert
proof terms from ProTeM into a I¥TEX document it is first necessary to add the required
macros. These define colors and provide support for UTF8 encoding of Greek letters.
In particular we define three new commands \pfun, \pvar, \prule which determine the
representations of function symbols, variables and rule symbols respectively. The macros
can be downloaded by clicking on the “IATEX macros” entry in the sidebar. Clicking on
any proof term in the output area will open a popup view, which contains a text field with
the IATEX representation of that proof term (Figure 5). It can then be copy-and-pasted
into any document. The proof terms in this report have been created using this feature.

4 Implementation Details

The core functionality of ProTeM is written in Scala. For the web component we used
the Vaadin framework [14]. Vaadin is a Java web application framework that makes
it easier for developers who don’t have much experience with web technologies, such
as JavaScript, HTML and HTTP requests, to design responsive and interactive web

4.1 Project Structure

Ll UGV YR) LT)] ASSIgITIET
B = f(B(i(a). f(v(a)). g(a)) assignment
co-initial(A, B) True
ALB False
C = B - f(B(i(a), f(i(a)), g(a))) fla(h(h(i(i(a)), f(v(a))), f((@))))
AlLC True
AlC o=ty (@)), 8), afa)

clA Laex A, i), (@)
SIc™(A) l pfun{f {\prule{c}"{0}(\pfun{g_{\prule{o}*{1}}(\pfun{h(\pjl (RELIEREII)
A (A, B) 3
overlaps(A, B) (e, 0,1, (), (111, 5, 1, f), (112, @, 1, B)
sIc’(B) flgpo(hp(hp2(ipa(i@)), f(i,0(@), frz(gla))

Figure 5: Popup view containing the IXTEX representation of a labeled proof term.

ProTeM/
| _src/
L,main/
java/
scala/
resources/
webapp/
| vaapin/
tjs/
themes/
| _pom.xml

Figure 6: The project structure of ProTeM.

applications. Vaadin allows developers to write all required code in pure Java (or any
other language that runs on the JVM). Applications can also be extended with custom
HTML or JavaScript and themed with CSS. From a technological point of view the Ul
logic of a Vaadin application runs as a Java Servlet in a Java application server. ProTeM
for example is hosted on a Jetty [5] server. On the client side Vaadin uses JavaScript to
render the user interface in the browser and communicate user events to the server. All
communication is automated and makes heavy use of AJAX (Asynchronous JavaScript
and XML) to make applications as responsive as possible. An additional benefit for our
particular application was that Vaadin automatically stores the state of each user session
(as long as the browser window is open), so that we can provide users with an interactive
interface and still call our Scala functions on the server for all computations on proof
terms.

4.1 Project Structure

Our project is composed of Scala and Java source code as well as HTML layout definitions
and CSS style definitions. The project structure is displayed in Figure 6. The Vaadin
Framework core library and all Vaadin add-ons are available through Maven [8], a popular
build and dependency management system. New Vaadin projects can be created from

4 Implementation Details

Maven archetypes, which are basically project templates. For ProTeM we used the
vaadin-archetype-application [15] as our starting point. In Maven the project and
configuration details are defined in an XML file called pom.xml which is located in the root
folder of the project. The default pom.xml that comes with the Vaadin archetype however
does not support Scala code compilation. For that we had to add Scala dependencies
and the scala-maven-plugin [12].

As can be seen in Figure 6 our main source folder is divided into two subfolders, one
for Scala source code and one for Java source code. The scala folder contains the main
functionality for proof term manipulations whereas the java folder contains only Ul
specific code. The resources folder contains the example trs file that is loaded per
default into the app as well as the file proofterm macros.tex which contains our I TEX
macros for exporting proof terms. An important component of every Vaadin application
is the VAADIN folder inside webapp which contains theme definitions for the app. Themes
can either be defined in pure CSS or Sass (Syntactically Awesome Stylesheets [11]). In
addition the VAADIN folder can contain Java scripts and custom HTML layouts.

