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Abstract
This report describes the use of tree automata for reachability analysis of term rewrite

systems, including an extension for conditional term rewrite systems. It includes explana-
tions of a completion algorithm for tree automata to create over and underapproximations
of regular languages.
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1 Introduction
Reachability analysis over term rewrite systems is an interesting and useful topic for
several purposes including termination and confluence analysis. As term rewrite sys-
tems are a Turing-complete computation model [1] they can be used to represent any
Turing-computable program. In particular there have been successful attempts to apply
termination analysis over term rewrite systems to Java Bytecode [5] and Haskell [3]
programs.

An approach presented by Feuillade, Genet and Tong [2] employs tree automata and
tree automata completion to approximate reachable terms. This allows for reachability
analysis, as terms not part of an overapproximation can never be reached and terms part
of an underapproximation are reachable.

In this report I give a brief introduction to tree automata for readers unfamiliar
with the topic in Section 2. I present the tree automata completion algorithm in
Section 3 alongside necessary auxiliary function. Afterwards I talk about conditions
for over and underapproximation of the completed automaton in Section 4. I briefly
describe reachability in term rewriting and how tree automata completion can be used for
nonreachability analysis in Section 5. Finally I elaborate on conditional term rewriting
and an extension of tree automata completion for it in Section 6.

2 Tree Automata
In this section I attempt to give readers who are not familiar with tree automata a brief
introduction to the topic. I assume a basic understanding of term rewriting [1].

Before looking at tree automata I want to clarify some notation used in this report.
A finite set of function symbols with an associated nonnegative arity is F . A finite set
disjoint from F of state symbols with arity zero is Q. A countable (but not necessarily
finite) set of variables is X . The set of terms over F and X is denoted as T (F ,X ),
whereas the set of ground terms, that is terms without variables is denoted as T (F). A
configuration is a ground term over function symbols and states, the set of configurations
is denoted by T (F ∪Q).

The set of R-descendants of a set of ground terms E with respect to a term rewrite
system R is defined as the set of all ground terms t which can be reached from some
term s ∈ E.

Definition 2.1. R-descendants of E: R∗(E) = {t ∈ T (F) | ∃s ∈ E s.t. s→∗R t}

Furthermore I define regular language substitutions as functions σ : X 7→ Q mapping
variables to states. The set of all such substitutions over Q and X is denoted by Σ(Q,X ).

With this basis I introduce some more requirements for defining tree automata.

Definition 2.2. A transition is an ordered pair of configurations and states: c→ q for
some c ∈ T (F ∪Q) and q ∈ Q.

Definition 2.3. Normalized transitions are a specialization of transitions, further re-
stricting their left-hand side: c→ q for some q ∈ Q and either
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2 Tree Automata

• c = q′ ∈ Q is a state or

• c = f(q1, . . . , qn) where q1, . . . , qn ∈ Q are states and f is a function symbol of arity
n (f ∈ F , ar(f) = n).

While tree automata require transitions to be normalized, other transitions will appear
in intermediate steps of adding transitions to an automaton where they have to be
normalized.

To make things more clear we look at a few different transitions in an example.

Example 2.4. Some example transitions for states q0, q1, q2, q3 and function symbols
f, g, h are q1 → q0 and h(q2, q3) → q1 which are normalized or h(q1, f(q2)) → q0 and
f(g(q1))→ q0 which are not.

Having introduced all requirements I can now define tree automata.

Definition 2.5. A bottom-up nondeterministic finite tree automaton is a quadruple
A = 〈F ,Q,Qf ,∆〉 of function symbols, states, final states which are a subset of states
(Qf ⊆ Q) and a set of normalized transitions.

In the remainder I will refer to bottom-up nondeterministic finite tree automata simply
as tree automata as they are the only type of tree automata I use. From the set of
normalized transitions ∆ I derive a rewriting relation on configurations →A.

Finally, we can consider the language of an automaton.