4.2 Ul Layout

The main layout of our user interface is defined in the file index.html (located in
VAADIN/themes/cl/layouts). It provides the CL typical header and a sidebar with
our syntax descriptions. In addition it contains a special div component with a
data-location property. This div can be accessed and filled with content from in-
side a Java class. On the Java side we only need to extend Vaadins abstract class UI and
override its init method. There we can load index.html as a CustomLayout, create
all our dynamic and interactive layout parts and add them to index.html. The code
snippet in Listing 1 illustrates the necessary steps. Creating layout components in Java
allows us to attach simple event listeners to them, which in turn can access all proof
term methods located inside the scala folder. We will describe the interaction between
the different components of our app in more detail in the next section, when we explain
how a command entered into the command line is processed internally.

4.3 Processing Commands

To understand how ProTeM works internally we will look at the implementation of its core
functionality, parsing and executing commands. An important concept to understand is
how Vaadin treats session states internally. For each new session (e.g. a new ProTeM tab
in a browser) Vaadin creates a new UI instance. In our case a new instance of ProTeMUI
is created. We give each instance of ProTeMUI its own State object, which contains all
the necessary data for a ProTeM session, including the currently loaded TRS and all
assignments.

We already mentioned that each interactive component can have a listener attached to
it in Java. In particular we have one listener for clicks on the “Submit” button beside
the command line and another listener attached to the command line itself, which gets
notified when enter is pressed. Both listeners simply call the method processCommand ()

10

@0verride

protected void init(VaadinRequest vaadinRequest) {
getPage () .setTitle(
"ProTeM,, | Computational Logic, | University of Innsbruck");
// load index.html from layouts
CustomLayout index = new CustomLayout("index");
// the main layout component
final Verticallayout layout = new VerticalLayout();

// initialize the individual layout components

layout .addComponent (uploadLayout) ;
layout .addComponent (outputArea) ;
layout .addComponent (trsArea) ;
layout.addComponent (buttonLayout) ;
layout .addComponent (commandArea) ;

// add the main layout to index.html at data-location=content
index.addComponent (layout, "content");
setContent (index); // set index.html as the root of our app

Listing 1: Initializing ProTeMs user interface inside ProTeMUI. java.

defined in ProTeMUI. java. Inside processCommand () the input string from the command
line is passed on to a parser (InstructionParser inside the scala folder) which tries to
determine whether the command is a valid assignment or computation, or if it contains
invalid syntax. Valid commands are defined inside Command.scala where each possible
command has its own case class extending the abstract class Command and overriding the
mandatory method execute(). Listing 2 shows an excerpt of the defined commands. If
the parser detected a valid command it returns an appropriate instance of one of those
case classes, in case the command could not be parsed, it returns an exception. Valid
commands can then be executed inside processCommand () and the appearance of the
relevant Ul components is updated accordingly. By employing AJAX for UI updates,
changing the appearance of a Vaadin component does not result in a full reload of the
webpage. Instead only relevant components are updated. This makes interactions with
the app appear smoother and faster.

5 Conclusion

In this report we presented ProTeM, a tool that supports operations on proof terms
that represent multisteps in first-order left-linear rewrite systems. We described the

11

5 Conclusion

operations ProTeM supports and provided some details about its implementation.
There are several possibilities to extend the functionality of ProTeM. First of all,
adding a composition operation to the language of proof terms allows to represent rewrite
sequences that are not single multisteps. Equivalence testing and normalization become
then interesting questions. Also one could ask the tool to compute proof terms that
represent a given rewrite sequence. Another useful extension will be automatic support
for visualizing co-initial proof terms, like the figure in Example 2.1. Dropping the left-
linearity requirement will be a challenging task, which requires the development of new

case class Lhs(arg: terms.Rule) extends Command {
override def execute(): Term = arg.lhs
}
case class ColInitial(argl: Proofterm, arg2: Proofterm)
extends Command {
override def execute(): Boolean = argl.isColInitial(arg2)
}
case class Measure(argl: Proofterm, arg2: Proofterm)
extends Command {
override def execute(): Any = {
if (argl.isCoInitial(arg2)) argl.measure_overlap(arg2)
else new NotCoinitial // return an Exception

}
}

Listing 2: A few example commands as defined inside Command.scala.

theory.