Definition 2.6. The language recognized by a state q in an automaton A is the set of
all ground terms that can be rewritten to q: L(A, q) = {t ∈ T (F) | t→∗A q}

Definition 2.7. The language recognized by an automaton A is the union of the
languages recognized by the final states of the automaton: L(A) =

⋃
qf∈Qf

L(A, qf )

In other words the language recognized by an automaton is the set of all ground terms
t that can be rewritten to some final state qf of the automaton.

Example 2.8. Consider a tree automaton A = 〈F ,Q,Qf ,∆〉 with F = {f, g, a}, Q =
{q0, q1, q2}, Qf = {q0} and ∆ = {f(q0)→ q0, g(q1)→ q0, g(q2)→ q2, a→ q1} We look at
some rewrite sequences and properties.

• g(a)→A g(q1)→A q0

• f(g(a))→∗A f(q0)→A q0

• L(A, q1) = {a}

• L(A, q0) = {f(g(a)), f(f(g(a))), . . . } = {f∗(g(a))}

• L(A, q2) = ∅, q2 can never be reached and is called dead state.

2



3 Tree Automata Completion
The goal of tree automata completion is, given an automaton A0, find an automaton A′
that overapproximates the A-descendants of the language of A0, L(A′) ⊇ R∗(L(A0)).
An abstract algorithm for this purpose, successively creates intermediate automata
that overapproximate the previous step, L(Ai) ⊆ L(Ai+1) until a fixpoint is reached
L(Ak) = L(Ak+1).

Definition 3.1. A critical pair between the rewrite relation of a term rewrite system R
and the rewrite relation of an (intermediate) automaton Ai is some lσ for a substitution
σ : X 7→ Q and a rule l→ r ∈ R such that lσ →∗Ai

q and rσ 9∗Ai
q.

The completion algorithm joins all critical pairs in each completion step, by adding a
transition rσ → q to the new automaton Ai+1. Due to the requirements of tree automata,
we need to normalize the transition first, requiring some more definitions.

Definition 3.2. An abstraction function α maps normalized configurations in T (F ∪Q)
to states: α : {f(q1, . . . , qn)|f ∈ F , ar(f) = n and q1, . . . , qn ∈ Q} 7→ Q

Definition 3.3. The abstraction state topα maps (not necessarily normalized) configura-
tions in T (F ∪Q) to states, using a given abstraction function.

topα(t) =
{
t if t ∈ Q
topα(t) = α(f(topα(t1), . . . , topα(tn))) if t = f(t1, . . . , tn)

Given these functions we have a way to map any configuration to a state, which is
required for the normalization of an arbitrary transition as can be seen in Example 3.5.

Definition 3.4. The normalization function Normα maps a transition to a set of
normalized transitions, using an abstraction function α.

Normα(s→ q) =



∅ if s = q

{s→ q} if s ∈ Q and s 6= q

{f(topα(t1), . . . , topα(tn))→ q}

∪
n⋃
i=1

Normα(ti → topα(ti)) if s = f(t1, . . . , tn)

Example 3.5. We consider a tree automatonA with F = {f, g, a},Q = {q0, q1, q2, q3, q4},
Qf = {q0} and ∆ = {f(q1)→ q0, g(q1, q1)→ q1, a→ q1}.

The language recognized by q0 is L(A, q0) = {f(x)|x ∈ L(A, q1)}, where the language
recognized by q1 is L(A, q1) = T ({g, a}), that is all ground terms over g and a.

Now consider a term s = f(g(q1, f(a))) and an abstraction function α = {a 7→
q4, f(q4) 7→ q3, g(q1, q3) 7→ q2}. Applying the normalization function to the transition
s → q0 yields the following: Normα(f(g(q1, f(a))) → q0) = {f(q2) → q0, g(q1, q3) →
q2, f(q4)→ q3, a→ q4}.

In particular this requires the abstraction state of f(a), which considers the abstraction
function for α(a) = q4 and α(f(q4)) = q3 for the resulting set of normalized transitions.
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4 Completion Properties

Now that we have a method to join critical pairs, we look into the details of the
completion algorithm. First I define one step completion of an automaton.

Definition 3.6. Given a tree automatonA = 〈F ,Q,Qf ,∆〉, a term rewrite systemR and
an abstraction function α, the one-step completed automaton Cα,R = 〈F ,Q′,Qf ,∆′〉 uses
a new set of normalized transitions ∆′ = ∆ ∪

⋃
l→r∈R,q∈Q,σ∈Σ(Q,X ),lσ→∗

∆q
Normα(rσ → q)

and a new set of states Q′ = {q|c → q ∈ ∆′} with the remaining parameters left
unchanged.

This defines a one-step completed automaton as an automaton with all critical pairs of
a previous automaton joined using normalized transitions and possibly new states due to
the normalization process.

Finally, I can define automata completion using these intermediate definitions.

Definition 3.7. The n-step completed automaton is defined as follows.

• A0
α,R = A

• An+1
α,R = Cα,R(Anα,R)

This defines the 0-step completion as the unchanged input automaton and the n+ 1-
step completed automaton is the one-step completion applied to the n-step completed
automaton. I define the completed automaton as the fixpoint of this completion Akα,R =
Ak+1
α,R = A∗α,R. This fixpoint, and thus the completed automaton, does however not exist

in general, as completion often diverges. The abstraction function α can sometimes be
adjusted to ensure termination to generate an overapproximation. I will discuss further
conditions for over- and underapproximation in Section 4.

4 Completion Properties
In this section I aim to explain the conditions necessary for a completed automaton, if it
exists, to be an over- or underapproximation.

In their paper Feuillade, Genet and Tong propose several so called coherence conditions
sufficient for the desired properties [2].

Definition 4.1. A tree automaton A and a term rewrite system R satisfy the left-
coherence condition if
∀τ : X 7→ T (F),∀l→ r ∈ R,∀q ∈ Q :
lτ →∗∆ q ⇒ ∃σ ∈ Σ(Q,X ) s.t. lτ →∗∆ lσ →∗∆ q

Left-linear term rewrite systems satisfy the left-coherence condition. However, non-left-
linear term rewrite systems might still be useful for an overapproximation as long as they
satisfy the left-coherence condition. We look at the problem with the completion algorithm
and non-left-linear term rewrite systems through an example. Suppose f(x, x)→ g(x) is
a rule of a term rewrite system R and the tree automaton A contains the transitions
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f(q1, q1) → q0 and f(q2, q3) → q0. We can find a valid substitution σ = {x 7→ q1} for
a critical pair f(q1, q1) → q0 and g(q1) 9 q0. It is however not possible to find such
a substitution for the second transition. For completion between the given rule and
the second transition we would need to consider the common language of q2 and q3.
Instead of computing that, we could also determinize the automaton, which can lead to
exponential blowup of states. To avoid both calculations for the completion algorithm it
is enough to demand left-coherence.

I also define a stricter version of left-coherence, called simple left-coherence. For some
tree automaton A, a rule l → r over terms in T (F ,X ), {x1, . . . , xk} a set of nonlinear
variables in l and Y a set of variables distinct from X , we define Ren(l) = (l′, E) where
l′ is the left-hand side of the rule with nonlinear variables replaced with variables from Y
and E is a set of equality constraints.

Ren(l) =



(l, ∅) if l is either a constant or a variable not in
{x1, . . . , xk}

(y, {x = y}) if l is a variable x ∈ {x1, . . . , xk} and y is a
fresh variable of Y

(f(t′1, . . . , t′n),
⋃n
i=1Ei) if l = f(t1, . . . , tn) and Ren(ti) = (t′i, Ei) for

all i = 1 . . . n .

Definition 4.2. An automaton A and a term rewrite system R satisfy the simple
left-coherence condition if for all rules l→R r such that Ren(l) = (l′, E):
∀(x = y) ∈ E,∀σ ∈ Σ(Q,X ), ∀q, qx, qy ∈ Q :
l′σ →∗∆ q ∧ σ(x) = qx 6= qy = σ(y) =⇒ L(A, qx) ∩ L(A, qy) = ∅.