12

References

References

1]

2]

H. S. Bruggink. Equivalence of Reductions in Higher-Order Rewriting. PhD thesis,
Utrecht University, 1980.

N. Hirokawa and A. Middeldorp. Decreasing diagrams and relative termination.
Journal of Automated Reasoning, 47(4):481-501, 2011.

N. Hirokawa and A. Middeldorp. Commutation via relative termination. In Proc.
2nd International Workshop on Confluence, pages 29-33, 2013.

G. Huet. Confluent reductions: Abstract properties and applications to term
rewriting systems. Journal of the ACM, 27(4):797-821, 1980.

Eclipse jetty. https://www.eclipse.org/jetty/. Accessed: 2018-02-01.

C. Lombardi, A. Rios, and R. de Vrijer. Proof terms for infinitary rewriting. In
Proceedings of the Joint 25th International Conference on Rewriting Techniques
and Applications and 12th International Conference on Typed Lambda Calculi and
Applications, volume 8560 of Lecture Notes in Computer Science (Advanced Research
in Computing and Software Science), pages 303-318, 2014.

C. Marché, A. Rubio, and H. Zantema. Termination problem data base: Format of
input files. https://www.lri.fr/~marche/tpdb/format.html. Accessed: 2018-01-
17.

Apache maven. https://maven.apache.org/. Accessed: 2018-02-02.
J. Nagele. Mechanizing Confluence. PhD thesis, University of Innsbruck, 2017.

J. Nagele and A. Middeldorp. Certification of classical confluence results for left-
linear term rewrite systems. In Proc. 7th International Conference on Interactive
Theorem Proving, volume 9807 of Lecture Notes in Computer Science, pages 290-306,
2016.

Sass. https://vaadin.com/docs/v8/framework/themes/themes-sass.html. Ac-
cessed: 2018-02-02.

scala-maven-plugin. https://mvnrepository.com/artifact/net.alchim31.
maven/scala-maven-plugin. Accessed: 2017-12-28.

Terese, editor. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoret-
ical Computer Science. Cambridge University Press, 2003.

Vaadin framework 8. https://vaadin.com/docs/v8/framework/introduction/
intro-overview.html. Accessed: 2018-01-17.

Vaadin archetype application. https://mvnrepository.com/artifact/com.
vaadin/vaadin-archetype-application. Accessed: 2017-12-28.

13

https://www.eclipse.org/jetty/
https://www.lri.fr/~marche/tpdb/format.html
https://maven.apache.org/
https://vaadin.com/docs/v8/framework/themes/themes-sass.html
https://mvnrepository.com/artifact/net.alchim31.maven/scala-maven-plugin
https://mvnrepository.com/artifact/net.alchim31.maven/scala-maven-plugin
https://vaadin.com/docs/v8/framework/introduction/intro-overview.html
https://vaadin.com/docs/v8/framework/introduction/intro-overview.html
https://mvnrepository.com/artifact/com.vaadin/vaadin-archetype-application
https://mvnrepository.com/artifact/com.vaadin/vaadin-archetype-application

References

[16] V. van Oostrom. Developing developments. Theoretical Computer Science, 175(1):159—
181, 1997.

[17] V. van Oostrom and R. de Vrijer. Four equivalent equivalences of reductions. In Proc.
2nd International Workshop on Reduction Strategies in Rewriting and Programming,
volume 70(6) of Electronic Notes in Theoretical Computer Science, pages 21-61,
2002.

14

	Introduction
	Proof Terms
	Basic Operations
	Measuring Overlap

	Web Interface
	Uploading a Term Rewrite System
	Commands
	Export to LaTeX

	Implementation Details
	Project Structure
	UI Layout
	Processing Commands

	Conclusion
	Bibliography