Simple left-coherence implies left coherence, thus it is sufficient to show this property.
Symmetrical to left-coherence there is also the right-coherence condition.

Definition 4.3. A tree automaton A and a term rewrite system R are said to be
right-coherent if either R is right-linear, or
∀q ∈ Q : ∃t ∈ T (F) : L(A, q) ⊆ R∗(t).

In particular in a term rewrite system that is not right linear, for all states q there must
be some ground term t such that the R-descendants of t overapproximate the language
recognized by the state q. Note that this condition only considers the initial automaton
in contrast to the left-coherence condition.

Lastly, there is also a coherence condition for abstraction functions.

Definition 4.4. An abstraction function α is called coherent with tree automaton A
and term rewrite system R if

• for all configurations in its domain t ∈ Dom(α) and for all states in its range
q ∈ Q ∩Ran(α)

• if α(t) = q then t→ q ∈ A and
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5 Reachability Analysis

• there is a ground term t′ ∈ T (F) such that
t′ →∗A t and L(A, q) ⊆ R∗({t′}).

Informally, this condition demands that whenever α maps some configuration t to a
state q either q is a fresh state not in A or terms recognized by q are some term t′ which
is recognized by t, or R-descendants of it.

Using these conditions I can define over- and underapproximation of tree automata
completion.

Lemma 4.5. If completion terminates and the term rewrite system R and the completed
tree automaton A∗α,R satisfy the left-coherence condition then the language of the completed
automaton overapproximates the R-descendants of the language recognized by the original
automaton: L(A∗α,R) ⊇ R∗(L(A))

Lemma 4.6. If the term rewrite system R and the tree automaton A satisfy the right-
coherence condition and α is an injective abstraction function coherent with R and A
then every step of the completion procedure, including the fixpoint, underapproximates the
R-descendants of the language recognized by the original automaton: ∀n ∈ N : L(Anα,R) ⊆
R∗(L(A))

These two results can be combined to define the exact case of tree automata completion.

Lemma 4.7. If the term rewrite system R and the tree automaton A satisfy the right-
coherence condition, α is an injective abstraction function coherent with R and A, the
completed automaton exists and R and A∗α,R satisfy the left-coherence condition then the
completion is exact: L(A∗α,R) = R∗(L(A))

5 Reachability Analysis
In this section I describe how tree automata combined with the completion algorithm can
be used for reachability analysis in term rewriting. Reachability in general is the question,
given terms s and t, whether there are some substitutions σ, τ for which sσ →∗R tτ . In
the context of this report we focus on ground terms, so the problem is simply whether
s→∗R t, or more interestingly the nonreachability problem is to find out whether s9∗R t.
Determining nonreachability is among other things useful for termination and confluence
proofs over term rewrite systems and thus indirectly also for proofs over programs in
languages such as Haskell, as mentioned in Section 1.

As described in Section 4, when completion terminates and several conditions are
satisfied, the completed automaton recognizes an overapproximation of the R-descendants
of the language recognized by an initial automaton. The original language can be replaced
by an arbitrary regular language E. In particular we can look at the special case E = {s},
thus R∗(E) is the set of all ground terms reachable from s. Now if t is not a member of
an overapproximation of this set, it is also not a member of the R-descendants and thus
not reachable from s. Hence it is sufficient to check whether the completed automaton
accepts t.
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6 Conditional Term Rewriting
This section gives an introduction to conditional term rewriting as defined by Feuillade,
Genet and Tong [2], which is just one way to look at conditional term rewrite systems
(CTRS). Other types of CTRS will be presented in Section 7. Finally we will present the
extension of the completion algorithm to the conditional case.

Essentially, conditional term rewriting is an extension of term rewriting where a subset
of the rewrite rules are so called conditional rules. These rules come with a set of, in the
context of this paper, joinability conditions. Here the variables of the conditions must be
a subset of the variables in the left side of the rule. A conditional rule l→ r ⇐ c1 ↓ c2
is said to be enabled for a substitution σ if c1σ ↓ c2σ, which means that there is some
common reduct u such that c1σ →∗ u and c2σ →∗ u. Multiple conditions are simply a
conjunction of singleton joinability conditions and behave as such.

This yields a rewriting relation →↓nR with

• →↓0R=→Rnc relation over non conditional rules

• a→↓n+1
R b⇔ a→↓0R b or

∃σ, p ∈ Pos(a), (l→ r if s ↓ t) ∈ R such that
a|p = lσ, b = a[rσ]p and ∃u ∈ T (F) such that
sσ →↓n∗R u and tσ →↓n∗R u

Feuillade, Genet and Tong propose that it is sufficient to extend the tree automata
completion algorithm for the conditional case, to support this type of term rewrite system.

This version of the completion algorithm is similar to the previous one, however the
set of states in step i is now split Qi = Q0 ∪Qi,new ∪Qi,cond where Q0 is the initial set of
states of A0, Qi,new is the set of states added through normalization of transitions and
indexed with natural numbers and Qi,cond is the set of states added for conditional rules
and indexed with configurations in T (F ∪Q).

The algorithm searches critical pairs without considering conditions. Each of these
pairs either involves a conditional or a non-conditional rule. Non-conditional rules are
treated as before, this time adding new states from normalization to Qi+1,new. For
conditional rules l → r if c1 ↓ c2, if at least one of the states qc1σ and qc2σ are not in
Qi,cond, the states are created and added and so are the required normalized transitions
Normα(c1σ → qc1σ) ∪Normα(c2σ → qc2σ).

Afterwards, or if the states already existed, the intersection of their recognized languages
is checked for emptiness L(Ai, qc1σ) ∩ L(Ai, qc2σ) 6= ∅.

If this set is not empty we know the condition is true and we treat the rule as if it was
a non-conditional rule. Otherwise, if the set is empty, we consider this rule not enabled
for this step of completion.

Again, we can consider properties of the completion result. For some tree automaton
A0 that is an overapproximation of a regular language L(A0) ⊇ E and a left linear
conditional term rewrite system R, if A′ is the result of the completion of A0 with respect
to R, then the language recognized by A′ is an overapproximation of the R-descendants
of E, R∗(E) ⊆ R∗(L(A0)) ⊆ L(A′).
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7 Conclusion

7 Conclusion
After a brief introduction to tree automata for readers unfamiliar with the topic, I have
described the completion algorithm by Feuillade, Genet and Tong [2], which allows us
to generate automata accepting an overapproximation of a desired language. I have
explained conditions for under and overapproximation of the completed automaton.
Finally I have explained conditional term rewriting and an extension of the completion
algorithm for conditional term rewrite systems.

7.1 Future Work
The presented completion algorithm deals with conditional term rewrite systems with
joinability conditions. However, oftentimes conditional term rewrite systems use reacha-
bility conditions, that is a rule l→ r may only be used if c2 is reachable from c1. More
work is required to determine whether an adjustment of the algorithm for such conditions
is feasible.

Furthermore, the conditional term rewrite systems dealt with are type 1 CTRS. The
condition Var(l) ⊇ Var(c1) ∪Var(c2) means that the conditions may not add variables
that are not already part of the left-hand side of the rule. There are however three other,
less-restrictive types of CTRS. In type 2 CTRS, new variables may appear in conditions,
but not in the right-hand side Var(l) ⊇ Var(r). Another step further are type 3 CTRS,
which allow new variables in the right-hand side, that do not appear in the left-hand
side, but do appear in the conditions Var(l) ∪Var(ci) ⊇ Var(r). Finally type 4 knows no
restrictions [4]. It is not immediately clear whether the algorithms are useful for higher
type conditional term rewrite systems and this might be an interesting topic to examine
in future work.
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